(* ========================================================================= *) (* Some general material about ordered sets of various kinds including WQOs. *) (* Proof of some useful AC equivalents like wellordering and Zorn's Lemma. *) (* ========================================================================= *) let PBETA_TAC = CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV);; let SUBSET_PRED = prove (`!P Q. P SUBSET Q <=> !x. P x ==> Q x`, REWRITE_TAC[SUBSET; IN]);; let UNIONS_PRED = prove (`UNIONS P = \x. ?p. P p /\ p x`, REWRITE_TAC[UNIONS; FUN_EQ_THM; IN_ELIM_THM; IN]);; (* ======================================================================== *) (* (1) Definitions and general lemmas. *) (* ======================================================================== *) (* ------------------------------------------------------------------------ *) (* Field of an uncurried binary relation *) (* ------------------------------------------------------------------------ *) let fld = new_definition `fld R = {x:A | ?y. R x y \/ R y x}`;; let IN_FLD = prove (`!l x:A. x IN fld l <=> ?y. l x y \/ l y x`, REWRITE_TAC[fld; IN_ELIM_THM]);; let FLD_EQ_EMPTY = prove (`!R:A->A->bool. fld R = {} <=> R = (\x y. F)`, GEN_TAC THEN GEN_REWRITE_TAC LAND_CONV [EXTENSION] THEN REWRITE_TAC[FUN_EQ_THM] THEN REWRITE_TAC[fld] THEN SET_TAC[]);; let FLD_SUBSET = prove (`!l r. (!x y. l x y ==> r x y) ==> fld l SUBSET fld r`, REWRITE_TAC[fld] THEN SET_TAC[]);; let FINITE_FLD = prove (`!l:A->A->bool. FINITE(fld l) <=> FINITE {(x,y) | l x y}`, GEN_TAC THEN EQ_TAC THENL [DISCH_THEN(MP_TAC o MATCH_MP FINITE_CROSS o W CONJ); DISCH_THEN((fun th -> MP_TAC(ISPEC `FST:A#A->A` th) THEN MP_TAC(ISPEC `SND:A#A->A` th)) o MATCH_MP FINITE_IMAGE) THEN REWRITE_TAC[IMP_IMP; GSYM FINITE_UNION]] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] FINITE_SUBSET) THEN REWRITE_TAC[SUBSET; FORALL_PAIR_THM; IN_ELIM_PAIR_THM] THEN REWRITE_TAC[IN_CROSS; fld; IN_IMAGE; IN_ELIM_THM; IN_UNION] THEN REWRITE_TAC[EXISTS_PAIR_THM; PAIR_EQ] THEN SET_TAC[]);; (* ------------------------------------------------------------------------- *) (* Various kinds of order *) (* ------------------------------------------------------------------------- *) let qoset = new_definition `qoset (l:A->A->bool) <=> (!x. x IN fld l ==> l x x) /\ (!x y z. l x y /\ l y z ==> l x z)`;; let poset = new_definition `poset (l:A->A->bool) <=> (!x. x IN fld l ==> l x x) /\ (!x y z. l x y /\ l y z ==> l x z) /\ (!x y. l x y /\ l y x ==> x = y)`;; let toset = new_definition `toset (l:A->A->bool) <=> (!x. x IN fld l ==> l x x) /\ (!x y z. l x y /\ l y z ==> l x z) /\ (!x y. l x y /\ l y x ==> x = y) /\ (!x y. x IN fld l /\ y IN fld l ==> l x y \/ l y x)`;; let woset = new_definition `woset (l:A->A->bool) <=> (!x. x IN fld l ==> l x x) /\ (!x y z. l x y /\ l y z ==> l x z) /\ (!x y. l x y /\ l y x ==> x = y) /\ (!x y. x IN fld l /\ y IN fld l ==> l x y \/ l y x) /\ (!s. s SUBSET fld l /\ ~(s = {}) ==> ?x. x IN s /\ !y. y IN s ==> l x y)`;; let wqoset = new_definition `wqoset (l:A->A->bool) <=> (!x. x IN fld l ==> l x x) /\ (!x y z. l x y /\ l y z ==> l x z) /\ (!s. s SUBSET fld l ==> ?t. FINITE t /\ t SUBSET s /\ !y. y IN s ==> ?x. x IN t /\ l x y)`;; (* ------------------------------------------------------------------------- *) (* Chains and antichains (subsets of the carrier, not the ordering) *) (* ------------------------------------------------------------------------- *) let chain = new_definition `chain (l:A->A->bool) s <=> !x y. x IN s /\ y IN s ==> l x y \/ l y x`;; let antichain = new_definition `antichain (l:A->A->bool) s <=> s SUBSET fld l /\ pairwise (\x y. ~(l x y)) s`;; let CHAIN = prove (`!l s:A->bool. chain l s <=> s SUBSET fld l /\ !x y. x IN s /\ y IN s ==> l x y \/ l y x`, REWRITE_TAC[chain; fld] THEN SET_TAC[]);; let ANTICHAIN = prove (`!l s:A->bool. antichain l s <=> s SUBSET fld l /\ !x y. x IN s /\ y IN s /\ ~(x = y) ==> ~(l x y)`, REWRITE_TAC[antichain; pairwise; fld] THEN SET_TAC[]);; let CHAIN_SUBSET = prove (`!(l:A->A->bool) s t. chain l s /\ t SUBSET s ==> chain l t`, REWRITE_TAC[chain] THEN SET_TAC[]);; let ANTICHAIN_SUBSET = prove (`!(l:A->A->bool) s t. antichain l s /\ t SUBSET s ==> antichain l t`, REWRITE_TAC[ANTICHAIN] THEN SET_TAC[]);; (* ------------------------------------------------------------------------- *) (* The trivial implications. *) (* ------------------------------------------------------------------------- *) let QOSET_REFL = prove (`!l (x:A). qoset l ==> (l x x <=> x IN fld l)`, REWRITE_TAC[qoset; fld; IN_ELIM_THM] THEN MESON_TAC[]);; let QOSET_FLD = prove (`!l:A->A->bool. qoset l ==> fld l = {x | l x x}`, SIMP_TAC[QOSET_REFL] THEN SET_TAC[]);; let WOSET_IMP_TOSET = prove (`!l:A->A->bool. woset l ==> toset l`, GEN_TAC THEN REWRITE_TAC[woset; toset] THEN STRIP_TAC THEN ASM_REWRITE_TAC[]);; let WOSET_IMP_POSET = prove (`!l:A->A->bool. woset l ==> poset l`, GEN_TAC THEN REWRITE_TAC[woset; poset] THEN STRIP_TAC THEN ASM_REWRITE_TAC[]);; let WOSET_IMP_QOSET = prove (`!l:A->A->bool. woset l ==> qoset l`, GEN_TAC THEN REWRITE_TAC[woset; qoset] THEN STRIP_TAC THEN ASM_REWRITE_TAC[]);; let TOSET_IMP_POSET = prove (`!l:A->A->bool. toset l ==> poset l`, GEN_TAC THEN REWRITE_TAC[toset; poset] THEN STRIP_TAC THEN ASM_REWRITE_TAC[]);; let TOSET_IMP_QOSET = prove (`!l:A->A->bool. toset l ==> qoset l`, GEN_TAC THEN REWRITE_TAC[toset; qoset] THEN STRIP_TAC THEN ASM_REWRITE_TAC[]);; let POSET_IMP_QOSET = prove (`!l:A->A->bool. poset l ==> qoset l`, GEN_TAC THEN REWRITE_TAC[poset; qoset] THEN STRIP_TAC THEN ASM_REWRITE_TAC[]);; let WQOSET_IMP_QOSET = prove (`!l:A->A->bool. wqoset l ==> qoset l`, GEN_TAC THEN REWRITE_TAC[wqoset; qoset] THEN STRIP_TAC THEN ASM_REWRITE_TAC[]);; (* ------------------------------------------------------------------------- *) (* In general, these need to be distinguished, but not for partial orders. *) (* ------------------------------------------------------------------------- *) let strictly = new_definition `strictly R = \x y:A. R x y /\ ~(R y x)`;; let properly = new_definition `properly R = \x y:A. R x y /\ ~(x = y)`;; let PROPERLY_EQ_STRICTLY = prove (`!l:A->A->bool. poset l ==> properly l = strictly l`, REWRITE_TAC[poset; properly; strictly; FUN_EQ_THM] THEN MESON_TAC[]);; let STRICTLY_EQ_PROPERLY = prove (`!l:A->A->bool. poset l ==> strictly l = properly l`, REWRITE_TAC[poset; properly; strictly; FUN_EQ_THM] THEN MESON_TAC[]);; let STRICTLY_IMP_PROPERLY = prove (`!l x y:A. qoset l /\ strictly l x y ==> properly l x y`, REWRITE_TAC[qoset; properly; strictly; FUN_EQ_THM] THEN MESON_TAC[]);; let STRICTLY_STRICTLY = prove (`!R:A->A->bool. strictly(strictly R) = strictly R`, REWRITE_TAC[FUN_EQ_THM; strictly] THEN MESON_TAC[]);; let PROPERLY_PROPERLY = prove (`!R:A->A->bool. properly(properly R) = properly R`, REWRITE_TAC[FUN_EQ_THM; properly] THEN MESON_TAC[]);; let STRICTLY_PROPERLY = prove (`!R:A->A->bool. strictly(properly R) = strictly R`, REWRITE_TAC[FUN_EQ_THM; strictly; properly] THEN MESON_TAC[]);; let PROPERLY_STRICTLY = prove (`!R:A->A->bool. properly(strictly R) = strictly R`, REWRITE_TAC[FUN_EQ_THM; strictly; properly] THEN MESON_TAC[]);; let PROPERLY_MONO = prove (`!R S. (!x y. R x y ==> S x y) ==> (!x y. properly R x y ==> properly S x y)`, REWRITE_TAC[properly] THEN MESON_TAC[]);; (* ------------------------------------------------------------------------- *) (* Various interrelations and alternative forms of definitions. *) (* ------------------------------------------------------------------------- *) let POSET_QOSET = prove (`!l:A->A->bool. poset l <=> qoset l /\ (!x y. l x y /\ l y x ==> x = y)`, REWRITE_TAC[poset; qoset; GSYM CONJ_ASSOC]);; let TOSET = prove (`!l:A->A->bool. toset l <=> (!x y z. l x y /\ l y z ==> l x z) /\ (!x y. l x y /\ l y x ==> x = y) /\ (!x y. x IN fld l /\ y IN fld l ==> l x y \/ l y x)`, REWRITE_TAC[toset] THEN MESON_TAC[]);; let TOSET_POSET = prove (`!l:A->A->bool. toset l <=> poset l /\ (!x y. x IN fld l /\ y IN fld l ==> l x y \/ l y x)`, REWRITE_TAC[toset; poset; GSYM CONJ_ASSOC]);; let WOSET_TOSET = prove (`!l:A->A->bool. woset l <=> toset l /\ !s. s SUBSET fld l /\ ~(s = {}) ==> ?x. x IN s /\ !y. y IN s ==> l x y`, REWRITE_TAC[woset; toset; GSYM CONJ_ASSOC]);; let WQOSET = prove (`!l:A->A->bool. wqoset l <=> (!x y z. l x y /\ l y z ==> l x z) /\ (!s. s SUBSET fld l ==> ?t. FINITE t /\ t SUBSET s /\ !y. y IN s ==> ?x. x IN t /\ l x y)`, GEN_TAC THEN REWRITE_TAC[wqoset] THEN EQ_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `x:A` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `{x:A}`) THEN ASM SET_TAC[]);; let WQOSET_QOSET = prove (`!l:A->A->bool. wqoset l <=> qoset l /\ !s. s SUBSET fld l ==> ?t. FINITE t /\ t SUBSET s /\ !y. y IN s ==> ?x. x IN t /\ l x y`, REWRITE_TAC[wqoset; qoset; GSYM CONJ_ASSOC]);; let WOSET_POSET = prove (`!l:A->A->bool. woset l <=> poset l /\ !s. s SUBSET fld l /\ ~(s = {}) ==> ?x. x IN s /\ !y. y IN s ==> l x y`, GEN_TAC THEN REWRITE_TAC[woset; poset] THEN EQ_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN MAP_EVERY X_GEN_TAC [`x:A`; `y:A`] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `{x:A,y}`) THEN ASM SET_TAC[]);; let WOSET = prove (`!l:A->A->bool. woset l <=> (!x y. l x y /\ l y x ==> x = y) /\ !s. s SUBSET fld l /\ ~(s = {}) ==> ?x. x IN s /\ !y. y IN s ==> l x y`, GEN_TAC THEN REWRITE_TAC[woset] THEN EQ_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(TAUT `(r ==> p) /\ r /\ q ==> p /\ q /\ r`) THEN REPEAT CONJ_TAC THENL [MESON_TAC[]; MAP_EVERY X_GEN_TAC [`x:A`; `y:A`] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `{x:A,y}`) THEN ASM SET_TAC[]; MAP_EVERY X_GEN_TAC [`x:A`; `y:A`; `z:A`] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `{x:A,y,z}`) THEN REWRITE_TAC[fld] THEN ASM SET_TAC[]]);; let WOSET_WF = prove (`!l:A->A->bool. woset l <=> (!x y. x IN fld l /\ y IN fld l ==> l x y \/ l y x) /\ WF(properly l)`, GEN_TAC THEN MATCH_MP_TAC(TAUT `(p ==> q) /\ (q ==> (p <=> r)) ==> (p <=> q /\ r)`) THEN CONJ_TAC THENL [SIMP_TAC[woset]; DISCH_TAC THEN REWRITE_TAC[WOSET]] THEN MATCH_MP_TAC(TAUT `(p ==> q) /\ (q ==> (p <=> r)) ==> (q /\ r <=> p)`) THEN REWRITE_TAC[properly] THEN CONJ_TAC THENL [DISCH_THEN(MP_TAC o MATCH_MP WF_ANTISYM) THEN MESON_TAC[]; DISCH_TAC] THEN REWRITE_TAC[WF] THEN EQ_TAC THEN DISCH_TAC THENL [X_GEN_TAC `s:A->bool` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `\x:A. x IN s`) THEN ASM SET_TAC[]; X_GEN_TAC `P:A->bool` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `{x:A | x IN fld l /\ P x}`) THEN REWRITE_TAC[fld] THEN RULE_ASSUM_TAC(REWRITE_RULE[fld]) THEN ASM SET_TAC[]]);; let WOSET_IMP_WQOSET = prove (`!l:A->A->bool. woset l ==> wqoset l`, GEN_TAC THEN REWRITE_TAC[woset; wqoset] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `s:A->bool` THEN DISCH_TAC THEN ASM_CASES_TAC `s:A->bool = {}` THEN ASM_REWRITE_TAC[NOT_IN_EMPTY] THENL [ASM_MESON_TAC[FINITE_EMPTY; SUBSET_EMPTY]; ALL_TAC] THEN FIRST_X_ASSUM(MP_TAC o SPEC `s:A->bool`) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `x:A` STRIP_ASSUME_TAC) THEN EXISTS_TAC `{x:A}` THEN ASM_REWRITE_TAC[FINITE_SING] THEN ASM SET_TAC[]);; let WQOSET_SUPERSET = prove (`!l m:A->A->bool. wqoset l /\ qoset m /\ fld m SUBSET fld l /\ (!x y. l x y ==> m x y) ==> wqoset m`, REPEAT GEN_TAC THEN REWRITE_TAC[WQOSET_QOSET] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `s:A->bool` THEN FIRST_X_ASSUM(MP_TAC o SPEC `s:A->bool`) THEN ASM SET_TAC[]);; let [WQOSET_NOBAD; WQOSET_NOBAD_SUBSEQ; WQOSET_ANTICHAIN] = (CONJUNCTS o prove) (`(!l:A->A->bool. wqoset l <=> qoset l /\ !x. (!n:num. x n IN fld l) ==> ?i j. i < j /\ l (x i) (x j)) /\ (!l:A->A->bool. wqoset l <=> qoset l /\ !x. (!n. x n IN fld l) ==> ?r:num->num. (!m n. m < n ==> r(m) < r(n)) /\ (!i j. i <= j ==> l (x(r i)) (x(r j)))) /\ (!l:A->A->bool. wqoset l <=> qoset l /\ WF(strictly l) /\ !s. antichain l s ==> FINITE s)`, REWRITE_TAC[AND_FORALL_THM] THEN X_GEN_TAC `l:A->A->bool` THEN REWRITE_TAC[wqoset; qoset; antichain; FORALL_AND_THM] THEN ASM_CASES_TAC `!x:A. x IN fld l ==> l x x` THEN ASM_REWRITE_TAC[] THEN ASM_CASES_TAC `!x y z:A. l x y /\ l y z ==> l x z` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(TAUT `(p ==> q) /\ (q ==> r) /\ (r ==> s) /\ (s ==> p) ==> (p <=> q) /\ (p <=> r) /\ (p <=> s)`) THEN REPEAT CONJ_TAC THENL [DISCH_TAC THEN X_GEN_TAC `x:num->A` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `IMAGE (x:num->A) (:num)`) THEN ANTS_TAC THENL [ASM SET_TAC[]; REWRITE_TAC[EXISTS_FINITE_SUBSET_IMAGE]] THEN REWRITE_TAC[FORALL_IN_IMAGE; EXISTS_IN_IMAGE; SUBSET_UNIV; IN_UNIV] THEN REWRITE_TAC[num_FINITE] THEN ASM_MESON_TAC[LT_SUC_LE]; DISCH_TAC THEN X_GEN_TAC `x:num->A` THEN DISCH_TAC THEN SUBGOAL_THEN `~INFINITE {n | !p. n < p ==> ~l ((x:num->A) n) (x p)}` MP_TAC THENL [REWRITE_TAC[INFINITE_ENUMERATE_EQ; NOT_EXISTS_THM] THEN X_GEN_TAC `r:num->num` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `(x:num->A) o (r:num->num)`) THEN ASM_REWRITE_TAC[o_THM] THEN ASM SET_TAC[]; REWRITE_TAC[INFINITE; num_FINITE; IN_ELIM_THM]] THEN DISCH_THEN(X_CHOOSE_TAC `p:num`) THEN SUBGOAL_THEN `?t:num->num. (!n:num. T) /\ (!n. t n < t (SUC n) /\ (l:A->A->bool) (x(t n + p + 1)) (x(t(SUC n) + p + 1)))` MP_TAC THENL [MATCH_MP_TAC DEPENDENT_CHOICE THEN REWRITE_TAC[] THEN X_GEN_TAC `n:num` THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM CONTRAPOS_THM] o SPEC `n + p + 1`) THEN REWRITE_TAC[NOT_FORALL_THM; NOT_IMP; ARITH_RULE `~(n + p + 1 <= p)`] THEN MATCH_MP_TAC(MESON[] `!p. (!m. P m ==> Q(m - (p + 1))) ==> (?m. P m) ==> (?m. Q m)`) THEN EXISTS_TAC `p:num` THEN X_GEN_TAC `q:num` THEN MATCH_MP_TAC(TAUT `(p ==> q) /\ (p ==> (r <=> s)) ==> p /\ r ==> q /\ s`) THEN REPEAT STRIP_TAC THENL [ALL_TAC; AP_TERM_TAC THEN AP_TERM_TAC] THEN ASM_ARITH_TAC; REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `t:num->num` THEN STRIP_TAC THEN EXISTS_TAC `\i. (t:num->num) i + p + 1` THEN REWRITE_TAC[] THEN CONJ_TAC THENL [MATCH_MP_TAC TRANSITIVE_STEPWISE_LT THEN ASM_REWRITE_TAC[LT_ADD_RCANCEL] THEN ARITH_TAC; MATCH_MP_TAC TRANSITIVE_STEPWISE_LE THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[]]]; DISCH_TAC THEN CONJ_TAC THENL [REWRITE_TAC[WF_DCHAIN; strictly; NOT_EXISTS_THM; FORALL_AND_THM] THEN X_GEN_TAC `x:num->A` THEN STRIP_TAC THEN SUBGOAL_THEN `!m n:num. m < n ==> (l:A->A->bool) (x n) (x m) /\ ~l (x m) (x n)` ASSUME_TAC THENL [MATCH_MP_TAC TRANSITIVE_STEPWISE_LT THEN ASM_MESON_TAC[]; FIRST_X_ASSUM(MP_TAC o SPEC `x:num->A`) THEN REWRITE_TAC[fld; IN_ELIM_THM; NOT_IMP] THEN ASM_MESON_TAC[ARITH_RULE `n < SUC n`; LT_IMP_LE]]; X_GEN_TAC `s:A->bool` THEN GEN_REWRITE_TAC I [GSYM CONTRAPOS_THM] THEN REWRITE_TAC[REWRITE_RULE[INFINITE] INFINITE_ENUMERATE_SUBSET] THEN REWRITE_TAC[INJECTIVE_ALT; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `x:num->A` THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `x:num->A`) THEN REWRITE_TAC[NOT_IMP] THEN CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `r:num->num` (CONJUNCTS_THEN(MP_TAC o SPECL [`n:num`; `SUC n`]))) THEN REPEAT(ANTS_TAC THENL [ARITH_TAC; DISCH_TAC]) THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [pairwise]) THEN DISCH_THEN(MP_TAC o SPECL [`(x:num->A)(r(n:num))`; `(x:num->A)(r(SUC n))`]) THEN ASM_SIMP_TAC[LT_IMP_NE]]; STRIP_TAC THEN X_GEN_TAC `s:A->bool` THEN DISCH_TAC THEN ONCE_REWRITE_TAC[MESON[] `(?x. P x /\ Q x /\ R x) <=> ~(!x. P x /\ Q x ==> ~R x)`] THEN GEN_REWRITE_TAC (RAND_CONV o TOP_DEPTH_CONV) [NOT_FORALL_THM; NOT_IMP; NOT_EXISTS_THM] THEN DISCH_TAC THEN SUBGOAL_THEN `?x:num->A. !n. x n IN s DIFF UNIONS {{y | l (x m) y} | m < n} /\ !z. z IN s DIFF UNIONS {{y | l (x m) y} | m < n} ==> ~(l z (x n) /\ ~(l (x n) z))` MP_TAC THENL [MATCH_MP_TAC(MATCH_MP WF_REC_EXISTS WF_num) THEN REWRITE_TAC[UNIONS_GSPEC] THEN CONJ_TAC THENL [SET_TAC[]; ALL_TAC] THEN MAP_EVERY X_GEN_TAC [`x:num->A`; `n:num`] THEN REWRITE_TAC[IN_DIFF; IN_ELIM_THM] THEN DISCH_THEN(LABEL_TAC "*") THEN FIRST_X_ASSUM(MP_TAC o SPEC `IMAGE (x:num->A) {m | m < n}`) THEN SIMP_TAC[FINITE_IMAGE; FINITE_NUMSEG_LT] THEN REWRITE_TAC[SUBSET; TAUT `~(p /\ q) <=> p ==> ~q`] THEN ASM_SIMP_TAC[FORALL_IN_IMAGE; IN_ELIM_THM] THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `\y. y IN s /\ !m:num. m < n ==> ~((l:A->A->bool) (x m) y)` o GEN_REWRITE_RULE I [WF]) THEN ASM_REWRITE_TAC[strictly] THEN MATCH_MP_TAC MONO_EXISTS THEN ASM SET_TAC[]; REWRITE_TAC[IN_DIFF; UNIONS_GSPEC; IN_ELIM_THM] THEN REWRITE_TAC[FORALL_AND_THM] THEN DISCH_THEN(X_CHOOSE_THEN `x:num->A` STRIP_ASSUME_TAC) THEN SUBGOAL_THEN `FINITE(IMAGE (x:num->A) (:num))` MP_TAC THENL [FIRST_X_ASSUM MATCH_MP_TAC THEN CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN REWRITE_TAC[PAIRWISE_IMAGE] THEN REWRITE_TAC[pairwise; IN_UNIV]; REWRITE_TAC[GSYM INFINITE] THEN MATCH_MP_TAC INFINITE_IMAGE THEN REWRITE_TAC[num_INFINITE; IN_UNIV]] THEN MATCH_MP_TAC WLOG_LT THEN ASM SET_TAC[]]]);; let WQOSET_IMP_WF = prove (`!l:A->A->bool. wqoset l ==> WF(strictly l)`, SIMP_TAC[WQOSET_ANTICHAIN]);; let WQOSET_WF_SUPERSET = prove (`!l m:A->A->bool. wqoset l /\ qoset m /\ fld m SUBSET fld l /\ (!x y. l x y ==> m x y) ==> WF(strictly m)`, MESON_TAC[WQOSET_SUPERSET; WQOSET_IMP_WF]);; let WQOSET_WF_SUPERSET_EQ = prove (`!l:A->A->bool. wqoset l <=> qoset l /\ !m. qoset m /\ fld m = fld l /\ (!x y. l x y ==> m x y) ==> WF(strictly m)`, GEN_TAC THEN EQ_TAC THENL [MESON_TAC[WQOSET_WF_SUPERSET; WQOSET_IMP_QOSET; SUBSET_REFL]; STRIP_TAC THEN ASM_REWRITE_TAC[WQOSET_NOBAD]] THEN X_GEN_TAC `a:num->A` THEN DISCH_TAC THEN MATCH_MP_TAC(MESON[] `~(!i j. P i j ==> ~Q i j) ==> ?i j. P i j /\ Q i j`) THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `\x y:A. l x y \/ ?i j:num. i < j /\ l x (a j) /\ l (a i) y`) THEN REWRITE_TAC[qoset; NOT_IMP; GSYM CONJ_ASSOC] THEN SIMP_TAC[] THEN MATCH_MP_TAC(TAUT `r /\ (r ==> p /\ q /\ s) ==> p /\ q /\ r /\ s`) THEN CONJ_TAC THENL [REWRITE_TAC[fld] THEN RULE_ASSUM_TAC(REWRITE_RULE[fld]) THEN ASM SET_TAC[]; DISCH_THEN SUBST1_TAC] THEN FIRST_X_ASSUM(STRIP_ASSUME_TAC o GEN_REWRITE_RULE I [qoset]) THEN ASM_SIMP_TAC[] THEN CONJ_TAC THENL [ASM_MESON_TAC[LT_TRANS; LT_CASES]; ALL_TAC] THEN REWRITE_TAC[WF_DCHAIN; strictly] THEN EXISTS_TAC `a:num->A` THEN X_GEN_TAC `n:num` THEN CONJ_TAC THENL [ASM_MESON_TAC[ARITH_RULE `n < SUC n`]; ALL_TAC] THEN ASM_SIMP_TAC[ARITH_RULE `n < SUC n`; NOT_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`k:num`; `l:num`] THEN STRIP_TAC THEN ASM_MESON_TAC[ARITH_RULE `~(n < l) /\ ~(k < SUC n) ==> ~(k < l)`]);; let WOSET_WQOSET = prove (`!l:A->A->bool. woset l <=> toset l /\ wqoset l`, GEN_TAC THEN EQ_TAC THEN SIMP_TAC[WOSET_IMP_TOSET; WOSET_IMP_WQOSET] THEN SIMP_TAC[WOSET_WF; PROPERLY_EQ_STRICTLY; WQOSET_IMP_WF; TOSET_IMP_POSET] THEN REWRITE_TAC[toset] THEN STRIP_TAC THEN ASM_REWRITE_TAC[]);; (* ------------------------------------------------------------------------- *) (* Restrictions of ordered sets. *) (* ------------------------------------------------------------------------- *) let FLD_RESTRICT_QOSET = prove (`!(l:A->A->bool) P. qoset l ==> fld (\x y. P x /\ P y /\ l x y) = {x | x IN fld l /\ P x}`, REWRITE_TAC[qoset; fld] THEN SET_TAC[]);; let FLD_RESTRICT_POSET = prove (`!(l:A->A->bool) P. poset l ==> fld (\x y. P x /\ P y /\ l x y) = {x | x IN fld l /\ P x}`, SIMP_TAC[FLD_RESTRICT_QOSET; POSET_IMP_QOSET]);; let FLD_RESTRICT_TOSET = prove (`!(l:A->A->bool) P. toset l ==> fld (\x y. P x /\ P y /\ l x y) = {x | x IN fld l /\ P x}`, SIMP_TAC[FLD_RESTRICT_QOSET; TOSET_IMP_QOSET]);; let FLD_RESTRICT_WOSET = prove (`!(l:A->A->bool) P. woset l ==> fld (\x y. P x /\ P y /\ l x y) = {x | x IN fld l /\ P x}`, SIMP_TAC[FLD_RESTRICT_QOSET; WOSET_IMP_QOSET]);; let FLD_RESTRICT_WQOSET = prove (`!(l:A->A->bool) P. wqoset l ==> fld (\x y. P x /\ P y /\ l x y) = {x | x IN fld l /\ P x}`, SIMP_TAC[FLD_RESTRICT_QOSET; WQOSET_IMP_QOSET]);; let QOSET_RESTRICT = prove (`!(l:A->A->bool) P. qoset l ==> qoset (\x y. P x /\ P y /\ l x y)`, REWRITE_TAC[qoset; fld] THEN SET_TAC[]);; let POSET_RESTRICT = prove (`!(l:A->A->bool) P. poset l ==> poset (\x y. P x /\ P y /\ l x y)`, REWRITE_TAC[poset; fld] THEN SET_TAC[]);; let TOSET_RESTRICT = prove (`!(l:A->A->bool) P. toset l ==> toset (\x y. P x /\ P y /\ l x y)`, REWRITE_TAC[toset; fld] THEN SET_TAC[]);; let WOSET_RESTRICT = prove (`!(l:A->A->bool) P. woset l ==> woset (\x y. P x /\ P y /\ l x y)`, REPEAT GEN_TAC THEN SIMP_TAC[WOSET_POSET; FLD_RESTRICT_POSET; POSET_RESTRICT] THEN SET_TAC[]);; let WQOSET_RESTRICT = prove (`!(l:A->A->bool) P. wqoset l ==> wqoset (\x y. P x /\ P y /\ l x y)`, REPEAT GEN_TAC THEN SIMP_TAC[WQOSET_NOBAD_SUBSEQ; FLD_RESTRICT_QOSET; QOSET_RESTRICT] THEN SET_TAC[]);; (* ------------------------------------------------------------------------- *) (* Finite sets have maximal/minimal/greatest/least in various senses. *) (* ------------------------------------------------------------------------- *) let QOSET_MIN,QOSET_MAX = (CONJ_PAIR o prove) (`(!l s:A->bool. qoset l /\ FINITE s /\ ~(s = {}) /\ s SUBSET fld l ==> ?a. a IN s /\ !x. x IN s ==> ~(strictly l x a)) /\ (!l s:A->bool. qoset l /\ FINITE s /\ ~(s = {}) /\ s SUBSET fld l ==> ?a. a IN s /\ !x. x IN s ==> ~(strictly l a x))`, REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN CONJ_TAC THEN GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN REWRITE_TAC[IMP_IMP; NOT_INSERT_EMPTY] THEN REWRITE_TAC[FORALL_IN_INSERT; EXISTS_IN_INSERT; INSERT_SUBSET] THEN MAP_EVERY X_GEN_TAC [`a:A`; `s:A->bool`] THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC STRIP_ASSUME_TAC) THEN ASM_CASES_TAC `s:A->bool = {}` THEN ASM_REWRITE_TAC[NOT_IN_EMPTY; strictly; TAUT `~(p /\ ~p)`] THEN RULE_ASSUM_TAC(REWRITE_RULE[qoset; SUBSET; fld; IN_ELIM_THM]) THEN ASM METIS_TAC[]);; let POSET_MIN,POSET_MAX = (CONJ_PAIR o prove) (`(!l s:A->bool. poset l /\ FINITE s /\ ~(s = {}) /\ s SUBSET fld l ==> ?a. a IN s /\ !x. x IN s ==> ~(properly l x a)) /\ (!l s:A->bool. poset l /\ FINITE s /\ ~(s = {}) /\ s SUBSET fld l ==> ?a. a IN s /\ !x. x IN s ==> ~(properly l a x))`, SIMP_TAC[PROPERLY_EQ_STRICTLY; QOSET_MIN; QOSET_MAX; POSET_IMP_QOSET]);; let TOSET_MIN,TOSET_MAX = (CONJ_PAIR o prove) (`(!l s:A->bool. toset l /\ FINITE s /\ ~(s = {}) /\ s SUBSET fld l ==> ?a. a IN s /\ !x. x IN s ==> l a x) /\ (!l s:A->bool. toset l /\ FINITE s /\ ~(s = {}) /\ s SUBSET fld l ==> ?a. a IN s /\ !x. x IN s ==> l x a)`, CONJ_TAC THENL [MP_TAC POSET_MIN; MP_TAC POSET_MAX] THEN REPEAT(MATCH_MP_TAC MONO_FORALL THEN GEN_TAC) THEN DISCH_THEN(fun th -> STRIP_TAC THEN MP_TAC th) THEN ASM_SIMP_TAC[TOSET_IMP_POSET] THEN MATCH_MP_TAC MONO_EXISTS THEN REWRITE_TAC[properly] THEN RULE_ASSUM_TAC(REWRITE_RULE[toset]) THEN ASM SET_TAC[]);; (* ------------------------------------------------------------------------- *) (* The trivial relation is every kind of ordered set. *) (* ------------------------------------------------------------------------- *) let FLD_TRIVIAL = prove (`fld(\x y:A. F) = {}`, REWRITE_TAC[FLD_EQ_EMPTY]);; let WOSET_TRIVIAL = prove (`woset(\x y:A. F)`, REWRITE_TAC[woset; FLD_TRIVIAL; NOT_IN_EMPTY] THEN SET_TAC[]);; let WQOSET_TRIVIAL = prove (`wqoset(\x y:A. F)`, SIMP_TAC[WOSET_IMP_WQOSET; WOSET_TRIVIAL]);; let TOSET_TRIVIAL = prove (`toset(\x y:A. F)`, SIMP_TAC[WOSET_IMP_TOSET; WOSET_TRIVIAL]);; let POSET_TRIVIAL = prove (`poset(\x y:A. F)`, SIMP_TAC[WOSET_IMP_POSET; WOSET_TRIVIAL]);; let QOSET_TRIVIAL = prove (`qoset(\x y:A. F)`, SIMP_TAC[WOSET_IMP_QOSET; WOSET_TRIVIAL]);; (* ------------------------------------------------------------------------- *) (* The natural numbers with the usual <= are every kind of ordered set. *) (* ------------------------------------------------------------------------- *) let FLD_num = prove (`fld(<=) = (:num)`, REWRITE_TAC[fld; IN_ELIM_THM; LE_CASES] THEN SET_TAC[]);; let WOSET_num = prove (`woset((<=):num->num->bool)`, REWRITE_TAC[WOSET_WF; fld; IN_ELIM_THM; LE_CASES; properly] THEN REWRITE_TAC[GSYM LT_LE; ETA_AX; WF_num]);; let WQOSET_num = prove (`wqoset((<=):num->num->bool)`, SIMP_TAC[WOSET_IMP_WQOSET; WOSET_num]);; let TOSET_num = prove (`toset((<=):num->num->bool)`, SIMP_TAC[WOSET_IMP_TOSET; WOSET_num]);; let POSET_num = prove (`poset((<=):num->num->bool)`, SIMP_TAC[WOSET_IMP_POSET; WOSET_num]);; let QOSET_num = prove (`qoset((<=):num->num->bool)`, SIMP_TAC[WOSET_IMP_QOSET; WOSET_num]);; (* ------------------------------------------------------------------------- *) (* Pointwise orders (no domain restriction, a quasi-order in general). *) (* Hence Dickson's lemma in the general WQO setting and common special case. *) (* ------------------------------------------------------------------------- *) let QOSET_POINTWISE = prove (`!l s. qoset(\x y:K->A. !i. i IN s ==> l (x i) (y i)) <=> s = {} \/ qoset l`, REPEAT GEN_TAC THEN ASM_CASES_TAC `s:K->bool = {}` THENL [ASM_REWRITE_TAC[NOT_IN_EMPTY; qoset]; ASM_REWRITE_TAC[]] THEN ASM_REWRITE_TAC[qoset; fld; IN_ELIM_THM] THEN EQ_TAC THENL [ALL_TAC; SET_TAC[]] THEN MATCH_MP_TAC MONO_AND THEN CONJ_TAC THEN REPEAT(MATCH_MP_TAC(MESON[] `(!a. P (\i. a) ==> Q a) ==> (!a. P a) ==> !b. Q b`) THEN GEN_TAC) THENL [ALL_TAC; ASM SET_TAC[]] THEN MATCH_MP_TAC MONO_IMP THEN REWRITE_TAC[] THEN CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN DISCH_THEN(X_CHOOSE_TAC `y:A`) THEN EXISTS_TAC `(\i. y):K->A` THEN ASM SET_TAC[]);; let FLD_POINTWISE = prove (`!l s. qoset l ==> fld(\x y:K->A. !i. i IN s ==> l (x i) (y i)) = {x | !i. i IN s ==> x i IN fld l}`, SIMP_TAC[QOSET_FLD; IN_ELIM_THM] THEN REPEAT STRIP_TAC THEN W(MP_TAC o PART_MATCH (lhand o rand) QOSET_FLD o lhand o snd) THEN REWRITE_TAC[] THEN DISCH_THEN MATCH_MP_TAC THEN POP_ASSUM MP_TAC THEN ASM_SIMP_TAC[QOSET_POINTWISE]);; let WQOSET_POINTWISE = prove (`!l s. wqoset l /\ FINITE s ==> wqoset(\x y:K->A. !i. i IN s ==> l (x i) (y i))`, REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; WQOSET_NOBAD_SUBSEQ] THEN GEN_TAC THEN STRIP_TAC THEN DISCH_TAC THEN ASM_SIMP_TAC[QOSET_POINTWISE; FLD_POINTWISE; IN_UNIV; IN_ELIM_THM] THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN CONJ_TAC THENL [REWRITE_TAC[NOT_IN_EMPTY] THEN EXISTS_TAC `\n:num. n` THEN REWRITE_TAC[]; MAP_EVERY X_GEN_TAC [`a:K`; `s:K->bool`]] THEN REWRITE_TAC[FORALL_IN_INSERT; FORALL_AND_THM] THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC STRIP_ASSUME_TAC) THEN DISCH_THEN(fun th -> X_GEN_TAC `x:num->K->A` THEN STRIP_TAC THEN MP_TAC(SPEC `x:num->K->A` th)) THEN ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `l:num->num` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `\i:num. (x:num->K->A) (l i) a`) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `r:num->num` STRIP_ASSUME_TAC) THEN EXISTS_TAC `(l:num->num) o (r:num->num)` THEN ASM_SIMP_TAC[o_THM] THEN ASM_MESON_TAC[LE_LT]);; let DICKSON = prove (`!n x:num->num->num. ?i j. i < j /\ (!k. k < n ==> x i k <= x j k)`, GEN_TAC THEN MP_TAC(ISPECL [`(<=):num->num->bool`; `{m:num | m < n}`] WQOSET_POINTWISE) THEN GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [WQOSET_NOBAD] THEN SIMP_TAC[FLD_POINTWISE; WQOSET_IMP_QOSET; QOSET_POINTWISE] THEN SIMP_TAC[WOSET_IMP_WQOSET; WOSET_num; FLD_num; IN_UNIV; IN_ELIM_THM] THEN SIMP_TAC[FINITE_NUMSEG_LT]);; (* ------------------------------------------------------------------------ *) (* General (reflexive) notion of initial segment. *) (* ------------------------------------------------------------------------ *) parse_as_infix("inseg",(12,"right"));; let inseg = new_definition `(l:A->A->bool) inseg m <=> !x y. l x y <=> m x y /\ fld(l) y`;; let INSEG_ANTISYM = prove (`!l m:A->A->bool. l inseg m /\ m inseg l ==> l = m`, REWRITE_TAC[FUN_EQ_THM; FORALL_PAIR_THM] THEN REWRITE_TAC[inseg] THEN MESON_TAC[]);; let INSEG_REFL = prove (`!l:A->A->bool. l inseg l`, REWRITE_TAC[inseg; REWRITE_RULE[IN] IN_FLD] THEN MESON_TAC[]);; let INSEG_TRANS = prove (`!l m n:A->A->bool. l inseg m /\ m inseg n ==> l inseg n`, REWRITE_TAC[inseg; REWRITE_RULE[IN] IN_FLD] THEN MESON_TAC[]);; (* ------------------------------------------------------------------------ *) (* Specific form of initial segment: `all elements in fld(l) less than a`. *) (* ------------------------------------------------------------------------ *) let linseg = new_definition `linseg (l:A->A->bool) a = \ x y. l x y /\ (properly l) y a`;; (* ------------------------------------------------------------------------ *) (* `Ordinals`, i.e. canonical wosets using choice operator. *) (* ------------------------------------------------------------------------ *) let ordinal = new_definition `ordinal(l:A->A->bool) <=> woset(l) /\ (!x. fld(l) x ==> (x = (@) (\y. ~(properly l) y x)))`;; (* ------------------------------------------------------------------------ *) (* Now useful things about the orderings *) (* ------------------------------------------------------------------------ *) let [POSET_REFL; POSET_TRANS; POSET_ANTISYM] = map (GEN `l:A->A->bool` o DISCH_ALL) (CONJUNCTS(REWRITE_RULE[poset; IN] (ASSUME `poset (l:A->A->bool)`)));; let POSET_FLDEQ = prove (`!l:A->A->bool. poset l ==> (!x. fld(l) x <=> l x x)`, MESON_TAC[POSET_REFL; REWRITE_RULE[IN] IN_FLD]);; let [WOSET_REFL; WOSET_TRANS; WOSET_ANTISYM; WOSET_TOTAL; WOSET_WELL] = map (GEN `l:A->A->bool` o DISCH_ALL) (CONJUNCTS(REWRITE_RULE[woset; SUBSET; GSYM MEMBER_NOT_EMPTY; IN] (ASSUME `woset (l:A->A->bool)`)));; let WOSET_FLDEQ = prove (`!l:A->A->bool. woset l ==> (!x. fld(l) x <=> l x x)`, MESON_TAC[WOSET_IMP_POSET; POSET_FLDEQ]);; let WOSET_TRANS_LESS = prove (`!l:A->A->bool. woset l ==> !x y z. (properly l) x y /\ l y z ==> (properly l) x z`, REWRITE_TAC[woset; properly] THEN MESON_TAC[]);; (* ------------------------------------------------------------------------ *) (* Misc lemmas. *) (* ------------------------------------------------------------------------ *) let PAIRED_EXT = prove (`!(l:A->B->C) m. (!x y. l x y = m x y) <=> (l = m)`, REWRITE_TAC[FUN_EQ_THM]);; let WOSET_TRANS_LE = prove (`!l:A->A->bool. woset l ==> !x y z. l x y /\ (properly l) y z ==> (properly l) x z`, REWRITE_TAC[properly] THEN MESON_TAC[WOSET_TRANS; WOSET_ANTISYM]);; let WOSET_WELL_CONTRAPOS = prove (`!l:A->A->bool. woset l ==> (!P. (!x. P x ==> fld(l) x) /\ (?x. P x) ==> (?y. P y /\ (!z. (properly l) z y ==> ~P z)))`, GEN_TAC THEN DISCH_TAC THEN GEN_TAC THEN FIRST_ASSUM(MP_TAC o SPEC `P:A->bool` o MATCH_MP WOSET_WELL) THEN ASM_MESON_TAC[WOSET_TRANS_LE; properly]);; let WOSET_TOTAL_LE = prove (`!l:A->A->bool. woset l ==> !x y. fld(l) x /\ fld(l) y ==> l x y \/ (properly l) y x`, REWRITE_TAC[properly] THEN MESON_TAC[WOSET_REFL; WOSET_TOTAL]);; let WOSET_TOTAL_LT = prove (`!l:A->A->bool. woset l ==> !x y. fld(l) x /\ fld(l) y ==> x = y \/ (properly l) x y \/ (properly l) y x`, REWRITE_TAC[properly] THEN MESON_TAC[WOSET_TOTAL]);; let ORDINAL_IMP_WOSET = prove (`!l:A->A->bool. ordinal l ==> woset l`, SIMP_TAC[ordinal]);; let WOSET_FINITE_TOSET = prove (`!l:A->A->bool. toset l /\ FINITE {(x,y) | l x y} ==> woset l`, ONCE_REWRITE_TAC[GSYM FINITE_FLD] THEN SIMP_TAC[TOSET_POSET; WOSET_WF; properly; poset; IN] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC WF_FINITE THEN REWRITE_TAC[] THEN CONJ_TAC THENL [ASM_MESON_TAC[]; X_GEN_TAC `a:A`] THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (ONCE_REWRITE_RULE[IMP_CONJ] FINITE_SUBSET)) THEN REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN REWRITE_TAC[REWRITE_RULE[IN] IN_FLD; IN] THEN ASM_MESON_TAC[]);; (* ======================================================================== *) (* (2) AXIOM OF CHOICE ==> CANTOR-ZERMELO WELLORDERING THEOREM *) (* ======================================================================== *) (* ------------------------------------------------------------------------ *) (* UNIONS of initial segments is an initial segment. *) (* ------------------------------------------------------------------------ *) let UNION_FLD = prove (`!P. fld(\x y:A. ?l. P l /\ l x y) x <=> ?l. P l /\ fld(l) x`, REPEAT GEN_TAC THEN REWRITE_TAC[REWRITE_RULE[IN] IN_FLD] THEN MESON_TAC[]);; let UNION_INSEG = prove (`!P (l:A->A->bool). (!m. P m ==> m inseg l) ==> (\x y. ?l. P l /\ l x y) inseg l`, REWRITE_TAC[inseg; UNION_FLD; UNIONS_PRED] THEN ASM_MESON_TAC[]);; (* ------------------------------------------------------------------------ *) (* Initial segment of a woset is a woset. *) (* ------------------------------------------------------------------------ *) let INSEG_SUBSET = prove (`!(l:A->A->bool) m. m inseg l ==> !x y. m x y ==> l x y`, REPEAT GEN_TAC THEN REWRITE_TAC[inseg] THEN MESON_TAC[]);; let INSEG_SUBSET_FLD = prove (`!(l:A->A->bool) m. m inseg l ==> !x. fld(m) x ==> fld(l) x`, REWRITE_TAC[REWRITE_RULE[IN] IN_FLD] THEN MESON_TAC[INSEG_SUBSET]);; let INSEG_FLD_SUBSET = prove (`!l m:A->A->bool. l inseg m ==> fld l SUBSET fld m`, REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP INSEG_SUBSET_FLD) THEN SET_TAC[]);; let INSEG_WOSET = prove (`!(l:A->A->bool) m. m inseg l /\ woset l ==> woset m`, REWRITE_TAC[inseg] THEN REPEAT STRIP_TAC THEN REWRITE_TAC[WOSET; SUBSET; GSYM MEMBER_NOT_EMPTY; IN] THEN CONJ_TAC THENL [ASM_MESON_TAC[WOSET_ANTISYM]; X_GEN_TAC `P:A->bool` THEN FIRST_ASSUM(MP_TAC o SPEC `P:A->bool` o MATCH_MP WOSET_WELL) THEN REWRITE_TAC[fld; SUBSET; IN_ELIM_THM] THEN ASM_MESON_TAC[REWRITE_RULE[IN] IN_FLD]]);; let INSEG_ORDINAL = prove (`!l m:A->A->bool. m inseg l /\ ordinal l ==> ordinal m`, REPEAT GEN_TAC THEN REWRITE_TAC[ordinal] THEN STRIP_TAC THEN CONJ_TAC THENL [ASM_MESON_TAC[INSEG_WOSET]; ALL_TAC] THEN X_GEN_TAC `x:A` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `x:A`) THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP INSEG_SUBSET_FLD) THEN ASM_SIMP_TAC[] THEN MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN AP_TERM_TAC THEN ABS_TAC THEN AP_TERM_TAC THEN RULE_ASSUM_TAC(REWRITE_RULE[inseg]) THEN ASM_REWRITE_TAC[properly]);; (* ------------------------------------------------------------------------ *) (* Properties of segments of the `linseg` form. *) (* ------------------------------------------------------------------------ *) let LINSEG_INSEG = prove (`!(l:A->A->bool) a. woset l ==> (linseg l a) inseg l`, REPEAT STRIP_TAC THEN REWRITE_TAC[inseg; linseg; REWRITE_RULE[IN] IN_FLD] THEN PBETA_TAC THEN ASM_MESON_TAC[WOSET_TRANS_LE]);; let LINSEG_WOSET = prove (`!(l:A->A->bool) a. woset l ==> woset(linseg l a)`, MESON_TAC[INSEG_WOSET; LINSEG_INSEG]);; let LINSEG_FLD = prove (`!(l:A->A->bool) a x. woset l ==> (fld (linseg l a) x <=> (properly l) x a)`, REWRITE_TAC[REWRITE_RULE[IN] IN_FLD; linseg; properly] THEN PBETA_TAC THEN MESON_TAC[WOSET_REFL; WOSET_TRANS; WOSET_ANTISYM; REWRITE_RULE[IN] IN_FLD]);; (* ------------------------------------------------------------------------ *) (* Key fact: a proper initial segment is of the special form. *) (* ------------------------------------------------------------------------ *) let INSEG_PROPER_SUBSET = prove (`!(l:A->A->bool) m. m inseg l /\ ~(l = m) ==> ?x y. l x y /\ ~m x y`, REWRITE_TAC[GSYM PAIRED_EXT] THEN MESON_TAC[INSEG_SUBSET]);; let INSEG_PROPER_SUBSET_FLD = prove (`!(l:A->A->bool) m. m inseg l /\ ~(l = m) ==> ?a. fld(l) a /\ ~fld(m) a`, MESON_TAC[INSEG_PROPER_SUBSET; REWRITE_RULE[IN] IN_FLD; inseg]);; let INSEG_LINSEG = prove (`!(l:A->A->bool) m. woset l ==> (m inseg l <=> (m = l) \/ (?a. fld(l) a /\ (m = linseg l a)))`, REPEAT STRIP_TAC THEN ASM_CASES_TAC `m:A->A->bool = l` THEN ASM_REWRITE_TAC[] THENL [REWRITE_TAC[inseg; REWRITE_RULE[IN] IN_FLD] THEN MESON_TAC[]; ALL_TAC] THEN EQ_TAC THEN STRIP_TAC THENL [ALL_TAC; ASM_MESON_TAC[LINSEG_INSEG]] THEN FIRST_ASSUM(MP_TAC o MATCH_MP WOSET_WELL_CONTRAPOS) THEN DISCH_THEN(MP_TAC o SPEC `\x:A. fld(l) x /\ ~fld(m) x`) THEN REWRITE_TAC[] THEN REWRITE_TAC[linseg; GSYM PAIRED_EXT] THEN PBETA_TAC THEN W(C SUBGOAL_THEN (fun t -> REWRITE_TAC[t]) o funpow 2 lhand o snd) THENL [ASM_MESON_TAC[INSEG_PROPER_SUBSET_FLD]; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `a:A` STRIP_ASSUME_TAC) THEN EXISTS_TAC `a:A` THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[INSEG_SUBSET; INSEG_SUBSET_FLD; REWRITE_RULE[IN] IN_FLD; WOSET_TOTAL_LE; properly; inseg]);; (* ------------------------------------------------------------------------ *) (* A proper initial segment can be extended by its bounding element. *) (* ------------------------------------------------------------------------ *) let EXTEND_FLD = prove (`!(l:A->A->bool) x. woset l ==> (fld (\ x y. l x y /\ l y a) x <=> l x a)`, REPEAT STRIP_TAC THEN REWRITE_TAC[REWRITE_RULE[IN] IN_FLD] THEN PBETA_TAC THEN ASM_MESON_TAC[WOSET_TRANS; WOSET_REFL; REWRITE_RULE[IN] IN_FLD]);; let EXTEND_INSEG = prove (`!(l:A->A->bool) a. woset l /\ fld(l) a ==> (\ x y. l x y /\ l y a) inseg l`, REPEAT STRIP_TAC THEN REWRITE_TAC[inseg] THEN PBETA_TAC THEN REPEAT GEN_TAC THEN IMP_RES_THEN (fun t ->REWRITE_TAC[t]) EXTEND_FLD);; let EXTEND_LINSEG = prove (`!(l:A->A->bool) a. woset l /\ fld(l) a ==> (\ x y. linseg l a x y \/ (y = a) /\ (fld(linseg l a) x \/ (x = a))) inseg l`, REPEAT GEN_TAC THEN DISCH_THEN(fun th -> STRIP_ASSUME_TAC th THEN MP_TAC (MATCH_MP EXTEND_INSEG th)) THEN MATCH_MP_TAC EQ_IMP THEN AP_THM_TAC THEN AP_TERM_TAC THEN ONCE_REWRITE_TAC[GSYM PAIRED_EXT] THEN PBETA_TAC THEN REPEAT GEN_TAC THEN IMP_RES_THEN (fun th -> REWRITE_TAC[th]) LINSEG_FLD THEN REWRITE_TAC[linseg; properly] THEN ASM_MESON_TAC[WOSET_REFL]);; (* ------------------------------------------------------------------------ *) (* Key canonicality property of ordinals. *) (* ------------------------------------------------------------------------ *) let ORDINAL_CHAINED_LEMMA = prove (`!(k:A->A->bool) l m. ordinal(l) /\ ordinal(m) ==> k inseg l /\ k inseg m ==> k = l \/ k = m \/ ?a. fld(l) a /\ fld(m) a /\ k = linseg l a /\ k = linseg m a`, REPEAT GEN_TAC THEN REWRITE_TAC[ordinal] THEN STRIP_TAC THEN EVERY_ASSUM(fun th -> TRY (fun g -> REWRITE_TAC[MATCH_MP INSEG_LINSEG th] g)) THEN ASM_CASES_TAC `k:A->A->bool = l` THEN ASM_REWRITE_TAC[] THEN ASM_CASES_TAC `k:A->A->bool = m` THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_THEN `a:A` STRIP_ASSUME_TAC) (X_CHOOSE_THEN `b:A` STRIP_ASSUME_TAC)) THEN EXISTS_TAC `a:A` THEN ASM_REWRITE_TAC[] THEN SUBGOAL_THEN `a:A = b` (fun th -> ASM_MESON_TAC[th]) THEN FIRST_ASSUM(fun th -> SUBST1_TAC(MATCH_MP th (ASSUME `fld(l) (a:A)`))) THEN FIRST_ASSUM(fun th -> SUBST1_TAC(MATCH_MP th (ASSUME `fld(m) (b:A)`))) THEN AP_TERM_TAC THEN ABS_TAC THEN AP_TERM_TAC THEN UNDISCH_TAC `k = linseg m (b:A)` THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[linseg; GSYM PAIRED_EXT] THEN PBETA_TAC THEN ASM_MESON_TAC[WOSET_REFL; properly; REWRITE_RULE[IN] IN_FLD]);; let ORDINAL_CHAINED = prove (`!(l:A->A->bool) m. ordinal(l) /\ ordinal(m) ==> m inseg l \/ l inseg m`, REPEAT GEN_TAC THEN DISCH_THEN(fun th -> STRIP_ASSUME_TAC(REWRITE_RULE[ordinal] th) THEN ASSUME_TAC (MATCH_MP ORDINAL_CHAINED_LEMMA th)) THEN MP_TAC(SPEC `\k:A->A->bool. k inseg l /\ k inseg m` UNION_INSEG) THEN DISCH_THEN(fun th -> MP_TAC(CONJ (SPEC `l:A->A->bool` th) (SPEC `m:A->A->bool` th))) THEN REWRITE_TAC[TAUT `(a /\ b ==> a) /\ (a /\ b ==> b)`] THEN DISCH_THEN(fun th -> STRIP_ASSUME_TAC th THEN FIRST_ASSUM(REPEAT_TCL DISJ_CASES_THEN MP_TAC o C MATCH_MP th)) THENL [ASM_MESON_TAC[]; ASM_MESON_TAC[]; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `a:A` STRIP_ASSUME_TAC) THEN MP_TAC(ASSUME `(\x y. ?k. (k inseg l /\ k inseg m) /\ k x y) = linseg l (a:A)`) THEN CONV_TAC CONTRAPOS_CONV THEN DISCH_THEN(K ALL_TAC) THEN REWRITE_TAC[FUN_EQ_THM] THEN DISCH_THEN(MP_TAC o SPECL [`a:A`; `a:A`]) THEN REWRITE_TAC[linseg] THEN PBETA_TAC THEN REWRITE_TAC[properly] THEN EXISTS_TAC `\x y. linseg l a x y \/ (y = a) /\ (fld(linseg l a) x \/ (x = a:A))` THEN PBETA_TAC THEN REWRITE_TAC[] THEN CONJ_TAC THENL [ALL_TAC; UNDISCH_TAC `(\x y. ?k. (k inseg l /\ k inseg m) /\ k x y) = linseg l (a:A)` THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(SUBST1_TAC o SYM)] THEN REWRITE_TAC[] THEN MATCH_MP_TAC EXTEND_LINSEG THEN ASM_REWRITE_TAC[]);; let ORDINAL_FLD_UNIQUE = prove (`!l m:A->A->bool. ordinal l /\ ordinal m /\ fld l = fld m ==> l = m`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`l:A->A->bool`; `m:A->A->bool`] ORDINAL_CHAINED) THEN REWRITE_TAC[inseg; FUN_EQ_THM; FORALL_PAIR_THM] THEN ASM_MESON_TAC[REWRITE_RULE[IN] IN_FLD]);; let ORDINAL_FLD_SUBSET = prove (`!l m:A->A->bool. ordinal l /\ ordinal m /\ fld l SUBSET fld m ==> l inseg m`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`l:A->A->bool`; `m:A->A->bool`] ORDINAL_CHAINED) THEN ASM_REWRITE_TAC[] THEN STRIP_TAC THEN MATCH_MP_TAC(MESON[INSEG_REFL] `x = y ==> x inseg y`) THEN MATCH_MP_TAC ORDINAL_FLD_UNIQUE THEN FIRST_ASSUM(MP_TAC o MATCH_MP INSEG_SUBSET_FLD) THEN ASM SET_TAC[]);; let ORDINAL_FLD_SUBSET_EQ = prove (`!l m:A->A->bool. ordinal l /\ ordinal m ==> (fld l SUBSET fld m <=> l inseg m)`, MESON_TAC[ORDINAL_FLD_SUBSET; INSEG_FLD_SUBSET]);; (* ------------------------------------------------------------------------ *) (* Proof that any non-universe ordinal can be extended to its "successor". *) (* ------------------------------------------------------------------------ *) let FLD_SUC = prove (`!(l:A->A->bool) a. fld(\ x y. l x y \/ (y = a) /\ (fld(l) x \/ (x = a))) x <=> fld(l) x \/ (x = a)`, REPEAT GEN_TAC THEN REWRITE_TAC[REWRITE_RULE[IN] IN_FLD] THEN EQ_TAC THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN TRY DISJ1_TAC THEN ASM_MESON_TAC[]);; let ORDINAL_SUC = prove (`!l:A->A->bool. ordinal(l) /\ (?x. ~(fld(l) x)) ==> ordinal(\x y. l x y \/ (y = @y. ~fld(l) y) /\ (fld(l) x \/ (x = @y. ~fld(l) y)))`, REPEAT GEN_TAC THEN REWRITE_TAC[ordinal] THEN DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC) THEN ABBREV_TAC `a:A = @y. ~fld(l) y` THEN SUBGOAL_THEN `~fld(l:A->A->bool) a` ASSUME_TAC THENL [EXPAND_TAC "a" THEN CONV_TAC SELECT_CONV THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN PBETA_TAC THEN CONJ_TAC THENL [REWRITE_TAC[WOSET; SUBSET; GSYM MEMBER_NOT_EMPTY; IN] THEN CONJ_TAC THENL [REPEAT GEN_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THENL [ASM_MESON_TAC[WOSET_ANTISYM]; ALL_TAC; ALL_TAC] THEN UNDISCH_TAC `~fld(l:A->A->bool) a` THEN CONV_TAC CONTRAPOS_CONV THEN DISCH_TAC THEN FIRST_ASSUM(UNDISCH_TAC o check is_eq o concl) THEN DISCH_THEN SUBST_ALL_TAC THEN REWRITE_TAC[REWRITE_RULE[IN] IN_FLD] THENL [EXISTS_TAC `y:A`; EXISTS_TAC `x:A`] THEN ASM_REWRITE_TAC[]; X_GEN_TAC `P:A->bool` THEN REWRITE_TAC[FLD_SUC] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (X_CHOOSE_TAC `w:A`)) THEN IMP_RES_THEN (MP_TAC o SPEC `\x:A. P x /\ fld(l) x`) WOSET_WELL THEN BETA_TAC THEN REWRITE_TAC[TAUT `a /\ b ==> b`] THEN ASM_CASES_TAC `?x:A. P x /\ fld(l) x` THEN ASM_REWRITE_TAC[] THENL [ASM_MESON_TAC[]; FIRST_ASSUM(MP_TAC o SPEC `w:A` o GEN_REWRITE_RULE I [NOT_EXISTS_THM]) THEN ASM_REWRITE_TAC[] THEN DISCH_TAC THEN ASM_MESON_TAC[]]]; X_GEN_TAC `z:A` THEN REWRITE_TAC[FLD_SUC; properly] THEN PBETA_TAC THEN DISCH_THEN DISJ_CASES_TAC THENL [UNDISCH_TAC `!x:A. fld l x ==> (x = (@y. ~properly l y x))` THEN DISCH_THEN(IMP_RES_THEN MP_TAC) THEN DISCH_THEN(fun th -> GEN_REWRITE_TAC LAND_CONV [th]) THEN AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN X_GEN_TAC `y:A` THEN BETA_TAC THEN REWRITE_TAC[properly] THEN AP_TERM_TAC THEN ASM_CASES_TAC `y:A = z` THEN ASM_REWRITE_TAC[] THEN EQ_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN UNDISCH_TAC `fld(l:A->A->bool) z` THEN ASM_REWRITE_TAC[]; UNDISCH_TAC `z:A = a` THEN DISCH_THEN SUBST_ALL_TAC THEN GEN_REWRITE_TAC LAND_CONV [SYM(ASSUME `(@y:A. ~fld(l) y) = a`)] THEN AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN X_GEN_TAC `y:A` THEN BETA_TAC THEN AP_TERM_TAC THEN REWRITE_TAC[] THEN ASM_CASES_TAC `y:A = a` THEN ASM_REWRITE_TAC[] THEN EQ_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[REWRITE_RULE[IN] IN_FLD] THEN EXISTS_TAC `a:A` THEN ASM_REWRITE_TAC[]]]);; (* ------------------------------------------------------------------------ *) (* The union of a set of ordinals is an ordinal. *) (* ------------------------------------------------------------------------ *) let ORDINAL_UNION = prove (`!P. (!l:A->A->bool. P l ==> ordinal(l)) ==> ordinal(\x y. ?l. P l /\ l x y)`, GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[ordinal; WOSET; SUBSET; GSYM MEMBER_NOT_EMPTY; IN] THEN REPEAT CONJ_TAC THENL [MAP_EVERY X_GEN_TAC [`x:A`; `y:A`] THEN REWRITE_TAC[UNIONS_PRED] THEN BETA_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_THEN `l:A->A->bool` (CONJUNCTS_THEN2 (ANTE_RES_THEN ASSUME_TAC) ASSUME_TAC)) (X_CHOOSE_THEN `m:A->A->bool` (CONJUNCTS_THEN2 (ANTE_RES_THEN ASSUME_TAC) ASSUME_TAC))) THEN MP_TAC(SPECL [`l:A->A->bool`; `m:A->A->bool`] ORDINAL_CHAINED) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN DISJ_CASES_TAC THENL [MP_TAC(SPEC `l:A->A->bool` WOSET_ANTISYM); MP_TAC(SPEC `m:A->A->bool` WOSET_ANTISYM)] THEN RULE_ASSUM_TAC(REWRITE_RULE[ordinal]) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN IMP_RES_THEN MATCH_MP_TAC INSEG_SUBSET THEN ASM_REWRITE_TAC[]; X_GEN_TAC `Q:A->bool` THEN REWRITE_TAC[UNION_FLD] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (X_CHOOSE_TAC `a:A`)) THEN MP_TAC(ASSUME `!x:A. Q x ==> (?l. P l /\ fld l x)`) THEN DISCH_THEN(IMP_RES_THEN (X_CHOOSE_THEN `l:A->A->bool` STRIP_ASSUME_TAC)) THEN IMP_RES_THEN ASSUME_TAC (ASSUME `!l:A->A->bool. P l ==> ordinal l`) THEN ASSUME_TAC(CONJUNCT1 (REWRITE_RULE[ordinal] (ASSUME `ordinal(l:A->A->bool)`))) THEN IMP_RES_THEN(MP_TAC o SPEC `\x:A. fld(l) x /\ Q x`) WOSET_WELL THEN BETA_TAC THEN REWRITE_TAC[TAUT `a /\ b ==> a`] THEN SUBGOAL_THEN `?x:A. fld(l) x /\ Q x` (fun th -> REWRITE_TAC[th]) THENL [EXISTS_TAC `a:A` THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `b:A` STRIP_ASSUME_TAC) THEN EXISTS_TAC `b:A` THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `x:A` THEN DISCH_TAC THEN ANTE_RES_THEN MP_TAC (ASSUME `(Q:A->bool) x`) THEN DISCH_THEN(X_CHOOSE_THEN `m:A->A->bool` STRIP_ASSUME_TAC) THEN ANTE_RES_THEN ASSUME_TAC (ASSUME `(P:(A->A->bool)->bool) m`) THEN MP_TAC(SPECL [`l:A->A->bool`; `m:A->A->bool`] ORDINAL_CHAINED) THEN ASM_REWRITE_TAC[UNIONS_PRED] THEN BETA_TAC THEN DISCH_THEN DISJ_CASES_TAC THENL [EXISTS_TAC `l:A->A->bool` THEN ASM_REWRITE_TAC[] THEN FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN IMP_RES_THEN MATCH_MP_TAC INSEG_SUBSET_FLD THEN ASM_REWRITE_TAC[]; EXISTS_TAC `m:A->A->bool` THEN ASM_REWRITE_TAC[] THEN FIRST_ASSUM(MP_TAC o SPECL [`x:A`; `b:A`] o REWRITE_RULE[inseg]) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(ASSUME_TAC o SYM) THEN IMP_RES_THEN (MP_TAC o SPEC `b:A`) INSEG_SUBSET_FLD THEN ASM_REWRITE_TAC[] THEN DISCH_TAC THEN MP_TAC(CONJUNCT1(REWRITE_RULE[ordinal] (ASSUME `ordinal(m:A->A->bool)`))) THEN DISCH_THEN(MP_TAC o SPECL [`b:A`; `x:A`] o MATCH_MP WOSET_TOTAL) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN (DISJ_CASES_THEN MP_TAC) THEN ASM_REWRITE_TAC[] THEN DISCH_TAC THEN IMP_RES_THEN MATCH_MP_TAC INSEG_SUBSET THEN FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[REWRITE_RULE[IN] IN_FLD] THEN EXISTS_TAC `b:A` THEN ASM_REWRITE_TAC[]]; X_GEN_TAC `x:A` THEN REWRITE_TAC[UNION_FLD] THEN DISCH_THEN(X_CHOOSE_THEN `l:A->A->bool` STRIP_ASSUME_TAC) THEN MP_TAC(ASSUME `!l:A->A->bool. P l ==> ordinal l`) THEN DISCH_THEN(IMP_RES_THEN MP_TAC) THEN REWRITE_TAC[ordinal] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (MP_TAC o SPEC `x:A`)) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC EQ_IMP THEN REPEAT AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN X_GEN_TAC `y:A` THEN BETA_TAC THEN AP_TERM_TAC THEN ASM_CASES_TAC `y:A = x` THEN ASM_REWRITE_TAC[properly; UNIONS_PRED] THEN BETA_TAC THEN EQ_TAC THEN DISCH_TAC THENL [EXISTS_TAC `l:A->A->bool` THEN ASM_REWRITE_TAC[]; FIRST_ASSUM(X_CHOOSE_THEN `m:A->A->bool` STRIP_ASSUME_TAC) THEN SUBGOAL_THEN `ordinal(l:A->A->bool) /\ ordinal(m:A->A->bool)` MP_TAC THENL [CONJ_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]; DISCH_THEN(DISJ_CASES_TAC o MATCH_MP ORDINAL_CHAINED)] THENL [IMP_RES_THEN MATCH_MP_TAC INSEG_SUBSET THEN ASM_REWRITE_TAC[]; RULE_ASSUM_TAC(REWRITE_RULE[inseg]) THEN ASM_REWRITE_TAC[]]]]);; (* ------------------------------------------------------------------------ *) (* Consequently, every type can be wellordered (and by an ordinal). *) (* ------------------------------------------------------------------------ *) let ORDINAL_UNION_LEMMA = prove (`!(l:A->A->bool) x. ordinal l ==> fld(l) x ==> fld(\a b. ?l. ordinal l /\ l a b) x`, REPEAT STRIP_TAC THEN REWRITE_TAC[UNION_FLD] THEN EXISTS_TAC `l:A->A->bool` THEN ASM_REWRITE_TAC[]);; let ORDINAL_UP = prove (`!l:A->A->bool. ordinal(l) ==> (!x. fld(l) x) \/ (?m x. ordinal(m) /\ fld(m) x /\ ~fld(l) x)`, GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[TAUT `a \/ b <=> ~a ==> b`] THEN GEN_REWRITE_TAC LAND_CONV [NOT_FORALL_THM] THEN DISCH_TAC THEN MP_TAC(SPEC `l:A->A->bool` ORDINAL_SUC) THEN ASM_REWRITE_TAC[] THEN DISCH_TAC THEN MAP_EVERY EXISTS_TAC [`\x y. l x y \/ (y = @y:A. ~fld l y) /\ (fld(l) x \/ (x = @y. ~fld l y))`; `@y. ~fld(l:A->A->bool) y`] THEN ASM_REWRITE_TAC[FLD_SUC] THEN CONV_TAC SELECT_CONV THEN ASM_REWRITE_TAC[]);; let WO_ORDINAL = prove (`?l:A->A->bool. ordinal(l) /\ !x. fld(l) x`, EXISTS_TAC `\a b:A. ?l. ordinal l /\ l a b` THEN MATCH_MP_TAC(TAUT `a /\ (a ==> b) ==> a /\ b`) THEN CONJ_TAC THENL [MATCH_MP_TAC ORDINAL_UNION THEN REWRITE_TAC[]; DISCH_THEN(DISJ_CASES_TAC o MATCH_MP ORDINAL_UP) THEN ASM_REWRITE_TAC[] THEN POP_ASSUM(X_CHOOSE_THEN `m:A->A->bool` (X_CHOOSE_THEN `x:A` STRIP_ASSUME_TAC)) THEN IMP_RES_THEN (IMP_RES_THEN MP_TAC) ORDINAL_UNION_LEMMA THEN ASM_REWRITE_TAC[]]);; (* ------------------------------------------------------------------------ *) (* At least -- every set can be wellordered. *) (* ------------------------------------------------------------------------ *) let FLD_RESTRICT = prove (`!l. woset l ==> !P. fld(\x y:A. P x /\ P y /\ l x y) x <=> P x /\ fld(l) x`, REPEAT STRIP_TAC THEN REWRITE_TAC[REWRITE_RULE[IN] IN_FLD] THEN EQ_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN TRY(EXISTS_TAC `y:A` THEN ASM_REWRITE_TAC[] THEN NO_TAC) THEN EXISTS_TAC `x:A` THEN ASM_REWRITE_TAC[] THEN IMP_RES_THEN MATCH_MP_TAC WOSET_REFL THEN REWRITE_TAC[REWRITE_RULE[IN] IN_FLD] THEN EXISTS_TAC `y:A` THEN ASM_REWRITE_TAC[]);; let WO = prove (`!P. ?l:A->A->bool. woset l /\ (fld(l) = P)`, GEN_TAC THEN X_CHOOSE_THEN `l:A->A->bool` STRIP_ASSUME_TAC (REWRITE_RULE[ordinal] WO_ORDINAL) THEN EXISTS_TAC `\x y:A. P x /\ P y /\ l x y` THEN REWRITE_TAC[WOSET; SUBSET; GSYM MEMBER_NOT_EMPTY; IN] THEN GEN_REWRITE_TAC RAND_CONV [FUN_EQ_THM] THEN FIRST_ASSUM(fun th -> REWRITE_TAC[MATCH_MP FLD_RESTRICT th]) THEN PBETA_TAC THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THENL [REPEAT GEN_TAC THEN DISCH_TAC THEN FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP WOSET_ANTISYM) THEN ASM_REWRITE_TAC[]; X_GEN_TAC `Q:A->bool` THEN DISCH_THEN(CONJUNCTS_THEN ASSUME_TAC) THEN FIRST_ASSUM(MP_TAC o MATCH_MP WOSET_WELL) THEN DISCH_THEN(MP_TAC o SPEC `Q:A->bool`) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `y:A` STRIP_ASSUME_TAC) THEN EXISTS_TAC `y:A` THEN ASM_REWRITE_TAC[] THEN GEN_TAC THEN DISCH_TAC THEN REPEAT CONJ_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN FIRST_ASSUM ACCEPT_TAC]);; (* ------------------------------------------------------------------------- *) (* Moreover, the ordinals themselves are wellordered by "inseg". *) (* ------------------------------------------------------------------------- *) let WF_INSEG_WOSET = prove (`WF(\(x:A->A->bool) y. woset x /\ woset y /\ x inseg y /\ ~(x = y))`, REWRITE_TAC[WF] THEN X_GEN_TAC `P:(A->A->bool)->bool` THEN DISCH_TAC THEN ONCE_REWRITE_TAC[MESON[] `(?x. P x) <=> ~(!x. ~P x)`] THEN REWRITE_TAC[TAUT `~(p /\ q) <=> p ==> ~q`] THEN GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [NOT_FORALL_THM] THEN REWRITE_TAC[NOT_IMP] THEN DISCH_TAC THEN SUBGOAL_THEN `!x:A->A->bool. P x ==> woset x` ASSUME_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `!y. ?(a:A) z. P y ==> P z /\ fld y a /\ linseg y a = z` MP_TAC THENL [X_GEN_TAC `y:A->A->bool` THEN ASM_CASES_TAC `(P:(A->A->bool)->bool) y` THEN ASM_REWRITE_TAC[] THEN REPEAT(FIRST_X_ASSUM(MP_TAC o SPEC `y:A->A->bool`)) THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[INSEG_LINSEG]; ALL_TAC] THEN REWRITE_TAC[SKOLEM_THM; NOT_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`a:(A->A->bool)->A`; `l:(A->A->bool)->(A->A->bool)`] THEN DISCH_TAC THEN FIRST_X_ASSUM(X_CHOOSE_TAC `z:A->A->bool`) THEN SUBGOAL_THEN `woset(z:A->A->bool)` MP_TAC THENL [ASM_MESON_TAC[]; REWRITE_TAC[woset; SUBSET; GSYM MEMBER_NOT_EMPTY; IN]] THEN REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN DISCH_THEN(MP_TAC o SPEC `{(a:(A->A->bool)->A) x | P x /\ x inseg z}`) THEN REWRITE_TAC[IN_ELIM_THM] THEN REWRITE_TAC[TAUT `P /\ x = y <=> x = y /\ P`] THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM; LEFT_AND_EXISTS_THM] THEN REWRITE_TAC[GSYM CONJ_ASSOC] THEN ONCE_REWRITE_TAC[SWAP_EXISTS_THM; SWAP_FORALL_THM] THEN REWRITE_TAC[UNWIND_THM2; FORALL_UNWIND_THM2; IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN ONCE_REWRITE_TAC[SWAP_EXISTS_THM; SWAP_FORALL_THM] THEN REWRITE_TAC[UNWIND_THM2; FORALL_UNWIND_THM2; IMP_CONJ; RIGHT_FORALL_IMP_THM; NOT_IMP] THEN CONJ_TAC THENL [ASM_MESON_TAC[INSEG_SUBSET_FLD]; ALL_TAC] THEN CONJ_TAC THENL [ASM_MESON_TAC[INSEG_REFL]; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `w:A->A->bool` MP_TAC) THEN REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN DISCH_THEN(MP_TAC o SPEC `(l:(A->A->bool)->(A->A->bool)) w`) THEN ASM_SIMP_TAC[NOT_IMP] THEN CONJ_TAC THENL [ASM_MESON_TAC[LINSEG_INSEG; INSEG_TRANS]; DISCH_TAC] THEN FIRST_X_ASSUM(fun th -> MP_TAC(SPEC `(l:(A->A->bool)->(A->A->bool)) w` th) THEN MP_TAC(SPEC `w:A->A->bool` th)) THEN ASM_SIMP_TAC[] THEN REPEAT STRIP_TAC THEN UNDISCH_TAC `fld ((l:(A->A->bool)->(A->A->bool)) w) (a (l w))` THEN FIRST_X_ASSUM(fun th -> GEN_REWRITE_TAC (LAND_CONV o LAND_CONV) [SYM th]) THEN ASM_SIMP_TAC[LINSEG_FLD; properly] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN REWRITE_TAC[] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN RULE_ASSUM_TAC(REWRITE_RULE[inseg]) THEN ASM_MESON_TAC[]);; let WOSET_INSEG_ORDINAL = prove (`woset (\(x:A->A->bool) y. ordinal x /\ ordinal y /\ x inseg y)`, REWRITE_TAC[WOSET_WF; IN; properly; REWRITE_RULE[IN] IN_FLD] THEN CONJ_TAC THENL [MESON_TAC[ORDINAL_CHAINED]; ALL_TAC] THEN MATCH_MP_TAC(MATCH_MP (REWRITE_RULE[IMP_CONJ_ALT] WF_SUBSET) WF_INSEG_WOSET) THEN SIMP_TAC[ordinal]);; let SUBWOSET_ISO_INSEG = prove (`!l s. woset l /\ fld l = (:A) ==> ?f. (!x y. x IN s /\ y IN s ==> (l(f x) (f y) <=> l x y)) /\ (!x y. y IN IMAGE f s /\ l x y ==> x IN IMAGE f s)`, REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o last o CONJUNCTS o GEN_REWRITE_RULE I [woset]) THEN ASM_REWRITE_TAC[UNIV; MEMBER_NOT_EMPTY] THEN GEN_REWRITE_TAC (LAND_CONV o BINDER_CONV) [RIGHT_IMP_EXISTS_THM] THEN REWRITE_TAC[SKOLEM_THM; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `m:(A->bool)->A` THEN DISCH_TAC THEN SUBGOAL_THEN `?f:A->A. !x. f(x) = m (UNIV DIFF IMAGE f {u | u IN s /\ properly l u x})` MP_TAC THENL [FIRST_ASSUM(MP_TAC o CONJUNCT2 o REWRITE_RULE[WOSET_WF; properly]) THEN DISCH_THEN(MATCH_MP_TAC o MATCH_MP WF_REC) THEN REWRITE_TAC[properly] THEN REPEAT STRIP_TAC THEN AP_TERM_TAC THEN ASM SET_TAC[]; MATCH_MP_TAC MONO_EXISTS] THEN X_GEN_TAC `f:A->A` THEN DISCH_THEN(ASSUME_TAC o GSYM) THEN SUBGOAL_THEN `!x. x IN s ==> (l:A->A->bool)(f x) x` ASSUME_TAC THENL [FIRST_ASSUM(MP_TAC o CONJUNCT2 o REWRITE_RULE[WOSET_WF; properly]) THEN REWRITE_TAC[WF_IND] THEN DISCH_THEN MATCH_MP_TAC THEN X_GEN_TAC `x:A` THEN REWRITE_TAC[IMP_IMP; GSYM CONJ_ASSOC] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `(:A) DIFF IMAGE (f:A->A) {u | u IN s /\ properly l u x}`) THEN ASM_REWRITE_TAC[] THEN ANTS_TAC THENL [REPEAT(POP_ASSUM MP_TAC) THEN REWRITE_TAC[properly; woset] THEN SET_TAC[]; REWRITE_TAC[IN_DIFF; IN_IMAGE; IN_ELIM_THM; IN_UNIV] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MATCH_MP_TAC) THEN REPEAT(POP_ASSUM MP_TAC) THEN REWRITE_TAC[properly; woset] THEN SET_TAC[]]; ALL_TAC] THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP MONO_FORALL o GEN `x:A` o SPEC `(:A) DIFF IMAGE (f:A->A) {u | u IN s /\ properly l u x}`) THEN ASM_REWRITE_TAC[] THEN ANTS_TAC THENL [REPEAT(POP_ASSUM MP_TAC) THEN REWRITE_TAC[properly; woset] THEN SET_TAC[]; FIRST_X_ASSUM(K ALL_TAC o CONV_RULE (BINDER_CONV SYM_CONV))] THEN REWRITE_TAC[IN_UNIV; IN_IMAGE; IN_DIFF; IN_ELIM_THM; FORALL_AND_THM] THEN STRIP_TAC THEN SUBGOAL_THEN `!x z:A. x IN s /\ properly l z (f x) ==> ?u. u IN s /\ properly l u x /\ f u = z` ASSUME_TAC THENL [REPEAT(POP_ASSUM MP_TAC) THEN REWRITE_TAC[properly; woset] THEN SET_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `!x z:A. x IN s /\ l z (f x) ==> ?u. u IN s /\ l u x /\ f u = z` ASSUME_TAC THENL [REPEAT(POP_ASSUM MP_TAC) THEN REWRITE_TAC[properly; woset] THEN SET_TAC[]; ALL_TAC] THEN CONJ_TAC THENL [SUBGOAL_THEN `!x y:A. x IN s /\ y IN s /\ properly l x y ==> properly l (f x) (f y)` MP_TAC THENL [REPEAT STRIP_TAC THEN REPEAT(FIRST_X_ASSUM(MP_TAC o SPECL [`x:A`; `(f:A->A) y`])) THEN REPEAT(POP_ASSUM MP_TAC) THEN REWRITE_TAC[properly; woset] THEN SET_TAC[]; MATCH_MP_TAC(MESON[] `(!x y. P x y /\ P y x ==> Q x y) ==> (!x y. P x y) ==> (!x y. Q x y)`) THEN REPEAT(POP_ASSUM MP_TAC) THEN REWRITE_TAC[properly; woset] THEN SET_TAC[]]; REPEAT(POP_ASSUM MP_TAC) THEN REWRITE_TAC[properly; woset] THEN SET_TAC[]]);; (* ======================================================================== *) (* (3) CANTOR-ZERMELO WELL-ORDERING THEOREM ==> HAUSDORFF MAXIMAL PRINCIPLE *) (* ======================================================================== *) let HP = prove (`!l:A->A->bool. poset l ==> ?P. chain(l) P /\ !Q. chain(l) Q /\ P SUBSET Q ==> (Q = P)`, GEN_TAC THEN DISCH_TAC THEN X_CHOOSE_THEN `w:A->A->bool` MP_TAC (SPEC `\x:A. T` WO) THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN GEN_REWRITE_TAC LAND_CONV [FUN_EQ_THM] THEN BETA_TAC THEN REWRITE_TAC[] THEN DISCH_TAC THEN IMP_RES_THEN (MP_TAC o SPEC `\x:A. fld(l) x`) WOSET_WELL THEN BETA_TAC THEN ASM_REWRITE_TAC[] THEN ASM_CASES_TAC `?x:A. fld(l) x` THEN ASM_REWRITE_TAC[] THENL [DISCH_THEN(X_CHOOSE_THEN `b:A` STRIP_ASSUME_TAC); FIRST_ASSUM(ASSUME_TAC o GEN_REWRITE_RULE I [NOT_EXISTS_THM]) THEN EXISTS_TAC `\x:A. F` THEN REWRITE_TAC[chain; IN; SUBSET_PRED] THEN GEN_TAC THEN GEN_REWRITE_TAC RAND_CONV [FUN_EQ_THM] THEN CONV_TAC CONTRAPOS_CONV THEN REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `u:A` MP_TAC o GEN_REWRITE_RULE I [NOT_FORALL_THM]) THEN REWRITE_TAC[] THEN DISCH_TAC THEN DISCH_THEN(MP_TAC o SPECL [`u:A`; `u:A`]) THEN IMP_RES_THEN(ASSUME_TAC o GSYM) POSET_FLDEQ THEN ASM_REWRITE_TAC[]] THEN SUBGOAL_THEN `?f. !x. f x = if fld(l) x /\ !y. properly w y x ==> l x (f y) \/ l (f y) x then (x:A) else b` (CHOOSE_TAC o GSYM) THENL [SUBGOAL_THEN `WF(\x:A y. (properly w) x y)` MP_TAC THENL [RULE_ASSUM_TAC(REWRITE_RULE[WOSET_WF]) THEN ASM_REWRITE_TAC[ETA_AX]; DISCH_THEN(MATCH_MP_TAC o MATCH_MP WF_REC) THEN REWRITE_TAC[] THEN REPEAT GEN_TAC THEN REPEAT COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[]]; ALL_TAC] THEN IMP_RES_THEN(IMP_RES_THEN ASSUME_TAC) POSET_REFL THEN SUBGOAL_THEN `(f:A->A) b = b` ASSUME_TAC THENL [FIRST_ASSUM(SUBST1_TAC o SYM o SPEC `b:A`) THEN REWRITE_TAC[COND_ID] THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `!x:A. fld(l:A->A->bool) (f x)` ASSUME_TAC THENL [GEN_TAC THEN FIRST_ASSUM(SUBST1_TAC o SYM o SPEC `x:A`) THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN FIRST_ASSUM(ANTE_RES_THEN (ASSUME_TAC o GEN_ALL) o SPEC_ALL) THEN SUBGOAL_THEN `!x:A. (l:A->A->bool) b (f x) \/ l (f x) b` ASSUME_TAC THENL [GEN_TAC THEN MP_TAC(SPEC`x:A` (ASSUME `!x:A. (w:A->A->bool) b (f x)`)) THEN FIRST_ASSUM(SUBST1_TAC o SYM o SPEC `x:A`) THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN ASM_CASES_TAC `x:A = b` THEN ASM_REWRITE_TAC[] THEN DISCH_TAC THEN SUBGOAL_THEN `(properly w) (b:A) x` MP_TAC THENL [ASM_REWRITE_TAC[properly] THEN CONV_TAC(RAND_CONV SYM_CONV) THEN FIRST_ASSUM ACCEPT_TAC; ALL_TAC] THEN DISCH_THEN(fun th -> FIRST_ASSUM(MP_TAC o C MATCH_MP th o CONJUNCT2)) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN DISJ_CASES_TAC THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `!x y. l((f:A->A) x) (f y) \/ l(f y) (f x)` ASSUME_TAC THENL [REPEAT GEN_TAC THEN IMP_RES_THEN(MP_TAC o SPECL [`x:A`; `y:A`]) WOSET_TOTAL_LT THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(REPEAT_TCL DISJ_CASES_THEN ASSUME_TAC) THENL [ASM_REWRITE_TAC[] THEN IMP_RES_THEN MATCH_MP_TAC POSET_REFL; ONCE_REWRITE_TAC[DISJ_SYM] THEN FIRST_ASSUM(SUBST1_TAC o SYM o SPEC `y:A`); FIRST_ASSUM(SUBST1_TAC o SYM o SPEC `x:A`)] THEN TRY COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN FIRST_ASSUM(IMP_RES_THEN ACCEPT_TAC o CONJUNCT2); ALL_TAC] THEN EXISTS_TAC `\y:A. ?x:A. y = f(x)` THEN SUBGOAL_THEN `chain(l:A->A->bool)(\y. ?x:A. y = f x)` ASSUME_TAC THENL [REWRITE_TAC[chain; IN] THEN BETA_TAC THEN REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN(CHOOSE_THEN SUBST1_TAC)); ALL_TAC] THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `Q:A->bool` THEN STRIP_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN X_GEN_TAC `z:A` THEN EQ_TAC THENL [DISCH_TAC THEN BETA_TAC THEN EXISTS_TAC `z:A` THEN FIRST_ASSUM(SUBST1_TAC o SYM o SPEC `z:A`) THEN SUBGOAL_THEN `fld(l:A->A->bool) z /\ !y. (properly w) y z ==> l z (f y) \/ l (f y) z` (fun th -> REWRITE_TAC[th]) THEN CONJ_TAC THENL [UNDISCH_TAC `chain(l:A->A->bool) Q` THEN REWRITE_TAC[chain; IN] THEN DISCH_THEN(MP_TAC o SPECL [`z:A`; `z:A`]) THEN ASM_REWRITE_TAC[REWRITE_RULE[IN] IN_FLD] THEN DISCH_TAC THEN EXISTS_TAC `z:A` THEN ASM_REWRITE_TAC[]; X_GEN_TAC `y:A` THEN DISCH_TAC THEN UNDISCH_TAC `chain(l:A->A->bool) Q` THEN REWRITE_TAC[chain; IN] THEN DISCH_THEN(MP_TAC o SPECL [`z:A`; `(f:A->A) y`]) THEN DISCH_THEN MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN FIRST_ASSUM(MATCH_MP_TAC o REWRITE_RULE[SUBSET_PRED]) THEN BETA_TAC THEN EXISTS_TAC `y:A` THEN REFL_TAC]; SPEC_TAC(`z:A`,`z:A`) THEN ASM_REWRITE_TAC[GSYM SUBSET_PRED]]);; (* ======================================================================== *) (* (4) HAUSDORFF MAXIMAL PRINCIPLE ==> ZORN'S LEMMA *) (* ======================================================================== *) let ZL = prove (`!l:A->A->bool. poset l /\ (!P. chain(l) P ==> (?y. fld(l) y /\ !x. P x ==> l x y)) ==> ?y. fld(l) y /\ !x. l y x ==> (y = x)`, GEN_TAC THEN STRIP_TAC THEN FIRST_ASSUM(X_CHOOSE_THEN `M:A->bool` STRIP_ASSUME_TAC o MATCH_MP HP) THEN UNDISCH_TAC `!P. chain(l:A->A->bool) P ==> (?y. fld(l) y /\ !x. P x ==> l x y)` THEN DISCH_THEN(MP_TAC o SPEC `M:A->bool`) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `m:A` STRIP_ASSUME_TAC) THEN EXISTS_TAC `m:A` THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `z:A` THEN DISCH_TAC THEN GEN_REWRITE_TAC I [TAUT `a <=> ~ ~a`] THEN DISCH_TAC THEN SUBGOAL_THEN `chain(l) (\x:A. M x \/ (x = z))` MP_TAC THENL [REWRITE_TAC[chain; IN] THEN BETA_TAC THEN REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN DISJ_CASES_TAC) THEN ASM_REWRITE_TAC[] THENL [UNDISCH_TAC `chain(l:A->A->bool) M` THEN REWRITE_TAC[chain; IN] THEN DISCH_THEN MATCH_MP_TAC THEN ASM_REWRITE_TAC[]; DISJ1_TAC THEN FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP POSET_TRANS) THEN EXISTS_TAC `m:A` THEN ASM_REWRITE_TAC[] THEN FIRST_ASSUM MATCH_MP_TAC THEN FIRST_ASSUM ACCEPT_TAC; DISJ2_TAC THEN FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP POSET_TRANS) THEN EXISTS_TAC `m:A` THEN ASM_REWRITE_TAC[] THEN FIRST_ASSUM MATCH_MP_TAC THEN FIRST_ASSUM ACCEPT_TAC; FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP POSET_REFL) THEN REWRITE_TAC[REWRITE_RULE[IN] IN_FLD] THEN EXISTS_TAC `m:A` THEN ASM_REWRITE_TAC[]]; ALL_TAC] THEN SUBGOAL_THEN `M SUBSET (\x:A. M x \/ (x = z))` MP_TAC THENL [REWRITE_TAC[SUBSET_PRED] THEN GEN_TAC THEN BETA_TAC THEN DISCH_THEN(fun th -> REWRITE_TAC[th]); ALL_TAC] THEN GEN_REWRITE_TAC I [TAUT `(a ==> b ==> c) <=> (b /\ a ==> c)`] THEN DISCH_THEN(fun th -> FIRST_ASSUM(MP_TAC o C MATCH_MP th)) THEN REWRITE_TAC[] THEN GEN_REWRITE_TAC RAND_CONV [FUN_EQ_THM] THEN DISCH_THEN(MP_TAC o SPEC `z:A`) THEN BETA_TAC THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(fun th -> FIRST_ASSUM(ASSUME_TAC o C MATCH_MP th)) THEN FIRST_ASSUM(MP_TAC o SPECL [`m:A`; `z:A`] o MATCH_MP POSET_ANTISYM) THEN ASM_REWRITE_TAC[]);; (* ======================================================================== *) (* (5) ZORN'S LEMMA ==> KURATOWSKI'S LEMMA *) (* ======================================================================== *) let KL_POSET_LEMMA = prove (`poset (\ c1 c2. C SUBSET c1 /\ c1 SUBSET c2 /\ chain(l:A->A->bool) c2)`, REWRITE_TAC[poset; IN] THEN PBETA_TAC THEN REPEAT CONJ_TAC THENL [X_GEN_TAC `P:A->bool` THEN REWRITE_TAC[REWRITE_RULE[IN] IN_FLD] THEN DISCH_THEN(X_CHOOSE_THEN `Q:A->bool` STRIP_ASSUME_TAC) THEN ASM_REWRITE_TAC[SUBSET_REFL] THENL [MATCH_MP_TAC CHAIN_SUBSET; MATCH_MP_TAC SUBSET_TRANS]; GEN_TAC THEN X_GEN_TAC `Q:A->bool` THEN GEN_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC SUBSET_TRANS; REPEAT STRIP_TAC THEN MATCH_MP_TAC SUBSET_ANTISYM] THEN TRY(EXISTS_TAC `Q:A->bool`) THEN ASM_REWRITE_TAC[]);; let KL = prove (`!l:A->A->bool. poset l ==> !C. chain(l) C ==> ?P. (chain(l) P /\ C SUBSET P) /\ (!R. chain(l) R /\ P SUBSET R ==> (R = P))`, REPEAT STRIP_TAC THEN MP_TAC(ISPEC `\c1 c2. C SUBSET c1 /\ c1 SUBSET c2 /\ chain(l:A->A->bool) c2` ZL) THEN PBETA_TAC THEN REWRITE_TAC[KL_POSET_LEMMA; MATCH_MP POSET_FLDEQ KL_POSET_LEMMA] THEN PBETA_TAC THEN W(C SUBGOAL_THEN (fun t ->REWRITE_TAC[t]) o funpow 2 (fst o dest_imp) o snd) THENL [X_GEN_TAC `P:(A->bool)->bool` THEN GEN_REWRITE_TAC LAND_CONV [chain] THEN REWRITE_TAC[IN] THEN PBETA_TAC THEN DISCH_TAC THEN ASM_CASES_TAC `?D:A->bool. P D` THENL [EXISTS_TAC `UNIONS(P) :A->bool` THEN REWRITE_TAC[SUBSET_REFL] THEN FIRST_ASSUM(X_CHOOSE_TAC `D:A->bool`) THEN FIRST_ASSUM(MP_TAC o SPECL [`D:A->bool`; `D:A->bool`]) THEN REWRITE_TAC[ASSUME `(P:(A->bool)->bool) D`; SUBSET_REFL] THEN STRIP_TAC THEN MATCH_MP_TAC(TAUT `a /\ b /\ (a /\ b ==> c) ==> (a /\ b) /\ c`) THEN REPEAT CONJ_TAC THENL [REWRITE_TAC[UNIONS_PRED; SUBSET_PRED] THEN REPEAT STRIP_TAC THEN BETA_TAC THEN EXISTS_TAC `D:A->bool` THEN ASM_REWRITE_TAC[] THEN FIRST_ASSUM(MATCH_MP_TAC o REWRITE_RULE[SUBSET_PRED]) THEN ASM_REWRITE_TAC[]; REWRITE_TAC[chain; IN; UNIONS_PRED] THEN MAP_EVERY X_GEN_TAC [`x:A`; `y:A`] THEN BETA_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_TAC `A:A->bool`) (X_CHOOSE_TAC `B:A->bool`)) THEN FIRST_ASSUM(UNDISCH_TAC o check is_forall o concl) THEN DISCH_THEN(MP_TAC o SPECL [`A:A->bool`; `B:A->bool`]) THEN ASM_REWRITE_TAC[] THEN STRIP_TAC THENL [UNDISCH_TAC `chain(l:A->A->bool) B`; UNDISCH_TAC `chain(l:A->A->bool) A`] THEN REWRITE_TAC[chain; IN] THEN DISCH_THEN MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN FIRST_ASSUM(MATCH_MP_TAC o REWRITE_RULE[SUBSET_PRED]) THEN ASM_REWRITE_TAC[]; STRIP_TAC THEN X_GEN_TAC `X:A->bool` THEN DISCH_TAC THEN FIRST_ASSUM(MP_TAC o SPECL [`X:A->bool`; `X:A->bool`]) THEN REWRITE_TAC[] THEN DISCH_THEN(IMP_RES_THEN STRIP_ASSUME_TAC) THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[UNIONS_PRED; SUBSET_PRED] THEN REPEAT STRIP_TAC THEN BETA_TAC THEN EXISTS_TAC `X:A->bool` THEN ASM_REWRITE_TAC[]]; EXISTS_TAC `C:A->bool` THEN FIRST_ASSUM(ASSUME_TAC o GEN_REWRITE_RULE I [NOT_EXISTS_THM]) THEN ASM_REWRITE_TAC[SUBSET_REFL]]; DISCH_THEN(X_CHOOSE_THEN `D:A->bool` STRIP_ASSUME_TAC) THEN EXISTS_TAC `D:A->bool` THEN ASM_REWRITE_TAC[] THEN REPEAT STRIP_TAC THEN CONV_TAC SYM_CONV THEN FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]]);; (* ------------------------------------------------------------------------- *) (* Special case of Zorn's Lemma for restriction of subset lattice. *) (* ------------------------------------------------------------------------- *) let POSET_RESTRICTED_SUBSET = prove (`!P. poset(\x y. P(x) /\ P(y) /\ x SUBSET y)`, GEN_TAC THEN REWRITE_TAC[poset; IN; REWRITE_RULE[IN] IN_FLD] THEN CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN REWRITE_TAC[SUBSET; EXTENSION] THEN MESON_TAC[]);; let FLD_RESTRICTED_SUBSET = prove (`!P. fld(\ x y. P(x) /\ P(y) /\ x SUBSET y) = P`, REWRITE_TAC[REWRITE_RULE[IN] IN_FLD; FORALL_PAIR_THM; FUN_EQ_THM] THEN CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN MESON_TAC[SUBSET_REFL]);; let ZL_SUBSETS = prove (`!P. (!c. (!x. x IN c ==> P x) /\ (!x y. x IN c /\ y IN c ==> x SUBSET y \/ y SUBSET x) ==> ?z. P z /\ (!x. x IN c ==> x SUBSET z)) ==> ?a:A->bool. P a /\ (!x. P x /\ a SUBSET x ==> (a = x))`, GEN_TAC THEN MP_TAC(ISPEC `\x y. P(x:A->bool) /\ P(y) /\ x SUBSET y` ZL) THEN REWRITE_TAC[POSET_RESTRICTED_SUBSET; FLD_RESTRICTED_SUBSET] THEN REWRITE_TAC[chain; IN] THEN CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN REWRITE_TAC[IN] THEN MATCH_MP_TAC MONO_IMP THEN CONJ_TAC THENL [MATCH_MP_TAC MONO_FORALL; ALL_TAC] THEN MESON_TAC[]);; let ZL_SUBSETS_UNIONS = prove (`!P. (!c. (!x. x IN c ==> P x) /\ (!x y. x IN c /\ y IN c ==> x SUBSET y \/ y SUBSET x) ==> P(UNIONS c)) ==> ?a:A->bool. P a /\ (!x. P x /\ a SUBSET x ==> (a = x))`, REPEAT STRIP_TAC THEN MATCH_MP_TAC ZL_SUBSETS THEN REPEAT STRIP_TAC THEN EXISTS_TAC `UNIONS(c:(A->bool)->bool)` THEN ASM_MESON_TAC[SUBSET; IN_UNIONS]);; let ZL_SUBSETS_UNIONS_NONEMPTY = prove (`!P. (?x. P x) /\ (!c. (?x. x IN c) /\ (!x. x IN c ==> P x) /\ (!x y. x IN c /\ y IN c ==> x SUBSET y \/ y SUBSET x) ==> P(UNIONS c)) ==> ?a:A->bool. P a /\ (!x. P x /\ a SUBSET x ==> (a = x))`, REPEAT STRIP_TAC THEN MATCH_MP_TAC ZL_SUBSETS THEN REPEAT STRIP_TAC THEN ASM_CASES_TAC `?x:A->bool. x IN c` THENL [EXISTS_TAC `UNIONS(c:(A->bool)->bool)` THEN ASM_SIMP_TAC[] THEN MESON_TAC[SUBSET; IN_UNIONS]; ASM_MESON_TAC[]]);; (* ------------------------------------------------------------------------- *) (* A form of Tukey's lemma. *) (* ------------------------------------------------------------------------- *) let TUKEY = prove (`!s:(A->bool)->bool. ~(s = {}) /\ (!t. (!c. FINITE c /\ c SUBSET t ==> c IN s) <=> t IN s) ==> ?u. u IN s /\ !v. v IN s /\ u SUBSET v ==> u = v`, REPEAT STRIP_TAC THEN MATCH_MP_TAC ZL_SUBSETS_UNIONS_NONEMPTY THEN CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN X_GEN_TAC `c:(A->bool)->bool` THEN DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC) THEN FIRST_ASSUM(fun th -> GEN_REWRITE_TAC I [GSYM th]) THEN SUBGOAL_THEN `!d. FINITE d ==> d SUBSET UNIONS c ==> ?e:A->bool. e IN c /\ d SUBSET e` MP_TAC THENL [ALL_TAC; MATCH_MP_TAC MONO_FORALL THEN ASM SET_TAC[]] THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN REWRITE_TAC[INSERT_SUBSET] THEN ASM SET_TAC[]);; (* ------------------------------------------------------------------------- *) (* Also the order extension theorem, using Abian's proof. *) (* ------------------------------------------------------------------------- *) let OEP = prove (`!p:A->A->bool. poset p ==> ?t. toset t /\ fld(t) = fld(p) /\ !x y. p x y ==> t x y`, REPEAT STRIP_TAC THEN MP_TAC(ISPEC `fld(p:A->A->bool)` WO) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `w:A->A->bool` STRIP_ASSUME_TAC) THEN ABBREV_TAC `t = \(x:A) (y:A). fld p x /\ fld p y /\ (x = y \/ ?i. fld p i /\ (!j. w j i /\ ~(j = i) ==> (p j x <=> p j y)) /\ ~p i x /\ p i y)` THEN EXISTS_TAC `t:A->A->bool` THEN SUBGOAL_THEN `!x:A y:A. fld p x /\ fld p y /\ ~(x = y) ==> ?i. fld p i /\ (!j:A. w j i /\ ~(j = i) ==> (p j x <=> p j y)) /\ ~(p i x <=> p i y)` (LABEL_TAC "*") THENL [REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [woset]) THEN ASM_SIMP_TAC[IN] THEN REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN DISCH_THEN(MP_TAC o SPEC `\i:A. fld p i /\ ~(p i x <=> p i y)`) THEN ASM_REWRITE_TAC[] THEN ANTS_TAC THENL [FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [poset]) THEN ASM SET_TAC[]; MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `i:A` THEN ASM_MESON_TAC[REWRITE_RULE[IN] IN_FLD]]; ALL_TAC] THEN SUBGOAL_THEN `!x:A y:A. p x y ==> t x y` ASSUME_TAC THENL [EXPAND_TAC "t" THEN REWRITE_TAC[] THEN REPEAT GEN_TAC THEN STRIP_TAC THEN REPEAT(CONJ_TAC THENL [ASM_MESON_TAC[REWRITE_RULE[IN] IN_FLD]; ALL_TAC]) THEN ASM_CASES_TAC `x:A = y` THENL [ASM_MESON_TAC[REWRITE_RULE[IN] IN_FLD]; ALL_TAC] THEN REMOVE_THEN "*" (MP_TAC o SPECL [`x:A`; `y:A`]) THEN ASM_SIMP_TAC[] THEN ANTS_TAC THENL [ASM_MESON_TAC[REWRITE_RULE[IN] IN_FLD]; MATCH_MP_TAC MONO_EXISTS] THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [poset]) THEN ASM SET_TAC[]; ALL_TAC] THEN ASM_REWRITE_TAC[SUBSET; FORALL_PAIR_THM; IN] THEN MATCH_MP_TAC(TAUT `q /\ (q ==> p) ==> p /\ q`) THEN CONJ_TAC THENL [MATCH_MP_TAC SUBSET_ANTISYM THEN ASM_REWRITE_TAC[SUBSET; FORALL_PAIR_THM; IN] THEN EXPAND_TAC "t" THEN REWRITE_TAC[REWRITE_RULE[IN] IN_FLD] THEN ASM_MESON_TAC[]; DISCH_TAC THEN ASM_REWRITE_TAC[TOSET_POSET; poset; IN]] THEN EXPAND_TAC "t" THEN REWRITE_TAC[] THEN FIRST_X_ASSUM(STRIP_ASSUME_TAC o GEN_REWRITE_RULE I [poset]) THEN REWRITE_TAC[IN] THEN REPEAT CONJ_TAC THENL [MAP_EVERY X_GEN_TAC [`x:A`; `y:A`; `z:A`] THEN ASM_CASES_TAC `x:A = z` THEN ASM_REWRITE_TAC[] THEN SIMP_TAC[] THEN ASM_CASES_TAC `y:A = z` THEN ASM_REWRITE_TAC[] THEN SIMP_TAC[] THEN ASM_CASES_TAC `y:A = x` THEN ASM_REWRITE_TAC[] THEN SIMP_TAC[] THEN ASM_CASES_TAC `fld p (x:A)` THEN ASM_REWRITE_TAC[] THEN ASM_CASES_TAC `fld p (y:A)` THEN ASM_REWRITE_TAC[] THEN ASM_CASES_TAC `fld p (z:A)` THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_THEN `m:A` STRIP_ASSUME_TAC) (X_CHOOSE_THEN `n:A` STRIP_ASSUME_TAC)) THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [woset]) THEN REWRITE_TAC[SUBSET; GSYM MEMBER_NOT_EMPTY; IN] THEN REPLICATE_TAC 3 (DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN DISCH_THEN(MP_TAC o SPECL [`m:A`; `n:A`] o CONJUNCT1) THEN ANTS_TAC THENL [ASM_MESON_TAC[REWRITE_RULE[IN] IN_FLD]; ALL_TAC] THEN STRIP_TAC THENL [EXISTS_TAC `m:A`; EXISTS_TAC `n:A`] THEN ASM_MESON_TAC[]; MAP_EVERY X_GEN_TAC [`x:A`; `y:A`] THEN ASM_CASES_TAC `y:A = x` THEN ASM_REWRITE_TAC[] THEN ASM_CASES_TAC `fld p (x:A)` THEN ASM_REWRITE_TAC[] THEN ASM_CASES_TAC `fld p (y:A)` THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_THEN `m:A` STRIP_ASSUME_TAC) (X_CHOOSE_THEN `n:A` STRIP_ASSUME_TAC)) THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [woset]) THEN REWRITE_TAC[SUBSET; GSYM MEMBER_NOT_EMPTY; IN] THEN REPLICATE_TAC 3 (DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN DISCH_THEN(MP_TAC o SPECL [`m:A`; `n:A`] o CONJUNCT1) THEN ASM_MESON_TAC[]; MAP_EVERY X_GEN_TAC [`x:A`; `y:A`] THEN ASM_CASES_TAC `y:A = x` THEN ASM_REWRITE_TAC[IN] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN REMOVE_THEN "*" (MP_TAC o SPECL [`x:A`; `y:A`]) THEN ASM_REWRITE_TAC[OR_EXISTS_THM] THEN MATCH_MP_TAC MONO_EXISTS THEN MESON_TAC[]]);; (* ------------------------------------------------------------------------- *) (* Every toset contains a cofinal woset. *) (* ------------------------------------------------------------------------- *) let TOSET_COFINAL_WOSET = prove (`!l. toset l ==> ?w. (!x y. w x y ==> l x y) /\ woset w /\ !x:A. x IN fld l ==> ?y. y IN fld w /\ l x y`, REPEAT STRIP_TAC THEN ASM_CASES_TAC `fld l:A->bool = {}` THENL [EXISTS_TAC `(\x y. F):A->A->bool` THEN ASM_REWRITE_TAC[woset; FLD_TRIVIAL; NOT_IN_EMPTY] THEN SET_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `?r. ordinal r /\ fld r = (:A->bool)` STRIP_ASSUME_TAC THENL [REWRITE_TAC[EXTENSION; IN_UNIV] THEN REWRITE_TAC[IN; WO_ORDINAL]; ALL_TAC] THEN SUBGOAL_THEN `?f. !w. f w = if ?x:A. x IN fld l /\ !v:A->bool. r v w /\ ~(v = w) ==> ~l x (f v) then @x:A. x IN fld l /\ !v. r v w /\ ~(v = w) ==> ~l x (f v) else @x:A. x IN fld l` STRIP_ASSUME_TAC THENL [FIRST_ASSUM(MP_TAC o MATCH_MP ORDINAL_IMP_WOSET) THEN REWRITE_TAC[WOSET_WF; properly] THEN DISCH_THEN(MATCH_MP_TAC o MATCH_MP WF_REC o CONJUNCT2) THEN REWRITE_TAC[] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC(MESON[] `(p <=> p') /\ x' = x ==> (if p then x else a) = (if p' then x' else a)`) THEN CONJ_TAC THENL [ALL_TAC; AP_TERM_TAC THEN ABS_TAC] THEN ASM_MESON_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `!w. (f:(A->bool)->A) w IN fld l` ASSUME_TAC THENL [GEN_TAC THEN ONCE_ASM_REWRITE_TAC[] THEN COND_CASES_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN CONV_TAC SELECT_CONV THEN ASM_REWRITE_TAC[MEMBER_NOT_EMPTY]; ALL_TAC] THEN SUBGOAL_THEN `?w:A->bool. (!x. x IN fld l ==> ?v. r v w /\ ~(v = w) /\ l (x:A) (f v)) /\ !z. (!x. x IN fld l ==> ?v. r v z /\ ~(v = z) /\ l x (f v)) ==> r w z` STRIP_ASSUME_TAC THENL [FIRST_ASSUM(MATCH_MP_TAC o last o CONJUNCTS o REWRITE_RULE[REWRITE_RULE[SUBSET; GSYM MEMBER_NOT_EMPTY; IN] woset] o MATCH_MP ORDINAL_IMP_WOSET) THEN CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN ONCE_REWRITE_TAC[MESON[] `(?w. P w) <=> ~(!w. ~P w)`] THEN GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [NOT_FORALL_THM] THEN REWRITE_TAC[NOT_IMP; NOT_EXISTS_THM; TAUT `~(p /\ q /\ r) <=> (p /\ q ==> ~r)`] THEN DISCH_TAC THEN SUBGOAL_THEN `!v w:A->bool. f v:A = f w ==> v = w` MP_TAC THENL [FIRST_ASSUM(MP_TAC o el 3 o CONJUNCTS o REWRITE_RULE[REWRITE_RULE[SUBSET; GSYM MEMBER_NOT_EMPTY; IN] woset] o MATCH_MP ORDINAL_IMP_WOSET) THEN FIRST_X_ASSUM SUBST1_TAC THEN REWRITE_TAC[UNIV] THEN MATCH_MP_TAC(MESON[] `(!x y. P x y ==> P y x) /\ (!x y. R x y ==> P x y) ==> (!x y. R x y \/ R y x) ==> (!x y. P x y)`) THEN CONJ_TAC THENL [MESON_TAC[]; ALL_TAC] THEN REPEAT GEN_TAC THEN DISCH_TAC THEN GEN_REWRITE_TAC I [GSYM CONTRAPOS_THM] THEN DISCH_TAC THEN FIRST_X_ASSUM(fun t -> GEN_REWRITE_TAC (RAND_CONV o RAND_CONV) [t]) THEN ASM_SIMP_TAC[] THEN DISCH_THEN(MP_TAC o MATCH_MP (MESON[] `(y = @x. P x) ==> (?x. P x) ==> P y`)) THEN ASM_SIMP_TAC[] THEN RULE_ASSUM_TAC(REWRITE_RULE[TOSET_POSET]) THEN ASM_MESON_TAC[]; REWRITE_TAC[INJECTIVE_LEFT_INVERSE; NOT_EXISTS_THM] THEN X_GEN_TAC `g:A->(A->bool)` THEN DISCH_THEN(MP_TAC o SPEC `\x:A. ~(g x x)`) THEN REWRITE_TAC[FUN_EQ_THM] THEN MESON_TAC[]]; ALL_TAC] THEN SUBGOAL_THEN `!x y. r x y /\ r y w /\ ~(y = w) ==> l((f:(A->bool)->A) x) (f y)` ASSUME_TAC THENL [REPEAT STRIP_TAC THEN MATCH_MP_TAC(MESON[] `(l a b \/ l b a) /\ (~(b = a) ==> ~l b a) ==> l a b`) THEN CONJ_TAC THENL [RULE_ASSUM_TAC(REWRITE_RULE[TOSET_POSET]) THEN ASM SET_TAC[]; DISCH_THEN(ASSUME_TAC o MATCH_MP (MESON[] `~(f x = f y) ==> ~(x = y)`))] THEN FIRST_X_ASSUM(fun th -> GEN_REWRITE_TAC (RAND_CONV o LAND_CONV) [th]) THEN COND_CASES_TAC THENL [FIRST_X_ASSUM(MATCH_MP_TAC o CONJUNCT2 o SELECT_RULE) THEN ASM_REWRITE_TAC[]; FIRST_ASSUM(MP_TAC o REWRITE_RULE[REWRITE_RULE[SUBSET; GSYM MEMBER_NOT_EMPTY; IN] woset] o MATCH_MP ORDINAL_IMP_WOSET) THEN ASM_MESON_TAC[]]; ALL_TAC] THEN EXISTS_TAC `\x y. x IN IMAGE (f:(A->bool)->A) {v | r v w /\ ~(v = w)} /\ y IN IMAGE (f:(A->bool)->A) {v | r v w /\ ~(v = w)} /\ l x y` THEN SUBGOAL_THEN `fld(\ x y. x IN IMAGE (f:(A->bool)->A) {v | r v w /\ ~(v = w)} /\ y IN IMAGE (f:(A->bool)->A) {v | r v w /\ ~(v = w)} /\ l x y) = IMAGE f {v | r v w /\ ~(v = w)}` ASSUME_TAC THENL [GEN_REWRITE_TAC I [EXTENSION] THEN REWRITE_TAC[IN_ELIM_THM; IN_IMAGE] THEN REWRITE_TAC[IN; REWRITE_RULE[IN] IN_FLD] THEN RULE_ASSUM_TAC(REWRITE_RULE[TOSET_POSET]) THEN ASM_MESON_TAC[]; ALL_TAC] THEN REPEAT CONJ_TAC THENL [SIMP_TAC[SUBSET; FORALL_PAIR_THM; IN]; ASM_REWRITE_TAC[REWRITE_RULE[SET_RULE `fld l x <=> x IN fld l`] (REWRITE_RULE[SUBSET; GSYM MEMBER_NOT_EMPTY; IN] woset)]; ASM_REWRITE_TAC[] THEN REWRITE_TAC[EXISTS_IN_IMAGE] THEN ASM SET_TAC[]] THEN FIRST_ASSUM(STRIP_ASSUME_TAC o GEN_REWRITE_RULE I [TOSET_POSET]) THEN FIRST_ASSUM(STRIP_ASSUME_TAC o GEN_REWRITE_RULE I [poset]) THEN REWRITE_TAC[CONJ_ASSOC] THEN CONJ_TAC THENL [ASM SET_TAC[]; SIMP_TAC[]] THEN X_GEN_TAC `P:A->bool` THEN REWRITE_TAC[] THEN STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP ORDINAL_IMP_WOSET) THEN REWRITE_TAC[REWRITE_RULE[SUBSET; GSYM MEMBER_NOT_EMPTY; IN] woset] THEN DISCH_THEN(MP_TAC o SPEC `\x:A->bool. (P:A->bool) (f x)` o last o CONJUNCTS) THEN REWRITE_TAC[] THEN ANTS_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `z:A->bool` STRIP_ASSUME_TAC) THEN EXISTS_TAC `(f:(A->bool)->A) z` THEN CONJ_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP (SET_RULE `(!z. P z ==> z IN IMAGE f s) ==> (!x. x IN s /\ P(f x) ==> Q(f x)) ==> !y. P y ==> Q y`)) THEN X_GEN_TAC `y:A->bool` THEN REWRITE_TAC[IN_ELIM_THM] THEN STRIP_TAC THEN CONJ_TAC THENL [FIRST_X_ASSUM MATCH_MP_TAC THEN FIRST_ASSUM ACCEPT_TAC; ASM SET_TAC[]]);;