\input{preamble} % OK, start here. % \begin{document} \title{Descent} \maketitle \phantomsection \label{section-phantom} \tableofcontents \section{Introduction} \label{section-introduction} \noindent In the chapter on topologies on schemes (see Topologies, Section \ref{topologies-section-introduction}) we introduced Zariski, \'etale, fppf, smooth, syntomic and fpqc coverings of schemes. In this chapter we discuss what kind of structures over schemes can be descended through such coverings. See for example \cite{Gr-I}, \cite{Gr-II}, \cite{Gr-III}, \cite{Gr-IV}, \cite{Gr-V}, and \cite{Gr-VI}. This is also meant to introduce the notions of descent, descent data, effective descent data, in the less formal setting of descent questions for quasi-coherent sheaves, schemes, etc. The formal notion, that of a stack over a site, is discussed in the chapter on stacks (see Stacks, Section \ref{stacks-section-introduction}). \section{Descent data for quasi-coherent sheaves} \label{section-equivalence} \noindent In this chapter we will use the convention where the projection maps $\text{pr}_i : X \times \ldots \times X \to X$ are labeled starting with $i = 0$. Hence we have $\text{pr}_0, \text{pr}_1 : X \times X \to X$, $\text{pr}_0, \text{pr}_1, \text{pr}_2 : X \times X \times X \to X$, etc. \begin{definition} \label{definition-descent-datum-quasi-coherent} Let $S$ be a scheme. Let $\{f_i : S_i \to S\}_{i \in I}$ be a family of morphisms with target $S$. \begin{enumerate} \item A {\it descent datum $(\mathcal{F}_i, \varphi_{ij})$ for quasi-coherent sheaves} with respect to the given family is given by a quasi-coherent sheaf $\mathcal{F}_i$ on $S_i$ for each $i \in I$, an isomorphism of quasi-coherent $\mathcal{O}_{S_i \times_S S_j}$-modules $\varphi_{ij} : \text{pr}_0^*\mathcal{F}_i \to \text{pr}_1^*\mathcal{F}_j$ for each pair $(i, j) \in I^2$ such that for every triple of indices $(i, j, k) \in I^3$ the diagram $$ \xymatrix{ \text{pr}_0^*\mathcal{F}_i \ar[rd]_{\text{pr}_{01}^*\varphi_{ij}} \ar[rr]_{\text{pr}_{02}^*\varphi_{ik}} & & \text{pr}_2^*\mathcal{F}_k \\ & \text{pr}_1^*\mathcal{F}_j \ar[ru]_{\text{pr}_{12}^*\varphi_{jk}} & } $$ of $\mathcal{O}_{S_i \times_S S_j \times_S S_k}$-modules commutes. This is called the {\it cocycle condition}. \item A {\it morphism $\psi : (\mathcal{F}_i, \varphi_{ij}) \to (\mathcal{F}'_i, \varphi'_{ij})$ of descent data} is given by a family $\psi = (\psi_i)_{i\in I}$ of morphisms of $\mathcal{O}_{S_i}$-modules $\psi_i : \mathcal{F}_i \to \mathcal{F}'_i$ such that all the diagrams $$ \xymatrix{ \text{pr}_0^*\mathcal{F}_i \ar[r]_{\varphi_{ij}} \ar[d]_{\text{pr}_0^*\psi_i} & \text{pr}_1^*\mathcal{F}_j \ar[d]^{\text{pr}_1^*\psi_j} \\ \text{pr}_0^*\mathcal{F}'_i \ar[r]^{\varphi'_{ij}} & \text{pr}_1^*\mathcal{F}'_j \\ } $$ commute. \end{enumerate} \end{definition} \noindent A good example to keep in mind is the following. Suppose that $S = \bigcup S_i$ is an open covering. In that case we have seen descent data for sheaves of sets in Sheaves, Section \ref{sheaves-section-glueing-sheaves} where we called them ``glueing data for sheaves of sets with respect to the given covering''. Moreover, we proved that the category of glueing data is equivalent to the category of sheaves on $S$. We will show the analogue in the setting above when $\{S_i \to S\}_{i\in I}$ is an fpqc covering. \medskip\noindent In the extreme case where the covering $\{S \to S\}$ is given by $\text{id}_S$ a descent datum is necessarily of the form $(\mathcal{F}, \text{id}_\mathcal{F})$. The cocycle condition guarantees that the identity on $\mathcal{F}$ is the only permitted map in this case. The following lemma shows in particular that to every quasi-coherent sheaf of $\mathcal{O}_S$-modules there is associated a unique descent datum with respect to any given family. \begin{lemma} \label{lemma-refine-descent-datum} Let $\mathcal{U} = \{U_i \to U\}_{i \in I}$ and $\mathcal{V} = \{V_j \to V\}_{j \in J}$ be families of morphisms of schemes with fixed target. Let $(g, \alpha : I \to J, (g_i)) : \mathcal{U} \to \mathcal{V}$ be a morphism of families of maps with fixed target, see Sites, Definition \ref{sites-definition-morphism-coverings}. Let $(\mathcal{F}_j, \varphi_{jj'})$ be a descent datum for quasi-coherent sheaves with respect to the family $\{V_j \to V\}_{j \in J}$. Then \begin{enumerate} \item The system $$ \left(g_i^*\mathcal{F}_{\alpha(i)}, (g_i \times g_{i'})^*\varphi_{\alpha(i)\alpha(i')}\right) $$ is a descent datum with respect to the family $\{U_i \to U\}_{i \in I}$. \item This construction is functorial in the descent datum $(\mathcal{F}_j, \varphi_{jj'})$. \item Given a second morphism $(g', \alpha' : I \to J, (g'_i))$ of families of maps with fixed target with $g = g'$ there exists a functorial isomorphism of descent data $$ (g_i^*\mathcal{F}_{\alpha(i)}, (g_i \times g_{i'})^*\varphi_{\alpha(i)\alpha(i')}) \cong ((g'_i)^*\mathcal{F}_{\alpha'(i)}, (g'_i \times g'_{i'})^*\varphi_{\alpha'(i)\alpha'(i')}). $$ \end{enumerate} \end{lemma} \begin{proof} Omitted. Hint: The maps $g_i^*\mathcal{F}_{\alpha(i)} \to (g'_i)^*\mathcal{F}_{\alpha'(i)}$ which give the isomorphism of descent data in part (3) are the pullbacks of the maps $\varphi_{\alpha(i)\alpha'(i)}$ by the morphisms $(g_i, g'_i) : U_i \to V_{\alpha(i)} \times_V V_{\alpha'(i)}$. \end{proof} \noindent Any family $\mathcal{U} = \{S_i \to S\}_{i \in I}$ is a refinement of the trivial covering $\{S \to S\}$ in a unique way. For a quasi-coherent sheaf $\mathcal{F}$ on $S$ we denote simply $(\mathcal{F}|_{S_i}, can)$ the descent datum with respect to $\mathcal{U}$ obtained by the procedure above. \begin{definition} \label{definition-descent-datum-effective-quasi-coherent} Let $S$ be a scheme. Let $\{S_i \to S\}_{i \in I}$ be a family of morphisms with target $S$. \begin{enumerate} \item Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_S$-module. We call the unique descent on $\mathcal{F}$ datum with respect to the covering $\{S \to S\}$ the {\it trivial descent datum}. \item The pullback of the trivial descent datum to $\{S_i \to S\}$ is called the {\it canonical descent datum}. Notation: $(\mathcal{F}|_{S_i}, can)$. \item A descent datum $(\mathcal{F}_i, \varphi_{ij})$ for quasi-coherent sheaves with respect to the given covering is said to be {\it effective} if there exists a quasi-coherent sheaf $\mathcal{F}$ on $S$ such that $(\mathcal{F}_i, \varphi_{ij})$ is isomorphic to $(\mathcal{F}|_{S_i}, can)$. \end{enumerate} \end{definition} \begin{lemma} \label{lemma-zariski-descent-effective} Let $S$ be a scheme. Let $S = \bigcup U_i$ be an open covering. Any descent datum on quasi-coherent sheaves for the family $\mathcal{U} = \{U_i \to S\}$ is effective. Moreover, the functor from the category of quasi-coherent $\mathcal{O}_S$-modules to the category of descent data with respect to $\mathcal{U}$ is fully faithful. \end{lemma} \begin{proof} This follows immediately from Sheaves, Section \ref{sheaves-section-glueing-sheaves} and the fact that being quasi-coherent is a local property, see Modules, Definition \ref{modules-definition-quasi-coherent}. \end{proof} \noindent To prove more we first need to study the case of modules over rings. \section{Descent for modules} \label{section-descent-modules} \noindent Let $R \to A$ be a ring map. By Simplicial, Example \ref{simplicial-example-push-outs-simplicial-object} this gives rise to a cosimplicial $R$-algebra $$ \xymatrix{ A \ar@<1ex>[r] \ar@<-1ex>[r] & A \otimes_R A \ar@<0ex>[l] \ar@<2ex>[r] \ar@<0ex>[r] \ar@<-2ex>[r] & A \otimes_R A \otimes_R A \ar@<1ex>[l] \ar@<-1ex>[l] } $$ Let us denote this $(A/R)_\bullet$ so that $(A/R)_n$ is the $(n + 1)$-fold tensor product of $A$ over $R$. Given a map $\varphi : [n] \to [m]$ the $R$-algebra map $(A/R)_\bullet(\varphi)$ is the map $$ a_0 \otimes \ldots \otimes a_n \longmapsto \prod\nolimits_{\varphi(i) = 0} a_i \otimes \prod\nolimits_{\varphi(i) = 1} a_i \otimes \ldots \otimes \prod\nolimits_{\varphi(i) = m} a_i $$ where we use the convention that the empty product is $1$. Thus the first few maps, notation as in Simplicial, Section \ref{simplicial-section-cosimplicial-object}, are $$ \begin{matrix} \delta^1_0 & : & a_0 & \mapsto & 1 \otimes a_0 \\ \delta^1_1 & : & a_0 & \mapsto & a_0 \otimes 1 \\ \sigma^0_0 & : & a_0 \otimes a_1 & \mapsto & a_0a_1 \\ \delta^2_0 & : & a_0 \otimes a_1 & \mapsto & 1 \otimes a_0 \otimes a_1 \\ \delta^2_1 & : & a_0 \otimes a_1 & \mapsto & a_0 \otimes 1 \otimes a_1 \\ \delta^2_2 & : & a_0 \otimes a_1 & \mapsto & a_0 \otimes a_1 \otimes 1 \\ \sigma^1_0 & : & a_0 \otimes a_1 \otimes a_2 & \mapsto & a_0a_1 \otimes a_2 \\ \sigma^1_1 & : & a_0 \otimes a_1 \otimes a_2 & \mapsto & a_0 \otimes a_1a_2 \end{matrix} $$ and so on. \medskip\noindent An $R$-module $M$ gives rise to a cosimplicial $(A/R)_\bullet$-module $(A/R)_\bullet \otimes_R M$. In other words $M_n = (A/R)_n \otimes_R M$ and using the $R$-algebra maps $(A/R)_n \to (A/R)_m$ to define the corresponding maps on $M \otimes_R (A/R)_\bullet$. \medskip\noindent The analogue to a descent datum for quasi-coherent sheaves in the setting of modules is the following. \begin{definition} \label{definition-descent-datum-modules} Let $R \to A$ be a ring map. \begin{enumerate} \item A {\it descent datum $(N, \varphi)$ for modules with respect to $R \to A$} is given by an $A$-module $N$ and an isomorphism of $A \otimes_R A$-modules $$ \varphi : N \otimes_R A \to A \otimes_R N $$ such that the {\it cocycle condition} holds: the diagram of $A \otimes_R A \otimes_R A$-module maps $$ \xymatrix{ N \otimes_R A \otimes_R A \ar[rr]_{\varphi_{02}} \ar[rd]_{\varphi_{01}} & & A \otimes_R A \otimes_R N \\ & A \otimes_R N \otimes_R A \ar[ru]_{\varphi_{12}} & } $$ commutes (see below for notation). \item A {\it morphism $(N, \varphi) \to (N', \varphi')$ of descent data} is a morphism of $A$-modules $\psi : N \to N'$ such that the diagram $$ \xymatrix{ N \otimes_R A \ar[r]_\varphi \ar[d]_{\psi \otimes \text{id}_A} & A \otimes_R N \ar[d]^{\text{id}_A \otimes \psi} \\ N' \otimes_R A \ar[r]^{\varphi'} & A \otimes_R N' } $$ is commutative. \end{enumerate} \end{definition} \noindent In the definition we use the notation that $\varphi_{01} = \varphi \otimes \text{id}_A$, $\varphi_{12} = \text{id}_A \otimes \varphi$, and $\varphi_{02}(n \otimes 1 \otimes 1) = \sum a_i \otimes 1 \otimes n_i$ if $\varphi(n \otimes 1) = \sum a_i \otimes n_i$. All three are $A \otimes_R A \otimes_R A$-module homomorphisms. Equivalently we have $$ \varphi_{ij} = \varphi \otimes_{(A/R)_1, \ (A/R)_\bullet(\tau^2_{ij})} (A/R)_2 $$ where $\tau^2_{ij} : [1] \to [2]$ is the map $0 \mapsto i$, $1 \mapsto j$. Namely, $(A/R)_{\bullet}(\tau^2_{02})(a_0 \otimes a_1) = a_0 \otimes 1 \otimes a_1$, and similarly for the others\footnote{Note that $\tau^2_{ij} = \delta^2_k$, if $\{i, j, k\} = [2] = \{0, 1, 2\}$, see Simplicial, Definition \ref{simplicial-definition-face-degeneracy}.}. \medskip\noindent We need some more notation to be able to state the next lemma. Let $(N, \varphi)$ be a descent datum with respect to a ring map $R \to A$. For $n \geq 0$ and $i \in [n]$ we set $$ N_{n, i} = A \otimes_R \ldots \otimes_R A \otimes_R N \otimes_R A \otimes_R \ldots \otimes_R A $$ with the factor $N$ in the $i$th spot. It is an $(A/R)_n$-module. If we introduce the maps $\tau^n_i : [0] \to [n]$, $0 \mapsto i$ then we see that $$ N_{n, i} = N \otimes_{(A/R)_0, \ (A/R)_\bullet(\tau^n_i)} (A/R)_n $$ For $0 \leq i \leq j \leq n$ we let $\tau^n_{ij} : [1] \to [n]$ be the map such that $0$ maps to $i$ and $1$ to $j$. Similarly to the above the homomorphism $\varphi$ induces isomorphisms $$ \varphi^n_{ij} = \varphi \otimes_{(A/R)_1, \ (A/R)_\bullet(\tau^n_{ij})} (A/R)_n : N_{n, i} \longrightarrow N_{n, j} $$ of $(A/R)_n$-modules when $i < j$. If $i = j$ we set $\varphi^n_{ij} = \text{id}$. Since these are all isomorphisms they allow us to move the factor $N$ to any spot we like. And the cocycle condition exactly means that it does not matter how we do this (e.g., as a composition of two of these or at once). Finally, for any $\beta : [n] \to [m]$ we define the morphism $$ N_{\beta, i} : N_{n, i} \to N_{m, \beta(i)} $$ as the unique $(A/R)_\bullet(\beta)$-semi linear map such that $$ N_{\beta, i}(1 \otimes \ldots \otimes n \otimes \ldots \otimes 1) = 1 \otimes \ldots \otimes n \otimes \ldots \otimes 1 $$ for all $n \in N$. This hints at the following lemma. \begin{lemma} \label{lemma-descent-datum-cosimplicial} Let $R \to A$ be a ring map. Given a descent datum $(N, \varphi)$ we can associate to it a cosimplicial $(A/R)_\bullet$-module $N_\bullet$\footnote{We should really write $(N, \varphi)_\bullet$.} by the rules $N_n = N_{n, n}$ and given $\beta : [n] \to [m]$ setting we define $$ N_\bullet(\beta) = (\varphi^m_{\beta(n)m}) \circ N_{\beta, n} : N_{n, n} \longrightarrow N_{m, m}. $$ This procedure is functorial in the descent datum. \end{lemma} \begin{proof} Here are the first few maps where $\varphi(n \otimes 1) = \sum \alpha_i \otimes x_i$ $$ \begin{matrix} \delta^1_0 & : & N & \to & A \otimes N & n & \mapsto & 1 \otimes n \\ \delta^1_1 & : & N & \to & A \otimes N & n & \mapsto & \sum \alpha_i \otimes x_i\\ \sigma^0_0 & : & A \otimes N & \to & N & a_0 \otimes n & \mapsto & a_0n \\ \delta^2_0 & : & A \otimes N & \to & A \otimes A \otimes N & a_0 \otimes n & \mapsto & 1 \otimes a_0 \otimes n \\ \delta^2_1 & : & A \otimes N & \to & A \otimes A \otimes N & a_0 \otimes n & \mapsto & a_0 \otimes 1 \otimes n \\ \delta^2_2 & : & A \otimes N & \to & A \otimes A \otimes N & a_0 \otimes n & \mapsto & \sum a_0 \otimes \alpha_i \otimes x_i \\ \sigma^1_0 & : & A \otimes A \otimes N & \to & A \otimes N & a_0 \otimes a_1 \otimes n & \mapsto & a_0a_1 \otimes n \\ \sigma^1_1 & : & A \otimes A \otimes N & \to & A \otimes N & a_0 \otimes a_1 \otimes n & \mapsto & a_0 \otimes a_1n \end{matrix} $$ with notation as in Simplicial, Section \ref{simplicial-section-cosimplicial-object}. We first verify the two properties $\sigma^0_0 \circ \delta^1_0 = \text{id}$ and $\sigma^0_0 \circ \delta^1_1 = \text{id}$. The first one, $\sigma^0_0 \circ \delta^1_0 = \text{id}$, is clear from the explicit description of the morphisms above. To prove the second relation we have to use the cocycle condition (because it does not hold for an arbitrary isomorphism $\varphi : N \otimes_R A \to A \otimes_R N$). Write $p = \sigma^0_0 \circ \delta^1_1 : N \to N$. By the description of the maps above we deduce that $p$ is also equal to $$ p = \varphi \otimes \text{id} : N = (N \otimes_R A) \otimes_{(A \otimes_R A)} A \longrightarrow (A \otimes_R N) \otimes_{(A \otimes_R A)} A = N $$ Since $\varphi$ is an isomorphism we see that $p$ is an isomorphism. Write $\varphi(n \otimes 1) = \sum \alpha_i \otimes x_i$ for certain $\alpha_i \in A$ and $x_i \in N$. Then $p(n) = \sum \alpha_ix_i$. Next, write $\varphi(x_i \otimes 1) = \sum \alpha_{ij} \otimes y_j$ for certain $\alpha_{ij} \in A$ and $y_j \in N$. Then the cocycle condition says that $$ \sum \alpha_i \otimes \alpha_{ij} \otimes y_j = \sum \alpha_i \otimes 1 \otimes x_i. $$ This means that $p(n) = \sum \alpha_ix_i = \sum \alpha_i\alpha_{ij}y_j = \sum \alpha_i p(x_i) = p(p(n))$. Thus $p$ is a projector, and since it is an isomorphism it is the identity. \medskip\noindent To prove fully that $N_\bullet$ is a cosimplicial module we have to check all 5 types of relations of Simplicial, Remark \ref{simplicial-remark-relations-cosimplicial}. The relations on composing $\sigma$'s are obvious. The relations on composing $\delta$'s come down to the cocycle condition for $\varphi$. In exactly the same way as above one checks the relations $\sigma_j \circ \delta_j = \sigma_j \circ \delta_{j + 1} = \text{id}$. Finally, the other relations on compositions of $\delta$'s and $\sigma$'s hold for any $\varphi$ whatsoever. \end{proof} \noindent Note that to an $R$-module $M$ we can associate a canonical descent datum, namely $(M \otimes_R A, can)$ where $can : (M \otimes_R A) \otimes_R A \to A \otimes_R (M \otimes_R A)$ is the obvious map: $(m \otimes a) \otimes a' \mapsto a \otimes (m \otimes a')$. \begin{lemma} \label{lemma-canonical-descent-datum-cosimplicial} Let $R \to A$ be a ring map. Let $M$ be an $R$-module. The cosimplicial $(A/R)_\bullet$-module associated to the canonical descent datum is isomorphic to the cosimplicial module $(A/R)_\bullet \otimes_R M$. \end{lemma} \begin{proof} Omitted. \end{proof} \begin{definition} \label{definition-descent-datum-effective-module} Let $R \to A$ be a ring map. We say a descent datum $(N, \varphi)$ is {\it effective} if there exists an $R$-module $M$ and an isomorphism of descent data from $(M \otimes_R A, can)$ to $(N, \varphi)$. \end{definition} \noindent Let $R \to A$ be a ring map. Let $(N, \varphi)$ be a descent datum. We may take the cochain complex $s(N_\bullet)$ associated with $N_\bullet$ (see Simplicial, Section \ref{simplicial-section-dold-kan-cosimplicial}). It has the following shape: $$ N \to A \otimes_R N \to A \otimes_R A \otimes_R N \to \ldots $$ We can describe the maps. The first map is the map $$ n \longmapsto 1 \otimes n - \varphi(n \otimes 1). $$ The second map on pure tensors has the values $$ a \otimes n \longmapsto 1 \otimes a \otimes n - a \otimes 1 \otimes n + a \otimes \varphi(n \otimes 1). $$ It is clear how the pattern continues. \medskip\noindent In the special case where $N = A \otimes_R M$ we see that for any $m \in M$ the element $1 \otimes m$ is in the kernel of the first map of the cochain complex associated to the cosimplicial module $(A/R)_\bullet \otimes_R M$. Hence we get an extended cochain complex \begin{equation} \label{equation-extended-complex} 0 \to M \to A \otimes_R M \to A \otimes_R A \otimes_R M \to \ldots \end{equation} Here we think of the $0$ as being in degree $-2$, the module $M$ in degree $-1$, the module $A \otimes_R M$ in degree $0$, etc. Note that this complex has the shape $$ 0 \to R \to A \to A \otimes_R A \to A \otimes_R A \otimes_R A \to \ldots $$ when $M = R$. \begin{lemma} \label{lemma-with-section-exact} Suppose that $R \to A$ has a section. Then for any $R$-module $M$ the extended cochain complex (\ref{equation-extended-complex}) is exact. \end{lemma} \begin{proof} By Simplicial, Lemma \ref{simplicial-lemma-push-outs-simplicial-object-w-section} the map $R \to (A/R)_\bullet$ is a homotopy equivalence of cosimplicial $R$-algebras (here $R$ denotes the constant cosimplicial $R$-algebra). Hence $M \to (A/R)_\bullet \otimes_R M$ is a homotopy equivalence in the category of cosimplicial $R$-modules, because $\otimes_R M$ is a functor from the category of $R$-algebras to the category of $R$-modules, see Simplicial, Lemma \ref{simplicial-lemma-functorial-homotopy}. This implies that the induced map of associated complexes is a homotopy equivalence, see Simplicial, Lemma \ref{simplicial-lemma-homotopy-s-Q}. Since the complex associated to the constant cosimplicial $R$-module $M$ is the complex $$ \xymatrix{ M \ar[r]^0 & M \ar[r]^1 & M \ar[r]^0 & M \ar[r]^1 & M \ldots } $$ we win (since the extended version simply puts an extra $M$ at the beginning). \end{proof} \begin{lemma} \label{lemma-ff-exact} Suppose that $R \to A$ is faithfully flat, see Algebra, Definition \ref{algebra-definition-flat}. Then for any $R$-module $M$ the extended cochain complex (\ref{equation-extended-complex}) is exact. \end{lemma} \begin{proof} Suppose we can show there exists a faithfully flat ring map $R \to R'$ such that the result holds for the ring map $R' \to A' = R' \otimes_R A$. Then the result follows for $R \to A$. Namely, for any $R$-module $M$ the cosimplicial module $(M \otimes_R R') \otimes_{R'} (A'/R')_\bullet$ is just the cosimplicial module $R' \otimes_R (M \otimes_R (A/R)_\bullet)$. Hence the vanishing of cohomology of the complex associated to $(M \otimes_R R') \otimes_{R'} (A'/R')_\bullet$ implies the vanishing of the cohomology of the complex associated to $M \otimes_R (A/R)_\bullet$ by faithful flatness of $R \to R'$. Similarly for the vanishing of cohomology groups in degrees $-1$ and $0$ of the extended complex (proof omitted). \medskip\noindent But we have such a faithful flat extension. Namely $R' = A$ works because the ring map $R' = A \to A' = A \otimes_R A$ has a section $a \otimes a' \mapsto aa'$ and Lemma \ref{lemma-with-section-exact} applies. \end{proof} \noindent Here is how the complex relates to the question of effectivity. \begin{lemma} \label{lemma-recognize-effective} Let $R \to A$ be a faithfully flat ring map. Let $(N, \varphi)$ be a descent datum. Then $(N, \varphi)$ is effective if and only if the canonical map $$ A \otimes_R H^0(s(N_\bullet)) \longrightarrow N $$ is an isomorphism. \end{lemma} \begin{proof} If $(N, \varphi)$ is effective, then we may write $N = A \otimes_R M$ with $\varphi = can$. It follows that $H^0(s(N_\bullet)) = M$ by Lemmas \ref{lemma-canonical-descent-datum-cosimplicial} and \ref{lemma-ff-exact}. Conversely, suppose the map of the lemma is an isomorphism. In this case set $M = H^0(s(N_\bullet))$. This is an $R$-submodule of $N$, namely $M = \{n \in N \mid 1 \otimes n = \varphi(n \otimes 1)\}$. The only thing to check is that via the isomorphism $A \otimes_R M \to N$ the canonical descent data agrees with $\varphi$. We omit the verification. \end{proof} \begin{lemma} \label{lemma-descent-descends} Let $R \to A$ be a faithfully flat ring map, and let $R \to R'$ be faithfully flat. Set $A' = R' \otimes_R A$. If all descent data for $R' \to A'$ are effective, then so are all descent data for $R \to A$. \end{lemma} \begin{proof} Let $(N, \varphi)$ be a descent datum for $R \to A$. Set $N' = R' \otimes_R N = A' \otimes_A N$, and denote $\varphi' = \text{id}_{R'} \otimes \varphi$ the base change of the descent datum $\varphi$. Then $(N', \varphi')$ is a descent datum for $R' \to A'$ and $H^0(s(N'_\bullet)) = R' \otimes_R H^0(s(N_\bullet))$. Moreover, the map $A' \otimes_{R'} H^0(s(N'_\bullet)) \to N'$ is identified with the base change of the $A$-module map $A \otimes_R H^0(s(N)) \to N$ via the faithfully flat map $A \to A'$. Hence we conclude by Lemma \ref{lemma-recognize-effective}. \end{proof} \noindent Here is the main result of this section. Its proof may seem a little clumsy; for a more highbrow approach see Remark \ref{remark-homotopy-equivalent-cosimplicial-algebras} below. \begin{proposition} \label{proposition-descent-module} \begin{slogan} Effective descent for modules along faithfully flat ring maps. \end{slogan} Let $R \to A$ be a faithfully flat ring map. Then \begin{enumerate} \item any descent datum on modules with respect to $R \to A$ is effective, \item the functor $M \mapsto (A \otimes_R M, can)$ from $R$-modules to the category of descent data is an equivalence, and \item the inverse functor is given by $(N, \varphi) \mapsto H^0(s(N_\bullet))$. \end{enumerate} \end{proposition} \begin{proof} We only prove (1) and omit the proofs of (2) and (3). As $R \to A$ is faithfully flat, there exists a faithfully flat base change $R \to R'$ such that $R' \to A' = R' \otimes_R A$ has a section (namely take $R' = A$ as in the proof of Lemma \ref{lemma-ff-exact}). Hence, using Lemma \ref{lemma-descent-descends} we may assume that $R \to A$ has a section, say $\sigma : A \to R$. Let $(N, \varphi)$ be a descent datum relative to $R \to A$. Set $$ M = H^0(s(N_\bullet)) = \{n \in N \mid 1 \otimes n = \varphi(n \otimes 1)\} \subset N $$ By Lemma \ref{lemma-recognize-effective} it suffices to show that $A \otimes_R M \to N$ is an isomorphism. \medskip\noindent Take an element $n \in N$. Write $\varphi(n \otimes 1) = \sum a_i \otimes x_i$ for certain $a_i \in A$ and $x_i \in N$. By Lemma \ref{lemma-descent-datum-cosimplicial} we have $n = \sum a_i x_i$ in $N$ (because $\sigma^0_0 \circ \delta^1_1 = \text{id}$ in any cosimplicial object). Next, write $\varphi(x_i \otimes 1) = \sum a_{ij} \otimes y_j$ for certain $a_{ij} \in A$ and $y_j \in N$. The cocycle condition means that $$ \sum a_i \otimes a_{ij} \otimes y_j = \sum a_i \otimes 1 \otimes x_i $$ in $A \otimes_R A \otimes_R N$. We conclude two things from this. First, by applying $\sigma$ to the first $A$ we conclude that $\sum \sigma(a_i) \varphi(x_i \otimes 1) = \sum \sigma(a_i) \otimes x_i$ which means that $\sum \sigma(a_i) x_i \in M$. Next, by applying $\sigma$ to the middle $A$ and multiplying out we conclude that $\sum_i a_i (\sum_j \sigma(a_{ij}) y_j) = \sum a_i x_i = n$. Hence by the first conclusion we see that $A \otimes_R M \to N$ is surjective. Finally, suppose that $m_i \in M$ and $\sum a_i m_i = 0$. Then we see by applying $\varphi$ to $\sum a_im_i \otimes 1$ that $\sum a_i \otimes m_i = 0$. In other words $A \otimes_R M \to N$ is injective and we win. \end{proof} \begin{remark} \label{remark-standard-covering} Let $R$ be a ring. Let $f_1, \ldots, f_n\in R$ generate the unit ideal. The ring $A = \prod_i R_{f_i}$ is a faithfully flat $R$-algebra. We remark that the cosimplicial ring $(A/R)_\bullet$ has the following ring in degree $n$: $$ \prod\nolimits_{i_0, \ldots, i_n} R_{f_{i_0}\ldots f_{i_n}} $$ Hence the results above recover Algebra, Lemmas \ref{algebra-lemma-standard-covering}, \ref{algebra-lemma-cover-module} and \ref{algebra-lemma-glue-modules}. But the results above actually say more because of exactness in higher degrees. Namely, it implies that {\v C}ech cohomology of quasi-coherent sheaves on affines is trivial. Thus we get a second proof of Cohomology of Schemes, Lemma \ref{coherent-lemma-cech-cohomology-quasi-coherent-trivial}. \end{remark} \begin{remark} \label{remark-homotopy-equivalent-cosimplicial-algebras} Let $R$ be a ring. Let $A_\bullet$ be a cosimplicial $R$-algebra. In this setting a descent datum corresponds to an cosimplicial $A_\bullet$-module $M_\bullet$ with the property that for every $n, m \geq 0$ and every $\varphi : [n] \to [m]$ the map $M(\varphi) : M_n \to M_m$ induces an isomorphism $$ M_n \otimes_{A_n, A(\varphi)} A_m \longrightarrow M_m. $$ Let us call such a cosimplicial module a {\it cartesian module}. In this setting, the proof of Proposition \ref{proposition-descent-module} can be split in the following steps \begin{enumerate} \item If $R \to R'$ and $R \to A$ are faithfully flat, then descent data for $A/R$ are effective if descent data for $(R' \otimes_R A)/R'$ are effective. \item Let $A$ be an $R$-algebra. Descent data for $A/R$ correspond to cartesian $(A/R)_\bullet$-modules. \item If $R \to A$ has a section then $(A/R)_\bullet$ is homotopy equivalent to $R$, the constant cosimplicial $R$-algebra with value $R$. \item If $A_\bullet \to B_\bullet$ is a homotopy equivalence of cosimplicial $R$-algebras then the functor $M_\bullet \mapsto M_\bullet \otimes_{A_\bullet} B_\bullet$ induces an equivalence of categories between cartesian $A_\bullet$-modules and cartesian $B_\bullet$-modules. \end{enumerate} For (1) see Lemma \ref{lemma-descent-descends}. Part (2) uses Lemma \ref{lemma-descent-datum-cosimplicial}. Part (3) we have seen in the proof of Lemma \ref{lemma-with-section-exact} (it relies on Simplicial, Lemma \ref{simplicial-lemma-push-outs-simplicial-object-w-section}). Moreover, part (4) is a triviality if you think about it right! \end{remark} \section{Descent for universally injective morphisms} \label{section-descent-universally-injective} \noindent Numerous constructions in algebraic geometry are made using techniques of {\it descent}, such as constructing objects over a given space by first working over a somewhat larger space which projects down to the given space, or verifying a property of a space or a morphism by pulling back along a covering map. The utility of such techniques is of course dependent on identification of a wide class of {\it effective descent morphisms}. Early in the Grothendieckian development of modern algebraic geometry, the class of morphisms which are {\it quasi-compact} and {\it faithfully flat} was shown to be effective for descending objects, morphisms, and many properties thereof. \medskip\noindent As usual, this statement comes down to a property of rings and modules. For a homomorphism $f: R \to S$ to be an effective descent morphism for modules, Grothendieck showed that it is sufficient for $f$ to be faithfully flat. However, this excludes many natural examples: for instance, any split ring homomorphism is an effective descent morphism. One natural example of this even arises in the proof of faithfully flat descent: for $f: R \to S$ any ring homomorphism, $1_S \otimes f: S \to S \otimes_R S$ is split by the multiplication map whether or not it is flat. \medskip\noindent One may then ask whether there is a natural ring-theoretic condition implying effective descent for modules which includes both the case of a faithfully flat morphism and that of a split ring homomorphism. It may surprise the reader (at least it surprised this author) to learn that a complete answer to this question has been known since around 1970! Namely, it is not hard to check that a necessary condition for $f: R \to S$ to be an effective descent morphism for modules is that $f$ must be {\it universally injective} in the category of $R$-modules, that is, for any $R$-module $M$, the map $1_M \otimes f: M \to M \otimes_R S$ must be injective. This then turns out to be a sufficient condition as well. For example, if $f$ is split in the category of $R$-modules (but not necessarily in the category of rings), then $f$ is an effective descent morphism for modules. \medskip\noindent The history of this result is a bit involved: it was originally asserted by Olivier \cite{olivier}, who called universally injective morphisms {\it pure}, but without a clear indication of proof. One can extract the result from the work of Joyal and Tierney \cite{joyal-tierney}, but to the best of our knowledge, the first free-standing proof to appear in the literature is that of Mesablishvili \cite{mesablishvili1}. The first purpose of this section is to expose Mesablishvili's proof; this requires little modification of his original presentation aside from correcting typos, with the one exception that we make explicit the relationship between the customary definition of a descent datum in algebraic geometry and the one used in \cite{mesablishvili1}. The proof turns out to be entirely category-theoretic, and consequently can be put in the language of monads (and thus applied in other contexts); see \cite{janelidze-tholen}. \medskip\noindent The second purpose of this section is to collect some information about which properties of modules, algebras, and morphisms can be descended along universally injective ring homomorphisms. The cases of finite modules and flat modules were treated by Mesablishvili \cite{mesablishvili2}. \subsection{Category-theoretic preliminaries} \label{subsection-category-prelims} \noindent We start by recalling a few basic notions from category theory which will simplify the exposition. In this subsection, fix an ambient category. \medskip\noindent For two morphisms $g_1, g_2: B \to C$, recall that an {\it equalizer} of $g_1$ and $g_2$ is a morphism $f: A \to B$ which satisfies $g_1 \circ f = g_2 \circ f$ and is universal for this property. This second statement means that any commutative diagram $$ \xymatrix{A' \ar[rd]^e \ar@/^1.5pc/[rrd] \ar@{-->}[d] & & \\ A \ar[r]^f & B \ar@<1ex>[r]^{g_1} \ar@<-1ex>[r]_{g_2} & C } $$ without the dashed arrow can be uniquely completed. We also say in this situation that the diagram \begin{equation} \label{equation-equalizer} \xymatrix{ A \ar[r]^f & B \ar@<1ex>[r]^{g_1} \ar@<-1ex>[r]_{g_2} & C } \end{equation} is an equalizer. Reversing arrows gives the definition of a {\it coequalizer}. See Categories, Sections \ref{categories-section-equalizers} and \ref{categories-section-coequalizers}. \medskip\noindent Since it involves a universal property, the property of being an equalizer is typically not stable under applying a covariant functor. Just as for monomorphisms and epimorphisms, one can get around this in some cases by exhibiting splittings. \begin{definition} \label{definition-split-equalizer} A {\it split equalizer} is a diagram (\ref{equation-equalizer}) with $g_1 \circ f = g_2 \circ f$ for which there exist auxiliary morphisms $h : B \to A$ and $i : C \to B$ such that \begin{equation} \label{equation-split-equalizer-conditions} h \circ f = 1_A, \quad f \circ h = i \circ g_1, \quad i \circ g_2 = 1_B. \end{equation} \end{definition} \noindent The point is that the equalities among arrows force (\ref{equation-equalizer}) to be an equalizer: the map $e$ factors uniquely through $f$ by writing $e = f \circ (h \circ e)$. Consequently, applying a covariant functor to a split equalizer gives a split equalizer; applying a contravariant functor gives a {\it split coequalizer}, whose definition is apparent. \subsection{Universally injective morphisms} \label{subsection-universally-injective} \noindent Recall that $\textit{Rings}$ denotes the category of commutative rings with $1$. For an object $R$ of $\textit{Rings}$ we denote $\text{Mod}_R$ the category of $R$-modules. \begin{remark} \label{remark-reflects} Any functor $F : \mathcal{A} \to \mathcal{B}$ of abelian categories which is exact and takes nonzero objects to nonzero objects reflects injections and surjections. Namely, exactness implies that $F$ preserves kernels and cokernels (compare with Homology, Section \ref{homology-section-functors}). For example, if $f : R \to S$ is a faithfully flat ring homomorphism, then $\bullet \otimes_R S: \text{Mod}_R \to \text{Mod}_S$ has these properties. \end{remark} \noindent Let $R$ be a ring. Recall that a morphism $f : M \to N$ in $\text{Mod}_R$ is {\it universally injective} if for all $P \in \text{Mod}_R$, the morphism $f \otimes 1_P: M \otimes_R P \to N \otimes_R P$ is injective. See Algebra, Definition \ref{algebra-definition-universally-injective}. \begin{definition} \label{definition-universally-injective} A ring map $f: R \to S$ is {\it universally injective} if it is universally injective as a morphism in $\text{Mod}_R$. \end{definition} \begin{example} \label{example-split-injection-universally-injective} Any split injection in $\text{Mod}_R$ is universally injective. In particular, any split injection in $\textit{Rings}$ is universally injective. \end{example} \begin{example} \label{example-cover-universally-injective} For a ring $R$ and $f_1, \ldots, f_n \in R$ generating the unit ideal, the morphism $R \to R_{f_1} \oplus \ldots \oplus R_{f_n}$ is universally injective. Although this is immediate from Lemma \ref{lemma-faithfully-flat-universally-injective}, it is instructive to check it directly: we immediately reduce to the case where $R$ is local, in which case some $f_i$ must be a unit and so the map $R \to R_{f_i}$ is an isomorphism. \end{example} \begin{lemma} \label{lemma-faithfully-flat-universally-injective} Any faithfully flat ring map is universally injective. \end{lemma} \begin{proof} This is a reformulation of Algebra, Lemma \ref{algebra-lemma-faithfully-flat-universally-injective}. \end{proof} \noindent The key observation from \cite{mesablishvili1} is that universal injectivity can be usefully reformulated in terms of a splitting, using the usual construction of an injective cogenerator in $\text{Mod}_R$. \begin{definition} \label{definition-C} Let $R$ be a ring. Define the contravariant functor {\it $C$} $ : \text{Mod}_R \to \text{Mod}_R$ by setting $$ C(M) = \Hom_{\textit{Ab}}(M, \mathbf{Q}/\mathbf{Z}), $$ with the $R$-action on $C(M)$ given by $rf(s) = f(rs)$. \end{definition} \noindent This functor was denoted $M \mapsto M^\vee$ in More on Algebra, Section \ref{more-algebra-section-injectives-modules}. \begin{lemma} \label{lemma-C-is-faithful} For a ring $R$, the functor $C : \text{Mod}_R \to \text{Mod}_R$ is exact and reflects injections and surjections. \end{lemma} \begin{proof} Exactness is More on Algebra, Lemma \ref{more-algebra-lemma-vee-exact} and the other properties follow from this, see Remark \ref{remark-reflects}. \end{proof} \begin{remark} \label{remark-adjunction} We will use frequently the standard adjunction between $\Hom$ and tensor product, in the form of the natural isomorphism of contravariant functors \begin{equation} \label{equation-adjunction} C(\bullet_1 \otimes_R \bullet_2) \cong \Hom_R(\bullet_1, C(\bullet_2)): \text{Mod}_R \times \text{Mod}_R \to \text{Mod}_R \end{equation} taking $f: M_1 \otimes_R M_2 \to \mathbf{Q}/\mathbf{Z}$ to the map $m_1 \mapsto (m_2 \mapsto f(m_1 \otimes m_2))$. See Algebra, Lemma \ref{algebra-lemma-hom-from-tensor-product-variant}. A corollary of this observation is that if $$ \xymatrix@C=9pc{ C(M) \ar@<1ex>[r] \ar@<-1ex>[r] & C(N) \ar[r] & C(P) } $$ is a split coequalizer diagram in $\text{Mod}_R$, then so is $$ \xymatrix@C=9pc{ C(M \otimes_R Q) \ar@<1ex>[r] \ar@<-1ex>[r] & C(N \otimes_R Q) \ar[r] & C(P \otimes_R Q) } $$ for any $Q \in \text{Mod}_R$. \end{remark} \begin{lemma} \label{lemma-split-surjection} Let $R$ be a ring. A morphism $f: M \to N$ in $\text{Mod}_R$ is universally injective if and only if $C(f): C(N) \to C(M)$ is a split surjection. \end{lemma} \begin{proof} By (\ref{equation-adjunction}), for any $P \in \text{Mod}_R$ we have a commutative diagram $$ \xymatrix@C=9pc{ \Hom_R( P, C(N)) \ar[r]_{\Hom_R(P,C(f))} \ar[d]^{\cong} & \Hom_R(P,C(M)) \ar[d]^{\cong} \\ C(P \otimes_R N ) \ar[r]^{C(1_{P} \otimes f)} & C(P \otimes_R M ). } $$ If $f$ is universally injective, then $1_{C(M)} \otimes f: C(M) \otimes_R M \to C(M) \otimes_R N$ is injective, so both rows in the above diagram are surjective for $P = C(M)$. We may thus lift $1_{C(M)} \in \Hom_R(C(M), C(M))$ to some $g \in \Hom_R(C(N), C(M))$ splitting $C(f)$. Conversely, if $C(f)$ is a split surjection, then both rows in the above diagram are surjective, so by Lemma \ref{lemma-C-is-faithful}, $1_{P} \otimes f$ is injective. \end{proof} \begin{remark} \label{remark-functorial-splitting} Let $f: M \to N$ be a universally injective morphism in $\text{Mod}_R$. By choosing a splitting $g$ of $C(f)$, we may construct a functorial splitting of $C(1_P \otimes f)$ for each $P \in \text{Mod}_R$. Namely, by (\ref{equation-adjunction}) this amounts to splitting $\Hom_R(P, C(f))$ functorially in $P$, and this is achieved by the map $g \circ \bullet$. \end{remark} \subsection{Descent for modules and their morphisms} \label{subsection-descent-modules-morphisms} \noindent Throughout this subsection, fix a ring map $f: R \to S$. As seen in Section \ref{section-descent-modules} we can use the language of cosimplicial algebras to talk about descent data for modules, but in this subsection we prefer a more down to earth terminology. \medskip\noindent For $i = 1, 2, 3$, let $S_i$ be the $i$-fold tensor product of $S$ over $R$. Define the ring homomorphisms $\delta_0^1, \delta_1^1: S_1 \to S_2$, $\delta_{01}^1, \delta_{02}^1, \delta_{12}^1: S_1 \to S_3$, and $\delta_0^2, \delta_1^2, \delta_2^2: S_2 \to S_3$ by the formulas \begin{align*} \delta^1_0 (a_0) & = 1 \otimes a_0 \\ \delta^1_1 (a_0) & = a_0 \otimes 1 \\ \delta^2_0 (a_0 \otimes a_1) & = 1 \otimes a_0 \otimes a_1 \\ \delta^2_1 (a_0 \otimes a_1) & = a_0 \otimes 1 \otimes a_1 \\ \delta^2_2 (a_0 \otimes a_1) & = a_0 \otimes a_1 \otimes 1 \\ \delta_{01}^1(a_0) & = 1 \otimes 1 \otimes a_0 \\ \delta_{02}^1(a_0) & = 1 \otimes a_0 \otimes 1 \\ \delta_{12}^1(a_0) & = a_0 \otimes 1 \otimes 1. \end{align*} In other words, the upper index indicates the source ring, while the lower index indicates where to insert factors of 1. (This notation is compatible with the notation introduced in Section \ref{section-descent-modules}.) \medskip\noindent Recall\footnote{To be precise, our $\theta$ here is the inverse of $\varphi$ from Definition \ref{definition-descent-datum-modules}.} from Definition \ref{definition-descent-datum-modules} that for $M \in \text{Mod}_S$, a {\it descent datum} on $M$ relative to $f$ is an isomorphism $$ \theta : M \otimes_{S,\delta^1_0} S_2 \longrightarrow M \otimes_{S,\delta^1_1} S_2 $$ of $S_2$-modules satisfying the {\it cocycle condition} \begin{equation} \label{equation-cocycle-condition} (\theta \otimes \delta_2^2) \circ (\theta \otimes \delta_2^0) = (\theta \otimes \delta_2^1): M \otimes_{S, \delta^1_{01}} S_3 \to M \otimes_{S,\delta^1_{12}} S_3. \end{equation} Let $DD_{S/R}$ be the category of $S$-modules equipped with descent data relative to $f$. \medskip\noindent For example, for $M_0 \in \text{Mod}_R$ and a choice of isomorphism $M \cong M_0 \otimes_R S$ gives rise to a descent datum by identifying $M \otimes_{S,\delta^1_0} S_2$ and $M \otimes_{S,\delta^1_1} S_2$ naturally with $M_0 \otimes_R S_2$. This construction in particular defines a functor $f^*: \text{Mod}_R \to DD_{S/R}$. \begin{definition} \label{definition-effective-descent} The functor $f^*: \text{Mod}_R \to DD_{S/R}$ is called {\it base extension along $f$}. We say that $f$ is a {\it descent morphism for modules} if $f^*$ is fully faithful. We say that $f$ is an {\it effective descent morphism for modules} if $f^*$ is an equivalence of categories. \end{definition} \noindent Our goal is to show that for $f$ universally injective, we can use $\theta$ to locate $M_0$ within $M$. This process makes crucial use of some equalizer diagrams. \begin{lemma} \label{lemma-equalizer-M} For $(M,\theta) \in DD_{S/R}$, the diagram \begin{equation} \label{equation-equalizer-M} \xymatrix@C=8pc{ M \ar[r]^{\theta \circ (1_M \otimes \delta_0^1)} & M \otimes_{S, \delta_1^1} S_2 \ar@<1ex>[r]^{(\theta \otimes \delta_2^2) \circ (1_M \otimes \delta^2_0)} \ar@<-1ex>[r]_{1_{M \otimes S_2} \otimes \delta^2_1} & M \otimes_{S, \delta_{12}^1} S_3 } \end{equation} is a split equalizer. \end{lemma} \begin{proof} Define the ring homomorphisms $\sigma^0_0: S_2 \to S_1$ and $\sigma_0^1, \sigma_1^1: S_3 \to S_2$ by the formulas \begin{align*} \sigma^0_0 (a_0 \otimes a_1) & = a_0a_1 \\ \sigma^1_0 (a_0 \otimes a_1 \otimes a_2) & = a_0a_1 \otimes a_2 \\ \sigma^1_1 (a_0 \otimes a_1 \otimes a_2) & = a_0 \otimes a_1a_2. \end{align*} We then take the auxiliary morphisms to be $1_M \otimes \sigma_0^0: M \otimes_{S, \delta_1^1} S_2 \to M$ and $1_M \otimes \sigma_0^1: M \otimes_{S,\delta_{12}^1} S_3 \to M \otimes_{S, \delta_1^1} S_2$. Of the compatibilities required in (\ref{equation-split-equalizer-conditions}), the first follows from tensoring the cocycle condition (\ref{equation-cocycle-condition}) with $\sigma_1^1$ and the others are immediate. \end{proof} \begin{lemma} \label{lemma-equalizer-CM} For $(M, \theta) \in DD_{S/R}$, the diagram \begin{equation} \label{equation-coequalizer-CM} \xymatrix@C=8pc{ C(M \otimes_{S, \delta_{12}^1} S_3) \ar@<1ex>[r]^{C((\theta \otimes \delta_2^2) \circ (1_M \otimes \delta^2_0))} \ar@<-1ex>[r]_{C(1_{M \otimes S_2} \otimes \delta^2_1)} & C(M \otimes_{S, \delta_1^1} S_2 ) \ar[r]^{C(\theta \circ (1_M \otimes \delta_0^1))} & C(M). } \end{equation} obtained by applying $C$ to (\ref{equation-equalizer-M}) is a split coequalizer. \end{lemma} \begin{proof} Omitted. \end{proof} \begin{lemma} \label{lemma-equalizer-S} The diagram \begin{equation} \label{equation-equalizer-S} \xymatrix@C=8pc{ S_1 \ar[r]^{\delta^1_1} & S_2 \ar@<1ex>[r]^{\delta^2_2} \ar@<-1ex>[r]_{\delta^2_1} & S_3 } \end{equation} is a split equalizer. \end{lemma} \begin{proof} In Lemma \ref{lemma-equalizer-M}, take $(M, \theta) = f^*(S)$. \end{proof} \noindent This suggests a definition of a potential quasi-inverse functor for $f^*$. \begin{definition} \label{definition-pushforward} Define the functor {\it $f_*$} $: DD_{S/R} \to \text{Mod}_R$ by taking $f_*(M, \theta)$ to be the $R$-submodule of $M$ for which the diagram \begin{equation} \label{equation-equalizer-f} \xymatrix@C=8pc{f_*(M,\theta) \ar[r] & M \ar@<1ex>^{\theta \circ (1_M \otimes \delta_0^1)}[r] \ar@<-1ex>_{1_M \otimes \delta_1^1}[r] & M \otimes_{S, \delta_1^1} S_2 } \end{equation} is an equalizer. \end{definition} \noindent Using Lemma \ref{lemma-equalizer-M} and the fact that the restriction functor $\text{Mod}_S \to \text{Mod}_R$ is right adjoint to the base extension functor $\bullet \otimes_R S: \text{Mod}_R \to \text{Mod}_S$, we deduce that $f_*$ is right adjoint to $f^*$. \medskip\noindent We are ready for the key lemma. In the faithfully flat case this is a triviality (see Remark \ref{remark-descent-lemma}), but in the general case some argument is needed. \begin{lemma} \label{lemma-descent-lemma} If $f$ is universally injective, then the diagram \begin{equation} \label{equation-equalizer-f2} \xymatrix@C=8pc{ f_*(M, \theta) \otimes_R S \ar[r]^{\theta \circ (1_M \otimes \delta_0^1)} & M \otimes_{S, \delta_1^1} S_2 \ar@<1ex>[r]^{(\theta \otimes \delta_2^2) \circ (1_M \otimes \delta^2_0)} \ar@<-1ex>[r]_{1_{M \otimes S_2} \otimes \delta^2_1} & M \otimes_{S, \delta_{12}^1} S_3 } \end{equation} obtained by tensoring (\ref{equation-equalizer-f}) over $R$ with $S$ is an equalizer. \end{lemma} \begin{proof} By Lemma \ref{lemma-split-surjection} and Remark \ref{remark-functorial-splitting}, the map $C(1_N \otimes f): C(N \otimes_R S) \to C(N)$ can be split functorially in $N$. This gives the upper vertical arrows in the commutative diagram $$ \xymatrix@C=8pc{ C(M \otimes_{S, \delta_1^1} S_2) \ar@<1ex>^{C(\theta \circ (1_M \otimes \delta_0^1))}[r] \ar@<-1ex>_{C(1_M \otimes \delta_1^1)}[r] \ar[d] & C(M) \ar[r]\ar[d] & C(f_*(M,\theta)) \ar@{-->}[d] \\ C(M \otimes_{S,\delta_{12}^1} S_3) \ar@<1ex>^{C((\theta \otimes \delta_2^2) \circ (1_M \otimes \delta^2_0))}[r] \ar@<-1ex>_{C(1_{M \otimes S_2} \otimes \delta^2_1)}[r] \ar[d] & C(M \otimes_{S, \delta_1^1} S_2 ) \ar[r]^{C(\theta \circ (1_M \otimes \delta_0^1))} \ar[d]^{C(1_M \otimes \delta_1^1)} & C(M) \ar[d] \ar@{=}[dl] \\ C(M \otimes_{S, \delta_1^1} S_2) \ar@<1ex>[r]^{C(\theta \circ (1_M \otimes \delta_0^1))} \ar@<-1ex>[r]_{C(1_M \otimes \delta_1^1)} & C(M) \ar[r] & C(f_*(M,\theta)) } $$ in which the compositions along the columns are identity morphisms. The second row is the coequalizer diagram (\ref{equation-coequalizer-CM}); this produces the dashed arrow. From the top right square, we obtain auxiliary morphisms $C(f_*(M,\theta)) \to C(M)$ and $C(M) \to C(M\otimes_{S,\delta_1^1} S_2)$ which imply that the first row is a split coequalizer diagram. By Remark \ref{remark-adjunction}, we may tensor with $S$ inside $C$ to obtain the split coequalizer diagram $$ \xymatrix@C=8pc{ C(M \otimes_{S,\delta_2^2 \circ \delta_1^1} S_3) \ar@<1ex>^{C((\theta \otimes \delta_2^2) \circ (1_M \otimes \delta^2_0))}[r] \ar@<-1ex>_{C(1_{M \otimes S_2} \otimes \delta^2_1)}[r] & C(M \otimes_{S, \delta_1^1} S_2 ) \ar[r]^{C(\theta \circ (1_M \otimes \delta_0^1))} & C(f_*(M,\theta) \otimes_R S). } $$ By Lemma \ref{lemma-C-is-faithful}, we conclude (\ref{equation-equalizer-f2}) must also be an equalizer. \end{proof} \begin{remark} \label{remark-descent-lemma} If $f$ is a split injection in $\text{Mod}_R$, one can simplify the argument by splitting $f$ directly, without using $C$. Things are even simpler if $f$ is faithfully flat; in this case, the conclusion of Lemma \ref{lemma-descent-lemma} is immediate because tensoring over $R$ with $S$ preserves all equalizers. \end{remark} \begin{theorem} \label{theorem-descent} The following conditions are equivalent. \begin{enumerate} \item[(a)] The morphism $f$ is a descent morphism for modules. \item[(b)] The morphism $f$ is an effective descent morphism for modules. \item[(c)] The morphism $f$ is universally injective. \end{enumerate} \end{theorem} \begin{proof} It is clear that (b) implies (a). We now check that (a) implies (c). If $f$ is not universally injective, we can find $M \in \text{Mod}_R$ such that the map $1_M \otimes f: M \to M \otimes_R S$ has nontrivial kernel $N$. The natural projection $M \to M/N$ is not an isomorphism, but its image in $DD_{S/R}$ is an isomorphism. Hence $f^*$ is not fully faithful. \medskip\noindent We finally check that (c) implies (b). By Lemma \ref{lemma-descent-lemma}, for $(M, \theta) \in DD_{S/R}$, the natural map $f^* f_*(M,\theta) \to M$ is an isomorphism of $S$-modules. On the other hand, for $M_0 \in \text{Mod}_R$, we may tensor (\ref{equation-equalizer-S}) with $M_0$ over $R$ to obtain an equalizer sequence, so $M_0 \to f_* f^* M$ is an isomorphism. Consequently, $f_*$ and $f^*$ are quasi-inverse functors, proving the claim. \end{proof} \subsection{Descent for properties of modules} \label{subsection-descent-properties-modules} \noindent Throughout this subsection, fix a universally injective ring map $f : R \to S$, an object $M \in \text{Mod}_R$, and a ring map $R \to A$. We now investigate the question of which properties of $M$ or $A$ can be checked after base extension along $f$. We start with some results from \cite{mesablishvili2}. \begin{lemma} \label{lemma-flat-to-injective} If $M \in \text{Mod}_R$ is flat, then $C(M)$ is an injective $R$-module. \end{lemma} \begin{proof} Let $0 \to N \to P \to Q \to 0$ be an exact sequence in $\text{Mod}_R$. Since $M$ is flat, $$ 0 \to N \otimes_R M \to P \otimes_R M \to Q \otimes_R M \to 0 $$ is exact. By Lemma \ref{lemma-C-is-faithful}, $$ 0 \to C(Q \otimes_R M) \to C(P \otimes_R M) \to C(N \otimes_R M) \to 0 $$ is exact. By (\ref{equation-adjunction}), this last sequence can be rewritten as $$ 0 \to \Hom_R(Q, C(M)) \to \Hom_R(P, C(M)) \to \Hom_R(N, C(M)) \to 0. $$ Hence $C(M)$ is an injective object of $\text{Mod}_R$. \end{proof} \begin{theorem} \label{theorem-descend-module-properties} If $M \otimes_R S$ has one of the following properties as an $S$-module \begin{enumerate} \item[(a)] finitely generated; \item[(b)] finitely presented; \item[(c)] flat; \item[(d)] faithfully flat; \item[(e)] finite projective; \end{enumerate} then so does $M$ as an $R$-module (and conversely). \end{theorem} \begin{proof} To prove (a), choose a finite set $\{n_i\}$ of generators of $M \otimes_R S$ in $\text{Mod}_S$. Write each $n_i$ as $\sum_j m_{ij} \otimes s_{ij}$ with $m_{ij} \in M$ and $s_{ij} \in S$. Let $F$ be the finite free $R$-module with basis $e_{ij}$ and let $F \to M$ be the $R$-module map sending $e_{ij}$ to $m_{ij}$. Then $F \otimes_R S\to M \otimes_R S$ is surjective, so $\Coker(F \to M) \otimes_R S$ is zero and hence $\Coker(F \to M)$ is zero. This proves (a). \medskip\noindent To see (b) assume $M \otimes_R S$ is finitely presented. Then $M$ is finitely generated by (a). Choose a surjection $R^{\oplus n} \to M$ with kernel $K$. Then $K \otimes_R S \to S^{\oplus r} \to M \otimes_R S \to 0$ is exact. By Algebra, Lemma \ref{algebra-lemma-extension} the kernel of $S^{\oplus r} \to M \otimes_R S$ is a finite $S$-module. Thus we can find finitely many elements $k_1, \ldots, k_t \in K$ such that the images of $k_i \otimes 1$ in $S^{\oplus r}$ generate the kernel of $S^{\oplus r} \to M \otimes_R S$. Let $K' \subset K$ be the submodule generated by $k_1, \ldots, k_t$. Then $M' = R^{\oplus r}/K'$ is a finitely presented $R$-module with a morphism $M' \to M$ such that $M' \otimes_R S \to M \otimes_R S$ is an isomorphism. Thus $M' \cong M$ as desired. \medskip\noindent To prove (c), let $0 \to M' \to M'' \to M \to 0$ be a short exact sequence in $\text{Mod}_R$. Since $\bullet \otimes_R S$ is a right exact functor, $M'' \otimes_R S \to M \otimes_R S$ is surjective. So by Lemma \ref{lemma-C-is-faithful} the map $C(M \otimes_R S) \to C(M'' \otimes_R S)$ is injective. If $M \otimes_R S$ is flat, then Lemma \ref{lemma-flat-to-injective} shows $C(M \otimes_R S)$ is an injective object of $\text{Mod}_S$, so the injection $C(M \otimes_R S) \to C(M'' \otimes_R S)$ is split in $\text{Mod}_S$ and hence also in $\text{Mod}_R$. Since $C(M \otimes_R S) \to C(M)$ is a split surjection by Lemma \ref{lemma-split-surjection}, it follows that $C(M) \to C(M'')$ is a split injection in $\text{Mod}_R$. That is, the sequence $$ 0 \to C(M) \to C(M'') \to C(M') \to 0 $$ is split exact. For $N \in \text{Mod}_R$, by (\ref{equation-adjunction}) we see that $$ 0 \to C(M \otimes_R N) \to C(M'' \otimes_R N) \to C(M' \otimes_R N) \to 0 $$ is split exact. By Lemma \ref{lemma-C-is-faithful}, $$ 0 \to M' \otimes_R N \to M'' \otimes_R N \to M \otimes_R N \to 0 $$ is exact. This implies $M$ is flat over $R$. Namely, taking $M'$ a free module surjecting onto $M$ we conclude that $\text{Tor}_1^R(M, N) = 0$ for all modules $N$ and we can use Algebra, Lemma \ref{algebra-lemma-characterize-flat}. This proves (c). \medskip\noindent To deduce (d) from (c), note that if $N \in \text{Mod}_R$ and $M \otimes_R N$ is zero, then $M \otimes_R S \otimes_S (N \otimes_R S) \cong (M \otimes_R N) \otimes_R S$ is zero, so $N \otimes_R S$ is zero and hence $N$ is zero. \medskip\noindent To deduce (e) at this point, it suffices to recall that $M$ is finitely generated and projective if and only if it is finitely presented and flat. See Algebra, Lemma \ref{algebra-lemma-finite-projective}. \end{proof} \noindent There is a variant for $R$-algebras. \begin{theorem} \label{theorem-descend-algebra-properties} If $A \otimes_R S$ has one of the following properties as an $S$-algebra \begin{enumerate} \item[(a)] of finite type; \item[(b)] of finite presentation; \item[(c)] formally unramified; \item[(d)] unramified; \item[(e)] \'etale; \end{enumerate} then so does $A$ as an $R$-algebra (and of course conversely). \end{theorem} \begin{proof} To prove (a), choose a finite set $\{x_i\}$ of generators of $A \otimes_R S$ over $S$. Write each $x_i$ as $\sum_j y_{ij} \otimes s_{ij}$ with $y_{ij} \in A$ and $s_{ij} \in S$. Let $F$ be the polynomial $R$-algebra on variables $e_{ij}$ and let $F \to M$ be the $R$-algebra map sending $e_{ij}$ to $y_{ij}$. Then $F \otimes_R S\to A \otimes_R S$ is surjective, so $\Coker(F \to A) \otimes_R S$ is zero and hence $\Coker(F \to A)$ is zero. This proves (a). \medskip\noindent To see (b) assume $A \otimes_R S$ is a finitely presented $S$-algebra. Then $A$ is finite type over $R$ by (a). Choose a surjection $R[x_1, \ldots, x_n] \to A$ with kernel $I$. Then $I \otimes_R S \to S[x_1, \ldots, x_n] \to A \otimes_R S \to 0$ is exact. By Algebra, Lemma \ref{algebra-lemma-finite-presentation-independent} the kernel of $S[x_1, \ldots, x_n] \to A \otimes_R S$ is a finitely generated ideal. Thus we can find finitely many elements $y_1, \ldots, y_t \in I$ such that the images of $y_i \otimes 1$ in $S[x_1, \ldots, x_n]$ generate the kernel of $S[x_1, \ldots, x_n] \to A \otimes_R S$. Let $I' \subset I$ be the ideal generated by $y_1, \ldots, y_t$. Then $A' = R[x_1, \ldots, x_n]/I'$ is a finitely presented $R$-algebra with a morphism $A' \to A$ such that $A' \otimes_R S \to A \otimes_R S$ is an isomorphism. Thus $A' \cong A$ as desired. \medskip\noindent To prove (c), recall that $A$ is formally unramified over $R$ if and only if the module of relative differentials $\Omega_{A/R}$ vanishes, see Algebra, Lemma \ref{algebra-lemma-characterize-formally-unramified} or \cite[Proposition~17.2.1]{EGA4}. Since $\Omega_{(A \otimes_R S)/S} = \Omega_{A/R} \otimes_R S$, the vanishing descends by Theorem \ref{theorem-descent}. \medskip\noindent To deduce (d) from the previous cases, recall that $A$ is unramified over $R$ if and only if $A$ is formally unramified and of finite type over $R$, see Algebra, Lemma \ref{algebra-lemma-formally-unramified-unramified}. \medskip\noindent To prove (e), recall that by Algebra, Lemma \ref{algebra-lemma-etale-flat-unramified-finite-presentation} or \cite[Th\'eor\`eme~17.6.1]{EGA4} the algebra $A$ is \'etale over $R$ if and only if $A$ is flat, unramified, and of finite presentation over $R$. \end{proof} \begin{remark} \label{remark-when-locally-split} It would make things easier to have a faithfully flat ring homomorphism $g: R \to T$ for which $T \to S \otimes_R T$ has some extra structure. For instance, if one could ensure that $T \to S \otimes_R T$ is split in $\textit{Rings}$, then it would follow that every property of a module or algebra which is stable under base extension and which descends along faithfully flat morphisms also descends along universally injective morphisms. An obvious guess would be to find $g$ for which $T$ is not only faithfully flat but also injective in $\text{Mod}_R$, but even for $R = \mathbf{Z}$ no such homomorphism can exist. \end{remark} \section{Fpqc descent of quasi-coherent sheaves} \label{section-fpqc-descent-quasi-coherent} \noindent The main application of flat descent for modules is the corresponding descent statement for quasi-coherent sheaves with respect to fpqc-coverings. \begin{lemma} \label{lemma-standard-fpqc-covering} Let $S$ be an affine scheme. Let $\mathcal{U} = \{f_i : U_i \to S\}_{i = 1, \ldots, n}$ be a standard fpqc covering of $S$, see Topologies, Definition \ref{topologies-definition-standard-fpqc}. Any descent datum on quasi-coherent sheaves for $\mathcal{U} = \{U_i \to S\}$ is effective. Moreover, the functor from the category of quasi-coherent $\mathcal{O}_S$-modules to the category of descent data with respect to $\mathcal{U}$ is fully faithful. \end{lemma} \begin{proof} This is a restatement of Proposition \ref{proposition-descent-module} in terms of schemes. First, note that a descent datum $\xi$ for quasi-coherent sheaves with respect to $\mathcal{U}$ is exactly the same as a descent datum $\xi'$ for quasi-coherent sheaves with respect to the covering $\mathcal{U}' = \{\coprod_{i = 1, \ldots, n} U_i \to S\}$. Moreover, effectivity for $\xi$ is the same as effectivity for $\xi'$. Hence we may assume $n = 1$, i.e., $\mathcal{U} = \{U \to S\}$ where $U$ and $S$ are affine. In this case descent data correspond to descent data on modules with respect to the ring map $$ \Gamma(S, \mathcal{O}) \longrightarrow \Gamma(U, \mathcal{O}). $$ Since $U \to S$ is surjective and flat, we see that this ring map is faithfully flat. In other words, Proposition \ref{proposition-descent-module} applies and we win. \end{proof} \begin{proposition} \label{proposition-fpqc-descent-quasi-coherent} Let $S$ be a scheme. Let $\mathcal{U} = \{\varphi_i : U_i \to S\}$ be an fpqc covering, see Topologies, Definition \ref{topologies-definition-fpqc-covering}. Any descent datum on quasi-coherent sheaves for $\mathcal{U} = \{U_i \to S\}$ is effective. Moreover, the functor from the category of quasi-coherent $\mathcal{O}_S$-modules to the category of descent data with respect to $\mathcal{U}$ is fully faithful. \end{proposition} \begin{proof} Let $S = \bigcup_{j \in J} V_j$ be an affine open covering. For $j, j' \in J$ we denote $V_{jj'} = V_j \cap V_{j'}$ the intersection (which need not be affine). For $V \subset S$ open we denote $\mathcal{U}_V = \{V \times_S U_i \to V\}_{i \in I}$ which is a fpqc-covering (Topologies, Lemma \ref{topologies-lemma-fpqc}). By definition of an fpqc covering, we can find for each $j \in J$ a finite set $K_j$, a map $\underline{i} : K_j \to I$, affine opens $U_{\underline{i}(k), k} \subset U_{\underline{i}(k)}$, $k \in K_j$ such that $\mathcal{V}_j = \{U_{\underline{i}(k), k} \to V_j\}_{k \in K_j}$ is a standard fpqc covering of $V_j$. And of course, $\mathcal{V}_j$ is a refinement of $\mathcal{U}_{V_j}$. Picture $$ \xymatrix{ \mathcal{V}_j \ar[r] \ar@{~>}[d] & \mathcal{U}_{V_j} \ar[r] \ar@{~>}[d] & \mathcal{U} \ar@{~>}[d] \\ V_j \ar@{=}[r] & V_j \ar[r] & S } $$ where the top horizontal arrows are morphisms of families of morphisms with fixed target (see Sites, Definition \ref{sites-definition-morphism-coverings}). \medskip\noindent To prove the proposition you show successively the faithfulness, fullness, and essential surjectivity of the functor from quasi-coherent sheaves to descent data. \medskip\noindent Faithfulness. Let $\mathcal{F}$, $\mathcal{G}$ be quasi-coherent sheaves on $S$ and let $a, b : \mathcal{F} \to \mathcal{G}$ be homomorphisms of $\mathcal{O}_S$-modules. Suppose $\varphi_i^*(a) = \varphi_i^*(b)$ for all $i$. Pick $s \in S$. Then $s = \varphi_i(u)$ for some $i \in I$ and $u \in U_i$. Since $\mathcal{O}_{S, s} \to \mathcal{O}_{U_i, u}$ is flat, hence faithfully flat (Algebra, Lemma \ref{algebra-lemma-local-flat-ff}) we see that $a_s = b_s : \mathcal{F}_s \to \mathcal{G}_s$. Hence $a = b$. \medskip\noindent Fully faithfulness. Let $\mathcal{F}$, $\mathcal{G}$ be quasi-coherent sheaves on $S$ and let $a_i : \varphi_i^*\mathcal{F} \to \varphi_i^*\mathcal{G}$ be homomorphisms of $\mathcal{O}_{U_i}$-modules such that $\text{pr}_0^*a_i = \text{pr}_1^*a_j$ on $U_i \times_U U_j$. We can pull back these morphisms to get morphisms $$ a_k : \mathcal{F}|_{U_{\underline{i}(k), k}} \longrightarrow \mathcal{G}|_{U_{\underline{i}(k), k}} $$ $k \in K_j$ with notation as above. Moreover, Lemma \ref{lemma-refine-descent-datum} assures us that these define a morphism between (canonical) descent data on $\mathcal{V}_j$. Hence, by Lemma \ref{lemma-standard-fpqc-covering}, we get correspondingly unique morphisms $a_j : \mathcal{F}|_{V_j} \to \mathcal{G}|_{V_j}$. To see that $a_j|_{V_{jj'}} = a_{j'}|_{V_{jj'}}$ we use that both $a_j$ and $a_{j'}$ agree with the pullback of the morphism $(a_i)_{i \in I}$ of (canonical) descent data to any covering refining both $\mathcal{V}_{j, V_{jj'}}$ and $\mathcal{V}_{j', V_{jj'}}$, and using the faithfulness already shown. For example the covering $\mathcal{V}_{jj'} = \{V_k \times_S V_{k'} \to V_{jj'}\}_{k \in K_j, k' \in K_{j'}}$ will do. \medskip\noindent Essential surjectivity. Let $\xi = (\mathcal{F}_i, \varphi_{ii'})$ be a descent datum for quasi-coherent sheaves relative to the covering $\mathcal{U}$. Pull back this descent datum to get descent data $\xi_j$ for quasi-coherent sheaves relative to the coverings $\mathcal{V}_j$ of $V_j$. By Lemma \ref{lemma-standard-fpqc-covering} once again there exist quasi-coherent sheaves $\mathcal{F}_j$ on $V_j$ whose associated canonical descent datum is isomorphic to $\xi_j$. By fully faithfulness (proved above) we see there are isomorphisms $$ \phi_{jj'} : \mathcal{F}_j|_{V_{jj'}} \longrightarrow \mathcal{F}_{j'}|_{V_{jj'}} $$ corresponding to the isomorphism of descent data between the pullback of $\xi_j$ and $\xi_{j'}$ to $\mathcal{V}_{jj'}$. To see that these maps $\phi_{jj'}$ satisfy the cocycle condition we use faithfulness (proved above) over the triple intersections $V_{jj'j''}$. Hence, by Lemma \ref{lemma-zariski-descent-effective} we see that the sheaves $\mathcal{F}_j$ glue to a quasi-coherent sheaf $\mathcal{F}$ as desired. We still have to verify that the canonical descent datum relative to $\mathcal{U}$ associated to $\mathcal{F}$ is isomorphic to the descent datum we started out with. This verification is omitted. \end{proof} \section{Galois descent for quasi-coherent sheaves} \label{section-galois-descent} \noindent Galois descent for quasi-coherent sheaves is just a special case of fpqc descent for quasi-coherent sheaves. In this section we will explain how to translate from a Galois descent to an fpqc descent and then apply earlier results to conclude. \medskip\noindent Let $k'/k$ be a field extension. Then $\{\Spec(k') \to \Spec(k)\}$ is an fpqc covering. Let $X$ be a scheme over $k$. For a $k$-algebra $A$ we set $X_A = X \times_{\Spec(k)} \Spec(A)$. By Topologies, Lemma \ref{topologies-lemma-fpqc} we see that $\{X_{k'} \to X\}$ is an fpqc covering. Observe that $$ X_{k'} \times_X X_{k'} = X_{k' \otimes_k k'} \quad\text{and}\quad X_{k'} \times_X X_{k'} \times_X X_{k'} = X_{k' \otimes_k k' \otimes_k k'} $$ Thus a descent datum for quasi-coherent sheaves with respect to $\{X_{k'} \to X\}$ is given by a quasi-coherent sheaf $\mathcal{F}$ on $X_{k'}$, an isomorphism $\varphi : \text{pr}_0^*\mathcal{F} \to \text{pr}_1^*\mathcal{F}$ on $X_{k' \otimes_k k'}$ which satisfies an obvious cocycle condition on $X_{k' \otimes_k k' \otimes_k k'}$. We will work out what this means in the case of a Galois extension below. \medskip\noindent Let $k'/k$ be a finite Galois extension with Galois group $G = \text{Gal}(k'/k)$. Then there are $k$-algebra isomorphisms $$ k' \otimes_k k' \longrightarrow \prod\nolimits_{\sigma \in G} k',\quad a \otimes b \longrightarrow \prod a\sigma(b) $$ and $$ k' \otimes_k k' \otimes_k k' \longrightarrow \prod\nolimits_{(\sigma, \tau) \in G \times G} k',\quad a \otimes b \otimes c \longrightarrow \prod a\sigma(b)\sigma(\tau(c)) $$ The reason for choosing here $a\sigma(b)\sigma(\tau(c))$ and not $a\sigma(b)\tau(c)$ is that the formulas below simplify but it isn't strictly necessary. Given $\sigma \in G$ we denote $$ f_\sigma = \text{id}_X \times \Spec(\sigma) : X_{k'} \longrightarrow X_{k'} $$ Please keep in mind that because $\Spec(-)$ is a contravariant functor we have $f_{\sigma \tau} = f_\tau \circ f_\sigma$ and not the other way around. Using the first isomorphism above we obtain an identification $$ X_{k' \otimes_k k'} = \coprod\nolimits_{\sigma \in G} X_{k'} $$ such that $\text{pr}_0$ corresponds to the map $$ \coprod\nolimits_{\sigma \in G} X_{k'} \xrightarrow{\coprod \text{id}} X_{k'} $$ and such that $\text{pr}_1$ corresponds to the map $$ \coprod\nolimits_{\sigma \in G} X_{k'} \xrightarrow{\coprod f_\sigma} X_{k'} $$ Thus we see that a descent datum $\varphi$ on $\mathcal{F}$ over $X_{k'}$ corresponds to a family of isomorphisms $\varphi_\sigma : \mathcal{F} \to f_\sigma^*\mathcal{F}$. To work out the cocycle condition we use the identification $$ X_{k' \otimes_k k' \otimes_k k'} = \coprod\nolimits_{(\sigma, \tau) \in G \times G} X_{k'}. $$ we get from our isomorphism of algebras above. Via this identification the map $\text{pr}_{01}$ corresponds to the map $$ \coprod\nolimits_{(\sigma, \tau) \in G \times G} X_{k'} \longrightarrow \coprod\nolimits_{\sigma \in G} X_{k'} $$ which maps the summand with index $(\sigma, \tau)$ to the summand with index $\sigma$ via the identity morphism. The map $\text{pr}_{12}$ corresponds to the map $$ \coprod\nolimits_{(\sigma, \tau) \in G \times G} X_{k'} \longrightarrow \coprod\nolimits_{\sigma \in G} X_{k'} $$ which maps the summand with index $(\sigma, \tau)$ to the summand with index $\tau$ via the morphism $f_\sigma$. Finally, the map $\text{pr}_{02}$ corresponds to the map $$ \coprod\nolimits_{(\sigma, \tau) \in G \times G} X_{k'} \longrightarrow \coprod\nolimits_{\sigma \in G} X_{k'} $$ which maps the summand with index $(\sigma, \tau)$ to the summand with index $\sigma\tau$ via the identity morphism. Thus the cocycle condition $$ \text{pr}_{02}^*\varphi = \text{pr}_{12}^*\varphi \circ \text{pr}_{01}^*\varphi $$ translates into one condition for each pair $(\sigma, \tau)$, namely $$ \varphi_{\sigma\tau} = f_\sigma^*\varphi_\tau \circ \varphi_\sigma $$ as maps $\mathcal{F} \to f_{\sigma\tau}^*\mathcal{F}$. (Everything works out beautifully; for example the target of $\varphi_\sigma$ is $f_\sigma^*\mathcal{F}$ and the source of $f_\sigma^*\varphi_\tau$ is $f_\sigma^*\mathcal{F}$ as well.) \begin{lemma} \label{lemma-galois-descent} Let $k'/k$ be a (finite) Galois extension with Galois group $G$. Let $X$ be a scheme over $k$. The category of quasi-coherent $\mathcal{O}_X$-modules is equivalent to the category of systems $(\mathcal{F}, (\varphi_\sigma)_{\sigma \in G})$ where \begin{enumerate} \item $\mathcal{F}$ is a quasi-coherent module on $X_{k'}$, \item $\varphi_\sigma : \mathcal{F} \to f_\sigma^*\mathcal{F}$ is an isomorphism of modules, \item $\varphi_{\sigma\tau} = f_\sigma^*\varphi_\tau \circ \varphi_\sigma$ for all $\sigma, \tau \in G$. \end{enumerate} Here $f_\sigma = \text{id}_X \times \Spec(\sigma) : X_{k'} \to X_{k'}$. \end{lemma} \begin{proof} As seen above a datum $(\mathcal{F}, (\varphi_\sigma)_{\sigma \in G})$ as in the lemma is the same thing as a descent datum for the fpqc covering $\{X_{k'} \to X\}$. Thus the lemma follows from Proposition \ref{proposition-fpqc-descent-quasi-coherent}. \end{proof} \noindent A slightly more general case of the above is the following. Suppose we have a surjective finite \'etale morphism $X \to Y$ and a finite group $G$ together with a group homomorphism $G^{opp} \to \text{Aut}_Y(X), \sigma \mapsto f_\sigma$ such that the map $$ G \times X \longrightarrow X \times_Y X,\quad (\sigma, x) \longmapsto (x, f_\sigma(x)) $$ is an isomorphism. Then the same result as above holds. \begin{lemma} \label{lemma-galois-descent-more-general} Let $X \to Y$, $G$, and $f_\sigma : X \to X$ be as above. The category of quasi-coherent $\mathcal{O}_Y$-modules is equivalent to the category of systems $(\mathcal{F}, (\varphi_\sigma)_{\sigma \in G})$ where \begin{enumerate} \item $\mathcal{F}$ is a quasi-coherent $\mathcal{O}_X$-module, \item $\varphi_\sigma : \mathcal{F} \to f_\sigma^*\mathcal{F}$ is an isomorphism of modules, \item $\varphi_{\sigma\tau} = f_\sigma^*\varphi_\tau \circ \varphi_\sigma$ for all $\sigma, \tau \in G$. \end{enumerate} \end{lemma} \begin{proof} Since $X \to Y$ is surjective finite \'etale $\{X \to Y\}$ is an fpqc covering. Since $G \times X \to X \times_Y X$, $(\sigma, x) \mapsto (x, f_\sigma(x))$ is an isomorphism, we see that $G \times G \times X \to X \times_Y X \times_Y X$, $(\sigma, \tau, x) \mapsto (x, f_\sigma(x), f_{\sigma\tau}(x))$ is an isomorphism too. Using these identifications, the category of data as in the lemma is the same as the category of descent data for quasi-coherent sheaves for the covering $\{x \to Y\}$. Thus the lemma follows from Proposition \ref{proposition-fpqc-descent-quasi-coherent}. \end{proof} \section{Descent of finiteness properties of modules} \label{section-descent-finiteness} \noindent In this section we prove that one can check quasi-coherent module has a certain finiteness conditions by checking on the members of a covering. \begin{lemma} \label{lemma-finite-type-descends} Let $X$ be a scheme. Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_X$-module. Let $\{f_i : X_i \to X\}_{i \in I}$ be an fpqc covering such that each $f_i^*\mathcal{F}$ is a finite type $\mathcal{O}_{X_i}$-module. Then $\mathcal{F}$ is a finite type $\mathcal{O}_X$-module. \end{lemma} \begin{proof} Omitted. For the affine case, see Algebra, Lemma \ref{algebra-lemma-descend-properties-modules}. \end{proof} \begin{lemma} \label{lemma-finite-type-descends-fppf} Let $f : (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ be a morphism of locally ringed spaces. Let $\mathcal{F}$ be a sheaf of $\mathcal{O}_Y$-modules. If \begin{enumerate} \item $f$ is open as a map of topological spaces, \item $f$ is surjective and flat, and \item $f^*\mathcal{F}$ is of finite type, \end{enumerate} then $\mathcal{F}$ is of finite type. \end{lemma} \begin{proof} Let $y \in Y$ be a point. Choose a point $x \in X$ mapping to $y$. Choose an open $x \in U \subset X$ and elements $s_1, \ldots, s_n$ of $f^*\mathcal{F}(U)$ which generate $f^*\mathcal{F}$ over $U$. Since $f^*\mathcal{F} = f^{-1}\mathcal{F} \otimes_{f^{-1}\mathcal{O}_Y} \mathcal{O}_X$ we can after shrinking $U$ assume $s_i = \sum t_{ij} \otimes a_{ij}$ with $t_{ij} \in f^{-1}\mathcal{F}(U)$ and $a_{ij} \in \mathcal{O}_X(U)$. After shrinking $U$ further we may assume that $t_{ij}$ comes from a section $s_{ij} \in \mathcal{F}(V)$ for some $V \subset Y$ open with $f(U) \subset V$. Let $N$ be the number of sections $s_{ij}$ and consider the map $$ \sigma = (s_{ij}) : \mathcal{O}_V^{\oplus N} \to \mathcal{F}|_V $$ By our choice of the sections we see that $f^*\sigma|_U$ is surjective. Hence for every $u \in U$ the map $$ \sigma_{f(u)} \otimes_{\mathcal{O}_{Y, f(u)}} \mathcal{O}_{X, u} : \mathcal{O}_{X, u}^{\oplus N} \longrightarrow \mathcal{F}_{f(u)} \otimes_{\mathcal{O}_{Y, f(u)}} \mathcal{O}_{X, u} $$ is surjective. As $f$ is flat, the local ring map $\mathcal{O}_{Y, f(u)} \to \mathcal{O}_{X, u}$ is flat, hence faithfully flat (Algebra, Lemma \ref{algebra-lemma-local-flat-ff}). Hence $\sigma_{f(u)}$ is surjective. Since $f$ is open, $f(U)$ is an open neighbourhood of $y$ and the proof is done. \end{proof} \begin{lemma} \label{lemma-finite-presentation-descends} Let $X$ be a scheme. Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_X$-module. Let $\{f_i : X_i \to X\}_{i \in I}$ be an fpqc covering such that each $f_i^*\mathcal{F}$ is an $\mathcal{O}_{X_i}$-module of finite presentation. Then $\mathcal{F}$ is an $\mathcal{O}_X$-module of finite presentation. \end{lemma} \begin{proof} Omitted. For the affine case, see Algebra, Lemma \ref{algebra-lemma-descend-properties-modules}. \end{proof} \begin{lemma} \label{lemma-locally-generated-by-r-sections-descends} Let $X$ be a scheme. Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_X$-module. Let $\{f_i : X_i \to X\}_{i \in I}$ be an fpqc covering such that each $f_i^*\mathcal{F}$ is locally generated by $r$ sections as an $\mathcal{O}_{X_i}$-module. Then $\mathcal{F}$ is locally generated by $r$ sections as an $\mathcal{O}_X$-module. \end{lemma} \begin{proof} By Lemma \ref{lemma-finite-type-descends} we see that $\mathcal{F}$ is of finite type. Hence Nakayama's lemma (Algebra, Lemma \ref{algebra-lemma-NAK}) implies that $\mathcal{F}$ is generated by $r$ sections in the neighbourhood of a point $x \in X$ if and only if $\dim_{\kappa(x)} \mathcal{F}_x \otimes \kappa(x) \leq r$. Choose an $i$ and a point $x_i \in X_i$ mapping to $x$. Then $\dim_{\kappa(x)} \mathcal{F}_x \otimes \kappa(x) = \dim_{\kappa(x_i)} (f_i^*\mathcal{F})_{x_i} \otimes \kappa(x_i)$ which is $\leq r$ as $f_i^*\mathcal{F}$ is locally generated by $r$ sections. \end{proof} \begin{lemma} \label{lemma-flat-descends} Let $X$ be a scheme. Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_X$-module. Let $\{f_i : X_i \to X\}_{i \in I}$ be an fpqc covering such that each $f_i^*\mathcal{F}$ is a flat $\mathcal{O}_{X_i}$-module. Then $\mathcal{F}$ is a flat $\mathcal{O}_X$-module. \end{lemma} \begin{proof} Omitted. For the affine case, see Algebra, Lemma \ref{algebra-lemma-descend-properties-modules}. \end{proof} \begin{lemma} \label{lemma-finite-locally-free-descends} Let $X$ be a scheme. Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_X$-module. Let $\{f_i : X_i \to X\}_{i \in I}$ be an fpqc covering such that each $f_i^*\mathcal{F}$ is a finite locally free $\mathcal{O}_{X_i}$-module. Then $\mathcal{F}$ is a finite locally free $\mathcal{O}_X$-module. \end{lemma} \begin{proof} This follows from the fact that a quasi-coherent sheaf is finite locally free if and only if it is of finite presentation and flat, see Algebra, Lemma \ref{algebra-lemma-finite-projective}. Namely, if each $f_i^*\mathcal{F}$ is flat and of finite presentation, then so is $\mathcal{F}$ by Lemmas \ref{lemma-flat-descends} and \ref{lemma-finite-presentation-descends}. \end{proof} \noindent The definition of a locally projective quasi-coherent sheaf can be found in Properties, Section \ref{properties-section-locally-projective}. \begin{lemma} \label{lemma-locally-projective-descends} Let $X$ be a scheme. Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_X$-module. Let $\{f_i : X_i \to X\}_{i \in I}$ be an fpqc covering such that each $f_i^*\mathcal{F}$ is a locally projective $\mathcal{O}_{X_i}$-module. Then $\mathcal{F}$ is a locally projective $\mathcal{O}_X$-module. \end{lemma} \begin{proof} Omitted. For Zariski coverings this is Properties, Lemma \ref{properties-lemma-locally-projective}. For the affine case this is Algebra, Theorem \ref{algebra-theorem-ffdescent-projectivity}. \end{proof} \begin{remark} \label{remark-locally-free-descends} Being locally free is a property of quasi-coherent modules which does not descend in the fpqc topology. Namely, suppose that $R$ is a ring and that $M$ is a projective $R$-module which is a countable direct sum $M = \bigoplus L_n$ of rank 1 locally free modules, but not locally free, see Examples, Lemma \ref{examples-lemma-projective-not-locally-free}. Then $M$ becomes free on making the faithfully flat base change $$ R \longrightarrow \bigoplus\nolimits_{m \geq 1} \bigoplus\nolimits_{(i_1, \ldots, i_m) \in \mathbf{Z}^{\oplus m}} L_1^{\otimes i_1} \otimes_R \ldots \otimes_R L_m^{\otimes i_m} $$ But we don't know what happens for fppf coverings. In other words, we don't know the answer to the following question: Suppose $A \to B$ is a faithfully flat ring map of finite presentation. Let $M$ be an $A$-module such that $M \otimes_A B$ is free. Is $M$ a locally free $A$-module? It turns out that if $A$ is Noetherian, then the answer is yes. This follows from the results of \cite{Bass}. But in general we don't know the answer. If you know the answer, or have a reference, please email \href{mailto:stacks.project@gmail.com}{stacks.project@gmail.com}. \end{remark} \noindent We also add here two results which are related to the results above, but are of a slightly different nature. \begin{lemma} \label{lemma-finite-over-finite-module} Let $f : X \to Y$ be a morphism of schemes. Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_X$-module. Assume $f$ is a finite morphism. Then $\mathcal{F}$ is an $\mathcal{O}_X$-module of finite type if and only if $f_*\mathcal{F}$ is an $\mathcal{O}_Y$-module of finite type. \end{lemma} \begin{proof} As $f$ is finite it is affine. This reduces us to the case where $f$ is the morphism $\Spec(B) \to \Spec(A)$ given by a finite ring map $A \to B$. Moreover, then $\mathcal{F} = \widetilde{M}$ is the sheaf of modules associated to the $B$-module $M$. Note that $M$ is finite as a $B$-module if and only if $M$ is finite as an $A$-module, see Algebra, Lemma \ref{algebra-lemma-finite-module-over-finite-extension}. Combined with Properties, Lemma \ref{properties-lemma-finite-type-module} this proves the lemma. \end{proof} \begin{lemma} \label{lemma-finite-finitely-presented-module} Let $f : X \to Y$ be a morphism of schemes. Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_X$-module. Assume $f$ is finite and of finite presentation. Then $\mathcal{F}$ is an $\mathcal{O}_X$-module of finite presentation if and only if $f_*\mathcal{F}$ is an $\mathcal{O}_Y$-module of finite presentation. \end{lemma} \begin{proof} As $f$ is finite it is affine. This reduces us to the case where $f$ is the morphism $\Spec(B) \to \Spec(A)$ given by a finite and finitely presented ring map $A \to B$. Moreover, then $\mathcal{F} = \widetilde{M}$ is the sheaf of modules associated to the $B$-module $M$. Note that $M$ is finitely presented as a $B$-module if and only if $M$ is finitely presented as an $A$-module, see Algebra, Lemma \ref{algebra-lemma-finite-finitely-presented-extension}. Combined with Properties, Lemma \ref{properties-lemma-finite-presentation-module} this proves the lemma. \end{proof} \section{Quasi-coherent sheaves and topologies, I} \label{section-quasi-coherent-sheaves} \noindent The results in this section say there is a natural equivalence between the category quasi-coherent modules on a scheme $S$ and the category of quasi-coherent modules on many of the sites associated to $S$ in the chapter on topologies. \medskip\noindent Let $S$ be a scheme. Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_S$-module. Consider the functor \begin{equation} \label{equation-quasi-coherent-presheaf} (\Sch/S)^{opp} \longrightarrow \textit{Ab}, \quad (f : T \to S) \longmapsto \Gamma(T, f^*\mathcal{F}). \end{equation} \begin{lemma} \label{lemma-sheaf-condition-holds} Let $S$ be a scheme. Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_S$-module. Let $\tau \in \{Zariski, \linebreak[0] \etale, \linebreak[0] smooth, \linebreak[0] syntomic, \linebreak[0] fppf, \linebreak[0] fpqc\}$. The functor defined in (\ref{equation-quasi-coherent-presheaf}) satisfies the sheaf condition with respect to any $\tau$-covering $\{T_i \to T\}_{i \in I}$ of any scheme $T$ over $S$. \end{lemma} \begin{proof} For $\tau \in \{Zariski, \linebreak[0] \etale, \linebreak[0] smooth, \linebreak[0] syntomic, \linebreak[0] fppf\}$ a $\tau$-covering is also a fpqc-covering, see the results in Topologies, Lemmas \ref{topologies-lemma-zariski-etale}, \ref{topologies-lemma-zariski-etale-smooth}, \ref{topologies-lemma-zariski-etale-smooth-syntomic}, \ref{topologies-lemma-zariski-etale-smooth-syntomic-fppf}, and \ref{topologies-lemma-zariski-etale-smooth-syntomic-fppf-fpqc}. Hence it suffices to prove the theorem for a fpqc covering. Assume that $\{f_i : T_i \to T\}_{i \in I}$ is an fpqc covering where $f : T \to S$ is given. Suppose that we have a family of sections $s_i \in \Gamma(T_i , f_i^*f^*\mathcal{F})$ such that $s_i|_{T_i \times_T T_j} = s_j|_{T_i \times_T T_j}$. We have to find the correspond section $s \in \Gamma(T, f^*\mathcal{F})$. We can reinterpret the $s_i$ as a family of maps $\varphi_i : f_i^*\mathcal{O}_T = \mathcal{O}_{T_i} \to f_i^*f^*\mathcal{F}$ compatible with the canonical descent data associated to the quasi-coherent sheaves $\mathcal{O}_T$ and $f^*\mathcal{F}$ on $T$. Hence by Proposition \ref{proposition-fpqc-descent-quasi-coherent} we see that we may (uniquely) descend these to a map $\mathcal{O}_T \to f^*\mathcal{F}$ which gives us our section $s$. \end{proof} \noindent We may in particular make the following definition. \begin{definition} \label{definition-structure-sheaf} Let $\tau \in \{Zariski, \linebreak[0] \etale, \linebreak[0] smooth, \linebreak[0] syntomic, \linebreak[0] fppf\}$. Let $S$ be a scheme. Let $\Sch_\tau$ be a big site containing $S$. Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_S$-module. \begin{enumerate} \item The {\it structure sheaf of the big site $(\Sch/S)_\tau$} is the sheaf of rings $T/S \mapsto \Gamma(T, \mathcal{O}_T)$ which is denoted $\mathcal{O}$ or $\mathcal{O}_S$. \item If $\tau = Zariski$ or $\tau = \etale$ the {\it structure sheaf of the small site} $S_{Zar}$ or $S_\etale$ is the sheaf of rings $T/S \mapsto \Gamma(T, \mathcal{O}_T)$ which is denoted $\mathcal{O}$ or $\mathcal{O}_S$. \item The {\it sheaf of $\mathcal{O}$-modules associated to $\mathcal{F}$} on the big site $(\Sch/S)_\tau$ is the sheaf of $\mathcal{O}$-modules $(f : T \to S) \mapsto \Gamma(T, f^*\mathcal{F})$ which is denoted $\mathcal{F}^a$ (and often simply $\mathcal{F}$). \item If $\tau = Zariski$ or $\tau = \etale$ the {\it sheaf of $\mathcal{O}$-modules associated to $\mathcal{F}$} on the small site $S_{Zar}$ or $S_\etale$ is the sheaf of $\mathcal{O}$-modules $(f : T \to S) \mapsto \Gamma(T, f^*\mathcal{F})$ which is denoted $\mathcal{F}^a$ (and often simply $\mathcal{F}$). \end{enumerate} \end{definition} \noindent Note how we use the same notation $\mathcal{F}^a$ in each case. No confusion can really arise from this as by definition the rule that defines the sheaf $\mathcal{F}^a$ is independent of the site we choose to look at. \begin{remark} \label{remark-Zariski-site-space} In Topologies, Lemma \ref{topologies-lemma-Zariski-usual} we have seen that the small Zariski site of a scheme $S$ is equivalent to $S$ as a topological space in the sense that the categories of sheaves are naturally equivalent. Now that $S_{Zar}$ is also endowed with a structure sheaf $\mathcal{O}$ we see that sheaves of modules on the ringed site $(S_{Zar}, \mathcal{O})$ agree with sheaves of modules on the ringed space $(S, \mathcal{O}_S)$. \end{remark} \begin{remark} \label{remark-change-topologies-ringed} Let $f : T \to S$ be a morphism of schemes. Each of the morphisms of sites $f_{sites}$ listed in Topologies, Section \ref{topologies-section-change-topologies} becomes a morphism of ringed sites. Namely, each of these morphisms of sites $f_{sites} : (\Sch/T)_\tau \to (\Sch/S)_{\tau'}$, or $f_{sites} : (\Sch/S)_\tau \to S_{\tau'}$ is given by the continuous functor $S'/S \mapsto T \times_S S'/S$. Hence, given $S'/S$ we let $$ f_{sites}^\sharp : \mathcal{O}(S'/S) \longrightarrow f_{sites, *}\mathcal{O}(S'/S) = \mathcal{O}(S \times_S S'/T) $$ be the usual map $\text{pr}_{S'}^\sharp : \mathcal{O}(S') \to \mathcal{O}(T \times_S S')$. Similarly, the morphism $i_f : \Sh(T_\tau) \to \Sh((\Sch/S)_\tau)$ for $\tau \in \{Zar, \etale\}$, see Topologies, Lemmas \ref{topologies-lemma-put-in-T} and \ref{topologies-lemma-put-in-T-etale}, becomes a morphism of ringed topoi because $i_f^{-1}\mathcal{O} = \mathcal{O}$. Here are some special cases: \begin{enumerate} \item The morphism of big sites $f_{big} : (\Sch/X)_{fppf} \to (\Sch/Y)_{fppf}$, becomes a morphism of ringed sites $$ (f_{big}, f_{big}^\sharp) : ((\Sch/X)_{fppf}, \mathcal{O}_X) \longrightarrow ((\Sch/Y)_{fppf}, \mathcal{O}_Y) $$ as in Modules on Sites, Definition \ref{sites-modules-definition-ringed-site}. Similarly for the big syntomic, smooth, \'etale and Zariski sites. \item The morphism of small sites $f_{small} : X_\etale \to Y_\etale$ becomes a morphism of ringed sites $$ (f_{small}, f_{small}^\sharp) : (X_\etale, \mathcal{O}_X) \longrightarrow (Y_\etale, \mathcal{O}_Y) $$ as in Modules on Sites, Definition \ref{sites-modules-definition-ringed-site}. Similarly for the small Zariski site. \end{enumerate} \end{remark} \noindent Let $S$ be a scheme. It is clear that given an $\mathcal{O}$-module on (say) $(\Sch/S)_{Zar}$ the pullback to (say) $(\Sch/S)_{fppf}$ is just the fppf-sheafification. To see what happens when comparing big and small sites we have the following. \begin{lemma} \label{lemma-compare-sites} Let $S$ be a scheme. Denote $$ \begin{matrix} \text{id}_{\tau, Zar} & : & (\Sch/S)_\tau \to S_{Zar}, & \tau \in \{Zar, \etale, smooth, syntomic, fppf\} \\ \text{id}_{\tau, \etale} & : & (\Sch/S)_\tau \to S_\etale, & \tau \in \{\etale, smooth, syntomic, fppf\} \\ \text{id}_{small, \etale, Zar} & : & S_\etale \to S_{Zar}, \end{matrix} $$ the morphisms of ringed sites of Remark \ref{remark-change-topologies-ringed}. Let $\mathcal{F}$ be a sheaf of $\mathcal{O}_S$-modules which we view a sheaf of $\mathcal{O}$-modules on $S_{Zar}$. Then \begin{enumerate} \item $(\text{id}_{\tau, Zar})^*\mathcal{F}$ is the $\tau$-sheafification of the Zariski sheaf $$ (f : T \to S) \longmapsto \Gamma(T, f^*\mathcal{F}) $$ on $(\Sch/S)_\tau$, and \item $(\text{id}_{small, \etale, Zar})^*\mathcal{F}$ is the \'etale sheafification of the Zariski sheaf $$ (f : T \to S) \longmapsto \Gamma(T, f^*\mathcal{F}) $$ on $S_\etale$. \end{enumerate} Let $\mathcal{G}$ be a sheaf of $\mathcal{O}$-modules on $S_\etale$. Then \begin{enumerate} \item[(3)] $(\text{id}_{\tau, \etale})^*\mathcal{G}$ is the $\tau$-sheafification of the \'etale sheaf $$ (f : T \to S) \longmapsto \Gamma(T, f_{small}^*\mathcal{G}) $$ where $f_{small} : T_\etale \to S_\etale$ is the morphism of ringed small \'etale sites of Remark \ref{remark-change-topologies-ringed}. \end{enumerate} \end{lemma} \begin{proof} Proof of (1). We first note that the result is true when $\tau = Zar$ because in that case we have the morphism of topoi $i_f : \Sh(T_{Zar}) \to \Sh((\Sch/S)_{Zar})$ such that $\text{id}_{\tau, Zar} \circ i_f = f_{small}$ as morphisms $T_{Zar} \to S_{Zar}$, see Topologies, Lemmas \ref{topologies-lemma-put-in-T} and \ref{topologies-lemma-morphism-big-small}. Since pullback is transitive (see Modules on Sites, Lemma \ref{sites-modules-lemma-push-pull-composition-modules}) we see that $i_f^*(\text{id}_{\tau, Zar})^*\mathcal{F} = f_{small}^*\mathcal{F}$ as desired. Hence, by the remark preceding this lemma we see that $(\text{id}_{\tau, Zar})^*\mathcal{F}$ is the $\tau$-sheafification of the presheaf $T \mapsto \Gamma(T, f^*\mathcal{F})$. \medskip\noindent The proof of (3) is exactly the same as the proof of (1), except that it uses Topologies, Lemmas \ref{topologies-lemma-put-in-T-etale} and \ref{topologies-lemma-morphism-big-small-etale}. We omit the proof of (2). \end{proof} \begin{remark} \label{remark-change-topologies-ringed-sites} Remark \ref{remark-change-topologies-ringed} and Lemma \ref{lemma-compare-sites} have the following applications: \begin{enumerate} \item Let $S$ be a scheme. The construction $\mathcal{F} \mapsto \mathcal{F}^a$ is the pullback under the morphism of ringed sites $\text{id}_{\tau, Zar} : ((\Sch/S)_\tau, \mathcal{O}) \to (S_{Zar}, \mathcal{O})$ or the morphism $\text{id}_{small, \etale, Zar} : (S_\etale, \mathcal{O}) \to (S_{Zar}, \mathcal{O})$. \item Let $f : X \to Y$ be a morphism of schemes. For any of the morphisms $f_{sites}$ of ringed sites of Remark \ref{remark-change-topologies-ringed} we have $$ (f^*\mathcal{F})^a = f_{sites}^*\mathcal{F}^a. $$ This follows from (1) and the fact that pullbacks are compatible with compositions of morphisms of ringed sites, see Modules on Sites, Lemma \ref{sites-modules-lemma-push-pull-composition-modules}. \end{enumerate} \end{remark} \begin{lemma} \label{lemma-quasi-coherent-gives-quasi-coherent} Let $S$ be a scheme. Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_S$-module. Let $\tau \in \{Zariski, \linebreak[0] \etale, \linebreak[0] smooth, \linebreak[0] syntomic, \linebreak[0] fppf\}$. \begin{enumerate} \item The sheaf $\mathcal{F}^a$ is a quasi-coherent $\mathcal{O}$-module on $(\Sch/S)_\tau$, as defined in Modules on Sites, Definition \ref{sites-modules-definition-site-local}. \item If $\tau = Zariski$ or $\tau = \etale$, then the sheaf $\mathcal{F}^a$ is a quasi-coherent $\mathcal{O}$-module on $S_{Zar}$ or $S_\etale$ as defined in Modules on Sites, Definition \ref{sites-modules-definition-site-local}. \end{enumerate} \end{lemma} \begin{proof} Let $\{S_i \to S\}$ be a Zariski covering such that we have exact sequences $$ \bigoplus\nolimits_{k \in K_i} \mathcal{O}_{S_i} \longrightarrow \bigoplus\nolimits_{j \in J_i} \mathcal{O}_{S_i} \longrightarrow \mathcal{F} \longrightarrow 0 $$ for some index sets $K_i$ and $J_i$. This is possible by the definition of a quasi-coherent sheaf on a ringed space (See Modules, Definition \ref{modules-definition-quasi-coherent}). \medskip\noindent Proof of (1). Let $\tau \in \{Zariski, \linebreak[0] fppf, \linebreak[0] \etale, \linebreak[0] smooth, \linebreak[0] syntomic\}$. It is clear that $\mathcal{F}^a|_{(\Sch/S_i)_\tau}$ also sits in an exact sequence $$ \bigoplus\nolimits_{k \in K_i} \mathcal{O}|_{(\Sch/S_i)_\tau} \longrightarrow \bigoplus\nolimits_{j \in J_i} \mathcal{O}|_{(\Sch/S_i)_\tau} \longrightarrow \mathcal{F}^a|_{(\Sch/S_i)_\tau} \longrightarrow 0 $$ Hence $\mathcal{F}^a$ is quasi-coherent by Modules on Sites, Lemma \ref{sites-modules-lemma-local-final-object}. \medskip\noindent Proof of (2). Let $\tau = \etale$. It is clear that $\mathcal{F}^a|_{(S_i)_\etale}$ also sits in an exact sequence $$ \bigoplus\nolimits_{k \in K_i} \mathcal{O}|_{(S_i)_\etale} \longrightarrow \bigoplus\nolimits_{j \in J_i} \mathcal{O}|_{(S_i)_\etale} \longrightarrow \mathcal{F}^a|_{(S_i)_\etale} \longrightarrow 0 $$ Hence $\mathcal{F}^a$ is quasi-coherent by Modules on Sites, Lemma \ref{sites-modules-lemma-local-final-object}. The case $\tau = Zariski$ is similar (actually, it is really tautological since the corresponding ringed topoi agree). \end{proof} \begin{lemma} \label{lemma-fully-faithful-associated} Let $S$ be a scheme. Let $\tau \in \{Zariski, \linebreak[0] \etale, \linebreak[0] smooth, \linebreak[0] syntomic, \linebreak[0] fppf\}$. Each of the functors $\mathcal{F} \mapsto \mathcal{F}^a$ of Definition \ref{definition-structure-sheaf} $$ \QCoh(\mathcal{O}_S) \to \QCoh((\Sch/S)_\tau, \mathcal{O}) \quad\text{or}\quad \QCoh(\mathcal{O}_S) \to \QCoh(S_\tau, \mathcal{O}) $$ is fully faithful. \end{lemma} \begin{proof} (By Lemma \ref{lemma-quasi-coherent-gives-quasi-coherent} we do indeed get functors as indicated.) We may and do identify $\mathcal{O}_S$-modules on $S$ with modules on $(S_{Zar}, \mathcal{O}_S)$. The functor $\mathcal{F} \mapsto \mathcal{F}^a$ on quasi-coherent modules $\mathcal{F}$ is given by pullback by a morphism $f$ of ringed sites, see Remark \ref{remark-change-topologies-ringed-sites}. In each case the functor $f_*$ is given by restriction along the inclusion functor $S_{Zar} \to S_\tau$ or $S_{Zar} \to (\Sch/S)_\tau$ (see discussion of how these morphisms of sites are defined in Topologies, Section \ref{topologies-section-change-topologies}). Combining this with the description of $f^*\mathcal{F} = \mathcal{F}^a$ we see that $f_*f^*\mathcal{F} = \mathcal{F}$ provided that $\mathcal{F}$ is quasi-coherent. Then we see that $$ \Hom_\mathcal{O}(\mathcal{F}^a, \mathcal{G}^a) = \Hom_\mathcal{O}(f^*\mathcal{F}, f^*\mathcal{G}) = \Hom_{\mathcal{O}_S}(\mathcal{F}, f_*f^*\mathcal{G}) = \Hom_{\mathcal{O}_S}(\mathcal{F}, \mathcal{G}) $$ as desired. \end{proof} \begin{proposition} \label{proposition-equivalence-quasi-coherent} Let $S$ be a scheme. Let $\tau \in \{Zariski, \linebreak[0] \etale, \linebreak[0] smooth, \linebreak[0] syntomic, \linebreak[0] fppf\}$. \begin{enumerate} \item The functor $\mathcal{F} \mapsto \mathcal{F}^a$ defines an equivalence of categories $$ \QCoh(\mathcal{O}_S) \longrightarrow \QCoh((\Sch/S)_\tau, \mathcal{O}) $$ between the category of quasi-coherent sheaves on $S$ and the category of quasi-coherent $\mathcal{O}$-modules on the big $\tau$ site of $S$. \item Let $\tau = Zariski$ or $\tau = \etale$. The functor $\mathcal{F} \mapsto \mathcal{F}^a$ defines an equivalence of categories $$ \QCoh(\mathcal{O}_S) \longrightarrow \QCoh(S_\tau, \mathcal{O}) $$ between the category of quasi-coherent sheaves on $S$ and the category of quasi-coherent $\mathcal{O}$-modules on the small $\tau$ site of $S$. \end{enumerate} \end{proposition} \begin{proof} We have seen in Lemma \ref{lemma-quasi-coherent-gives-quasi-coherent} that the functor is well defined. By Lemma \ref{lemma-fully-faithful-associated} the functor is fully faithful. To finish the proof we will show that a quasi-coherent $\mathcal{O}$-module on $(\Sch/S)_\tau$ gives rise to a descent datum for quasi-coherent sheaves relative to a $\tau$-covering of $S$. Having produced this descent datum we will appeal to Proposition \ref{proposition-fpqc-descent-quasi-coherent} to get the corresponding quasi-coherent sheaf on $S$. \medskip\noindent Let $\mathcal{G}$ be a quasi-coherent $\mathcal{O}$-modules on the big $\tau$ site of $S$. By Modules on Sites, Definition \ref{sites-modules-definition-site-local} there exists a $\tau$-covering $\{S_i \to S\}_{i \in I}$ of $S$ such that each of the restrictions $\mathcal{G}|_{(\Sch/S_i)_\tau}$ has a global presentation $$ \bigoplus\nolimits_{k \in K_i} \mathcal{O}|_{(\Sch/S_i)_\tau} \longrightarrow \bigoplus\nolimits_{j \in J_i} \mathcal{O}|_{(\Sch/S_i)_\tau} \longrightarrow \mathcal{G}|_{(\Sch/S_i)_\tau} \longrightarrow 0 $$ for some index sets $J_i$ and $K_i$. We claim that this implies that $\mathcal{G}|_{(\Sch/S_i)_\tau}$ is $\mathcal{F}_i^a$ for some quasi-coherent sheaf $\mathcal{F}_i$ on $S_i$. Namely, this is clear for the direct sums $\bigoplus\nolimits_{k \in K_i} \mathcal{O}|_{(\Sch/S_i)_\tau}$ and $\bigoplus\nolimits_{j \in J_i} \mathcal{O}|_{(\Sch/S_i)_\tau}$. Hence we see that $\mathcal{G}|_{(\Sch/S_i)_\tau}$ is a cokernel of a map $\varphi : \mathcal{K}_i^a \to \mathcal{L}_i^a$ for some quasi-coherent sheaves $\mathcal{K}_i$, $\mathcal{L}_i$ on $S_i$. By the fully faithfulness of $(\ )^a$ we see that $\varphi = \phi^a$ for some map of quasi-coherent sheaves $\phi : \mathcal{K}_i \to \mathcal{L}_i$ on $S_i$. Then it is clear that $\mathcal{G}|_{(\Sch/S_i)_\tau} \cong \Coker(\phi)^a$ as claimed. \medskip\noindent Since $\mathcal{G}$ lives on all of the category $(\Sch/S)_\tau$ we see that $$ (\text{pr}_0^*\mathcal{F}_i)^a \cong \mathcal{G}|_{(\Sch/(S_i \times_S S_j))_\tau} \cong (\text{pr}_1^*\mathcal{F})^a $$ as $\mathcal{O}$-modules on $(\Sch/(S_i \times_S S_j))_\tau$. Hence, using fully faithfulness again we get canonical isomorphisms $$ \phi_{ij} : \text{pr}_0^*\mathcal{F}_i \longrightarrow \text{pr}_1^*\mathcal{F}_j $$ of quasi-coherent modules over $S_i \times_S S_j$. We omit the verification that these satisfy the cocycle condition. Since they do we see by effectivity of descent for quasi-coherent sheaves and the covering $\{S_i \to S\}$ (Proposition \ref{proposition-fpqc-descent-quasi-coherent}) that there exists a quasi-coherent sheaf $\mathcal{F}$ on $S$ with $\mathcal{F}|_{S_i} \cong \mathcal{F}_i$ compatible with the given descent data. In other words we are given $\mathcal{O}$-module isomorphisms $$ \phi_i : \mathcal{F}^a|_{(\Sch/S_i)_\tau} \longrightarrow \mathcal{G}|_{(\Sch/S_i)_\tau} $$ which agree over $S_i \times_S S_j$. Hence, since $\SheafHom_\mathcal{O}(\mathcal{F}^a, \mathcal{G})$ is a sheaf (Modules on Sites, Lemma \ref{sites-modules-lemma-internal-hom}), we conclude that there is a morphism of $\mathcal{O}$-modules $\mathcal{F}^a \to \mathcal{G}$ recovering the isomorphisms $\phi_i$ above. Hence this is an isomorphism and we win. \medskip\noindent The case of the sites $S_\etale$ and $S_{Zar}$ is proved in the exact same manner. \end{proof} \begin{lemma} \label{lemma-equivalence-quasi-coherent-properties} Let $S$ be a scheme. Let $\tau \in \{Zariski, \linebreak[0] \etale, \linebreak[0] smooth, \linebreak[0] syntomic, \linebreak[0] fppf\}$. Let $\mathcal{P}$ be one of the properties of modules\footnote{The list is: free, finite free, generated by global sections, generated by $r$ global sections, generated by finitely many global sections, having a global presentation, having a global finite presentation, locally free, finite locally free, locally generated by sections, locally generated by $r$ sections, finite type, of finite presentation, coherent, or flat.} defined in Modules on Sites, Definitions \ref{sites-modules-definition-global}, \ref{sites-modules-definition-site-local}, and \ref{sites-modules-definition-flat}. The equivalences of categories $$ \QCoh(\mathcal{O}_S) \longrightarrow \QCoh((\Sch/S)_\tau, \mathcal{O}) \quad\text{and}\quad \QCoh(\mathcal{O}_S) \longrightarrow \QCoh(S_\tau, \mathcal{O}) $$ defined by the rule $\mathcal{F} \mapsto \mathcal{F}^a$ seen in Proposition \ref{proposition-equivalence-quasi-coherent} have the property $$ \mathcal{F}\text{ has }\mathcal{P} \Leftrightarrow \mathcal{F}^a\text{ has }\mathcal{P}\text{ as an }\mathcal{O}\text{-module} $$ except (possibly) when $\mathcal{P}$ is ``locally free'' or ``coherent''. If $\mathcal{P}=$``coherent'' the equivalence holds for $\QCoh(\mathcal{O}_S) \to \QCoh(S_\tau, \mathcal{O})$ when $S$ is locally Noetherian and $\tau$ is Zariski or \'etale. \end{lemma} \begin{proof} This is immediate for the global properties, i.e., those defined in Modules on Sites, Definition \ref{sites-modules-definition-global}. For the local properties we can use Modules on Sites, Lemma \ref{sites-modules-lemma-local-final-object} to translate ``$\mathcal{F}^a$ has $\mathcal{P}$'' into a property on the members of a covering of $X$. Hence the result follows from Lemmas \ref{lemma-finite-type-descends}, \ref{lemma-finite-presentation-descends}, \ref{lemma-locally-generated-by-r-sections-descends}, \ref{lemma-flat-descends}, and \ref{lemma-finite-locally-free-descends}. Being coherent for a quasi-coherent module is the same as being of finite type over a locally Noetherian scheme (see Cohomology of Schemes, Lemma \ref{coherent-lemma-coherent-Noetherian}) hence this reduces to the case of finite type modules (details omitted). \end{proof} \section{Cohomology of quasi-coherent modules and topologies} \label{section-quasi-coherent-cohomology} \noindent In this section we prove that cohomology of quasi-coherent modules is independent of the choice of topology. \begin{lemma} \label{lemma-standard-covering-Cech} Let $S$ be a scheme. Let \begin{enumerate} \item[(a)] $\tau \in \{Zariski, \linebreak[0] fppf, \linebreak[0] \etale, \linebreak[0] smooth, \linebreak[0] syntomic\}$ and $\mathcal{C} = (\Sch/S)_\tau$, or \item[(b)] let $\tau = \etale$ and $\mathcal{C} = S_\etale$, or \item[(c)] let $\tau = Zariski$ and $\mathcal{C} = S_{Zar}$. \end{enumerate} Let $\mathcal{F}$ be an abelian sheaf on $\mathcal{C}$. Let $U \in \Ob(\mathcal{C})$ be affine. Let $\mathcal{U} = \{U_i \to U\}_{i = 1, \ldots, n}$ be a standard affine $\tau$-covering in $\mathcal{C}$. Then \begin{enumerate} \item $\mathcal{V} = \{\coprod_{i = 1, \ldots, n} U_i \to U\}$ is a $\tau$-covering of $U$, \item $\mathcal{U}$ is a refinement of $\mathcal{V}$, and \item the induced map on {\v C}ech complexes (Cohomology on Sites, Equation (\ref{sites-cohomology-equation-map-cech-complexes})) $$ \check{\mathcal{C}}^\bullet(\mathcal{V}, \mathcal{F}) \longrightarrow \check{\mathcal{C}}^\bullet(\mathcal{U}, \mathcal{F}) $$ is an isomorphism of complexes. \end{enumerate} \end{lemma} \begin{proof} This follows because $$ (\coprod\nolimits_{i_0 = 1, \ldots, n} U_{i_0}) \times_U \ldots \times_U (\coprod\nolimits_{i_p = 1, \ldots, n} U_{i_p}) = \coprod\nolimits_{i_0, \ldots, i_p \in \{1, \ldots, n\}} U_{i_0} \times_U \ldots \times_U U_{i_p} $$ and the fact that $\mathcal{F}(\coprod_a V_a) = \prod_a \mathcal{F}(V_a)$ since disjoint unions are $\tau$-coverings. \end{proof} \begin{lemma} \label{lemma-standard-covering-Cech-quasi-coherent} Let $S$ be a scheme. Let $\mathcal{F}$ be a quasi-coherent sheaf on $S$. Let $\tau$, $\mathcal{C}$, $U$, $\mathcal{U}$ be as in Lemma \ref{lemma-standard-covering-Cech}. Then there is an isomorphism of complexes $$ \check{\mathcal{C}}^\bullet(\mathcal{U}, \mathcal{F}^a) \cong s((A/R)_\bullet \otimes_R M) $$ (see Section \ref{section-descent-modules}) where $R = \Gamma(U, \mathcal{O}_U)$, $M = \Gamma(U, \mathcal{F}^a)$ and $R \to A$ is a faithfully flat ring map. In particular $$ \check{H}^p(\mathcal{U}, \mathcal{F}^a) = 0 $$ for all $p \geq 1$. \end{lemma} \begin{proof} By Lemma \ref{lemma-standard-covering-Cech} we see that $\check{\mathcal{C}}^\bullet(\mathcal{U}, \mathcal{F}^a)$ is isomorphic to $\check{\mathcal{C}}^\bullet(\mathcal{V}, \mathcal{F}^a)$ where $\mathcal{V} = \{V \to U\}$ with $V = \coprod_{i = 1, \ldots n} U_i$ affine also. Set $A = \Gamma(V, \mathcal{O}_V)$. Since $\{V \to U\}$ is a $\tau$-covering we see that $R \to A$ is faithfully flat. On the other hand, by definition of $\mathcal{F}^a$ we have that the degree $p$ term $\check{\mathcal{C}}^p(\mathcal{V}, \mathcal{F}^a)$ is $$ \Gamma(V \times_U \ldots \times_U V, \mathcal{F}^a) = \Gamma(\Spec(A \otimes_R \ldots \otimes_R A), \mathcal{F}^a) = A \otimes_R \ldots \otimes_R A \otimes_R M $$ We omit the verification that the maps of the {\v C}ech complex agree with the maps in the complex $s((A/R)_\bullet \otimes_R M)$. The vanishing of cohomology is Lemma \ref{lemma-ff-exact}. \end{proof} \begin{proposition} \label{proposition-same-cohomology-quasi-coherent} \begin{slogan} Cohomology of quasi-coherent sheaves is the same no matter which topology you use. \end{slogan} Let $S$ be a scheme. Let $\mathcal{F}$ be a quasi-coherent sheaf on $S$. Let $\tau \in \{Zariski, \linebreak[0] \etale, \linebreak[0] smooth, \linebreak[0] syntomic, \linebreak[0] fppf\}$. \begin{enumerate} \item There is a canonical isomorphism $$ H^q(S, \mathcal{F}) = H^q((\Sch/S)_\tau, \mathcal{F}^a). $$ \item There are canonical isomorphisms $$ H^q(S, \mathcal{F}) = H^q(S_{Zar}, \mathcal{F}^a) = H^q(S_\etale, \mathcal{F}^a). $$ \end{enumerate} \end{proposition} \begin{proof} The result for $q = 0$ is clear from the definition of $\mathcal{F}^a$. Let $\mathcal{C} = (\Sch/S)_\tau$, or $\mathcal{C} = S_\etale$, or $\mathcal{C} = S_{Zar}$. \medskip\noindent We are going to apply Cohomology on Sites, Lemma \ref{sites-cohomology-lemma-cech-vanish-collection} with $\mathcal{F} = \mathcal{F}^a$, $\mathcal{B} \subset \Ob(\mathcal{C})$ the set of affine schemes in $\mathcal{C}$, and $\text{Cov} \subset \text{Cov}_\mathcal{C}$ the set of standard affine $\tau$-coverings. Assumption (3) of the lemma is satisfied by Lemma \ref{lemma-standard-covering-Cech-quasi-coherent}. Hence we conclude that $H^p(U, \mathcal{F}^a) = 0$ for every affine object $U$ of $\mathcal{C}$. \medskip\noindent Next, let $U \in \Ob(\mathcal{C})$ be any separated object. Denote $f : U \to S$ the structure morphism. Let $U = \bigcup U_i$ be an affine open covering. We may also think of this as a $\tau$-covering $\mathcal{U} = \{U_i \to U\}$ of $U$ in $\mathcal{C}$. Note that $U_{i_0} \times_U \ldots \times_U U_{i_p} = U_{i_0} \cap \ldots \cap U_{i_p}$ is affine as we assumed $U$ separated. By Cohomology on Sites, Lemma \ref{sites-cohomology-lemma-cech-spectral-sequence-application} and the result above we see that $$ H^p(U, \mathcal{F}^a) = \check{H}^p(\mathcal{U}, \mathcal{F}^a) = H^p(U, f^*\mathcal{F}) $$ the last equality by Cohomology of Schemes, Lemma \ref{coherent-lemma-cech-cohomology-quasi-coherent}. In particular, if $S$ is separated we can take $U = S$ and $f = \text{id}_S$ and the proposition is proved. We suggest the reader skip the rest of the proof (or rewrite it to give a clearer exposition). \medskip\noindent Choose an injective resolution $\mathcal{F} \to \mathcal{I}^\bullet$ on $S$. Choose an injective resolution $\mathcal{F}^a \to \mathcal{J}^\bullet$ on $\mathcal{C}$. Denote $\mathcal{J}^n|_S$ the restriction of $\mathcal{J}^n$ to opens of $S$; this is a sheaf on the topological space $S$ as open coverings are $\tau$-coverings. We get a complex $$ 0 \to \mathcal{F} \to \mathcal{J}^0|_S \to \mathcal{J}^1|_S \to \ldots $$ which is exact since its sections over any affine open $U \subset S$ is exact (by the vanishing of $H^p(U, \mathcal{F}^a)$, $p > 0$ seen above). Hence by Derived Categories, Lemma \ref{derived-lemma-morphisms-lift} there exists map of complexes $\mathcal{J}^\bullet|_S \to \mathcal{I}^\bullet$ which in particular induces a map $$ R\Gamma(\mathcal{C}, \mathcal{F}^a) = \Gamma(S, \mathcal{J}^\bullet) \longrightarrow \Gamma(S, \mathcal{I}^\bullet) = R\Gamma(S, \mathcal{F}). $$ Taking cohomology gives the map $H^n(\mathcal{C}, \mathcal{F}^a) \to H^n(S, \mathcal{F})$ which we have to prove is an isomorphism. Let $\mathcal{U} : S = \bigcup U_i$ be an affine open covering which we may think of as a $\tau$-covering also. By the above we get a map of double complexes $$ \check{\mathcal{C}}^\bullet(\mathcal{U}, \mathcal{J}) = \check{\mathcal{C}}^\bullet(\mathcal{U}, \mathcal{J}|_S) \longrightarrow \check{\mathcal{C}}^\bullet(\mathcal{U}, \mathcal{I}). $$ This map induces a map of spectral sequences $$ {}^\tau\! E_2^{p, q} = \check{H}^p(\mathcal{U}, \underline{H}^q(\mathcal{F}^a)) \longrightarrow E_2^{p, q} = \check{H}^p(\mathcal{U}, \underline{H}^q(\mathcal{F})) $$ The first spectral sequence converges to $H^{p + q}(\mathcal{C}, \mathcal{F})$ and the second to $H^{p + q}(S, \mathcal{F})$. On the other hand, we have seen that the induced maps ${}^\tau\! E_2^{p, q} \to E_2^{p, q}$ are bijections (as all the intersections are separated being opens in affines). Whence also the maps $H^n(\mathcal{C}, \mathcal{F}^a) \to H^n(S, \mathcal{F})$ are isomorphisms, and we win. \end{proof} \begin{proposition} \label{proposition-equivalence-quasi-coherent-functorial} Let $f : T \to S$ be a morphism of schemes. \begin{enumerate} \item The equivalences of categories of Proposition \ref{proposition-equivalence-quasi-coherent} are compatible with pullback. More precisely, we have $f^*(\mathcal{G}^a) = (f^*\mathcal{G})^a$ for any quasi-coherent sheaf $\mathcal{G}$ on $S$. \item The equivalences of categories of Proposition \ref{proposition-equivalence-quasi-coherent} part (1) are {\bf not} compatible with pushforward in general. \item If $f$ is quasi-compact and quasi-separated, and $\tau \in \{Zariski, \etale\}$ then $f_*$ and $f_{small, *}$ preserve quasi-coherent sheaves and the diagram $$ \xymatrix{ \QCoh(\mathcal{O}_T) \ar[rr]_{f_*} \ar[d]_{\mathcal{F} \mapsto \mathcal{F}^a} & & \QCoh(\mathcal{O}_S) \ar[d]^{\mathcal{G} \mapsto \mathcal{G}^a} \\ \QCoh(T_\tau, \mathcal{O}) \ar[rr]^{f_{small, *}} & & \QCoh(S_\tau, \mathcal{O}) } $$ is commutative, i.e., $f_{small, *}(\mathcal{F}^a) = (f_*\mathcal{F})^a$. \end{enumerate} \end{proposition} \begin{proof} Part (1) follows from the discussion in Remark \ref{remark-change-topologies-ringed-sites}. Part (2) is just a warning, and can be explained in the following way: First the statement cannot be made precise since $f_*$ does not transform quasi-coherent sheaves into quasi-coherent sheaves in general. Even if this is the case for $f$ (and any base change of $f$), then the compatibility over the big sites would mean that formation of $f_*\mathcal{F}$ commutes with any base change, which does not hold in general. An explicit example is the quasi-compact open immersion $j : X = \mathbf{A}^2_k \setminus \{0\} \to \mathbf{A}^2_k = Y$ where $k$ is a field. We have $j_*\mathcal{O}_X = \mathcal{O}_Y$ but after base change to $\Spec(k)$ by the $0$ map we see that the pushforward is zero. \medskip\noindent Let us prove (3) in case $\tau = \etale$. Note that $f$, and any base change of $f$, transforms quasi-coherent sheaves into quasi-coherent sheaves, see Schemes, Lemma \ref{schemes-lemma-push-forward-quasi-coherent}. The equality $f_{small, *}(\mathcal{F}^a) = (f_*\mathcal{F})^a$ means that for any \'etale morphism $g : U \to S$ we have $\Gamma(U, g^*f_*\mathcal{F}) = \Gamma(U \times_S T, (g')^*\mathcal{F})$ where $g' : U \times_S T \to T$ is the projection. This is true by Cohomology of Schemes, Lemma \ref{coherent-lemma-flat-base-change-cohomology}. \end{proof} \begin{lemma} \label{lemma-higher-direct-images-small-etale} Let $f : T \to S$ be a quasi-compact and quasi-separated morphism of schemes. Let $\mathcal{F}$ be a quasi-coherent sheaf on $T$. For either the \'etale or Zariski topology, there are canonical isomorphisms $R^if_{small, *}(\mathcal{F}^a) = (R^if_*\mathcal{F})^a$. \end{lemma} \begin{proof} We prove this for the \'etale topology; we omit the proof in the case of the Zariski topology. By Cohomology of Schemes, Lemma \ref{coherent-lemma-quasi-coherence-higher-direct-images} the sheaves $R^if_*\mathcal{F}$ are quasi-coherent so that the assertion makes sense. The sheaf $R^if_{small, *}\mathcal{F}^a$ is the sheaf associated to the presheaf $$ U \longmapsto H^i(U \times_S T, \mathcal{F}^a) $$ where $g : U \to S$ is an object of $S_\etale$, see Cohomology on Sites, Lemma \ref{sites-cohomology-lemma-higher-direct-images}. By our conventions the right hand side is the \'etale cohomology of the restriction of $\mathcal{F}^a$ to the localization $T_\etale/U \times_S T$ which equals $(U \times_S T)_\etale$. By Proposition \ref{proposition-same-cohomology-quasi-coherent} this is presheaf the same as the presheaf $$ U \longmapsto H^i(U \times_S T, (g')^*\mathcal{F}), $$ where $g' : U \times_S T \to T$ is the projection. If $U$ is affine then this is the same as $H^0(U, R^if'_*(g')^*\mathcal{F})$, see Cohomology of Schemes, Lemma \ref{coherent-lemma-quasi-coherence-higher-direct-images-application}. By Cohomology of Schemes, Lemma \ref{coherent-lemma-flat-base-change-cohomology} this is equal to $H^0(U, g^*R^if_*\mathcal{F})$ which is the value of $(R^if_*\mathcal{F})^a$ on $U$. Thus the values of the sheaves of modules $R^if_{small, *}(\mathcal{F}^a)$ and $(R^if_*\mathcal{F})^a$ on every affine object of $S_\etale$ are canonically isomorphic which implies they are canonically isomorphic. \end{proof} \section{Quasi-coherent sheaves and topologies, II} \label{section-quasi-coherent-sheaves-bis} \noindent We continue the discussion comparing quasi-coherent modules on a scheme $S$ with quasi-coherent modules on any of the sites associated to $S$ in the chapter on topologies. \begin{lemma} \label{lemma-compare-etale-zariski-flat} In Lemma \ref{lemma-compare-sites} the morphism of ringed sites $\text{id}_{small, \etale, Zar} : S_\etale \to S_{Zar}$ is flat. \end{lemma} \begin{proof} Let us denote $\epsilon = \text{id}_{small, \etale, Zar}$ and $\mathcal{O}_\etale$ and $\mathcal{O}_{Zar}$ the structure sheaves on $S_\etale$ and $S_{Zar}$. We have to show that $\mathcal{O}_\etale$ is a flat $\epsilon^{-1}\mathcal{O}_{Zar}$-module. Recall that \'etale morphisms are open, see Morphisms, Lemma \ref{morphisms-lemma-etale-open}. It follows (from the construction of pullback on sheaves) that $\epsilon^{-1}\mathcal{O}_{Zar}$ is the sheafification of the presheaf $\mathcal{O}'$ on $S_\etale$ which sends an \'etale morphism $f : V \to S$ to $\mathcal{O}_S(f(V))$. If both $V$ and $U = f(V) \subset S$ are affine, then $V \to U$ is an \'etale morphism of affines, hence corresponds to an \'etale ring map. Since \'etale ring maps are flat, we see that $\mathcal{O}_S(U) = \mathcal{O}'(V) \to \mathcal{O}_\etale(V) = \mathcal{O}_V(V)$ is flat. Finally, for every \'etale morphism $f : V \to S$, i.e., object of $S_\etale$, there is an affine open covering $V = \bigcup V_i$ such that $f(V_i)$ is an affine open in $S$ for all $i$\footnote{Namely, for $y \in V$, we pick an affine open $y \in V' \subset V$ with $f(V')$ contained in an affine open $U \subset S$. Then we pick an affine open $f(y) \in U' \subset f(V')$. Then $V'' = f^{-1}(U') \subset V'$ is affine as it is equal to $U' \times_U V'$ and $f(V'') = U'$ is affine too.}. Thus the result by Modules on Sites, Lemma \ref{sites-modules-lemma-flatness-sheafification-refined}. \end{proof} \begin{lemma} \label{lemma-equivalence-quasi-coherent-limits} Let $S$ be a scheme. Let $\tau \in \{Zariski, \linebreak[0] \etale, \linebreak[0] smooth, \linebreak[0] syntomic, \linebreak[0] fppf\}$. The functors $$ \QCoh(\mathcal{O}_S) \longrightarrow \textit{Mod}((\Sch/S)_\tau, \mathcal{O}) \quad\text{and}\quad \QCoh(\mathcal{O}_S) \longrightarrow \textit{Mod}(S_\tau, \mathcal{O}) $$ defined by the rule $\mathcal{F} \mapsto \mathcal{F}^a$ seen in Proposition \ref{proposition-equivalence-quasi-coherent} are \begin{enumerate} \item fully faithful, \item compatible with direct sums, \item compatible with colimits, \item right exact, \item exact as a functor $\QCoh(\mathcal{O}_S) \to \textit{Mod}(S_\etale, \mathcal{O})$, \item {\bf not} exact as a functor $\QCoh(\mathcal{O}_S) \to \textit{Mod}((\Sch/S)_\tau, \mathcal{O})$ in general, \item given two quasi-coherent $\mathcal{O}_S$-modules $\mathcal{F}$, $\mathcal{G}$ we have $(\mathcal{F} \otimes_{\mathcal{O}_S} \mathcal{G})^a = \mathcal{F}^a \otimes_\mathcal{O} \mathcal{G}^a$, \item if $\tau = \etale$ or $\tau = Zariski$, given two quasi-coherent $\mathcal{O}_S$-modules $\mathcal{F}$, $\mathcal{G}$ such that $\mathcal{F}$ is of finite presentation we have $(\SheafHom_{\mathcal{O}_S}(\mathcal{F}, \mathcal{G}))^a = \SheafHom_\mathcal{O}(\mathcal{F}^a, \mathcal{G}^a)$ in $\textit{Mod}(S_\tau, \mathcal{O})$, \item given two quasi-coherent $\mathcal{O}_S$-modules $\mathcal{F}$, $\mathcal{G}$ we do {\bf not} have $(\SheafHom_{\mathcal{O}_S}(\mathcal{F}, \mathcal{G}))^a = \SheafHom_\mathcal{O}(\mathcal{F}^a, \mathcal{G}^a)$ in $\textit{Mod}((\Sch/S)_\tau, \mathcal{O})$ in general even if $\mathcal{F}$ is of finite presentation, and \item given a short exact sequence $0 \to \mathcal{F}_1^a \to \mathcal{E} \to \mathcal{F}_2^a \to 0$ of $\mathcal{O}$-modules then $\mathcal{E}$ is quasi-coherent\footnote{Warning: This is misleading. See part (6).}, i.e., $\mathcal{E}$ is in the essential image of the functor. \end{enumerate} \end{lemma} \begin{proof} Part (1) we saw in Proposition \ref{proposition-equivalence-quasi-coherent}. \medskip\noindent We have seen in Schemes, Section \ref{schemes-section-quasi-coherent} that a colimit of quasi-coherent sheaves on a scheme is a quasi-coherent sheaf. Moreover, in Remark \ref{remark-change-topologies-ringed-sites} we saw that $\mathcal{F} \mapsto \mathcal{F}^a$ is the pullback functor for a morphism of ringed sites, hence commutes with all colimits, see Modules on Sites, Lemma \ref{sites-modules-lemma-exactness-pushforward-pullback}. Thus (3) and its special case (3) hold. \medskip\noindent This also shows that the functor is right exact (i.e., commutes with finite colimits), hence (4). \medskip\noindent The functor $\QCoh(\mathcal{O}_S) \to \QCoh(S_\etale, \mathcal{O})$, $\mathcal{F} \mapsto \mathcal{F}^a$ is left exact because an \'etale morphism is flat, see Morphisms, Lemma \ref{morphisms-lemma-etale-flat}. This proves (5). \medskip\noindent To see (6), suppose that $S = \Spec(\mathbf{Z})$. Then $2 : \mathcal{O}_S \to \mathcal{O}_S$ is injective but the associated map of $\mathcal{O}$-modules on $(\Sch/S)_\tau$ isn't injective because $2 : \mathbf{F}_2 \to \mathbf{F}_2$ isn't injective and $\Spec(\mathbf{F}_2)$ is an object of $(\Sch/S)_\tau$. \medskip\noindent Part (7) holds because, as mentioned above, the functor $\mathcal{F} \mapsto \mathcal{F}^a$ is the pullback functor for a morphism of ringed sites and such commute with tensor products by Modules on Sites, Lemma \ref{sites-modules-lemma-tensor-product-pullback}. \medskip\noindent Part (8) is obvious if $\tau = Zariski$ because the category of $\mathcal{O}$-modules on $S_{Zar}$ is the same as the category of $\mathcal{O}_S$-modules on the topological space $S$. If $\tau = \etale$ then (8) holds because, as mentioned above, the functor $\mathcal{F} \mapsto \mathcal{F}^a$ is the pullback functor for the flat morphism of ringed sites $(S_\etale, \mathcal{O}) \to (S_{Zar}, \mathcal{O}_S)$, see Lemma \ref{lemma-compare-etale-zariski-flat}. Pullback by flat morphisms of ringed sites commutes with taking internal hom out of a finitely presented module by Modules on Sites, Lemma \ref{sites-modules-lemma-pullback-internal-hom}. \medskip\noindent To see (9), suppose that $S = \Spec(\mathbf{Z})$. Let $\mathcal{F} = \Coker(2 : \mathcal{O}_S \to \mathcal{O}_S)$ and $\mathcal{G} = \mathcal{O}_S$. Then $\mathcal{F}^a = \Coker(2 : \mathcal{O} \to \mathcal{O})$ and $\mathcal{G}^a = \mathcal{O}$. Hence $\SheafHom_\mathcal{O}(\mathcal{F}^a, \mathcal{G}^a) = \mathcal{O}[2]$ is equal to the $2$-torsion in $\mathcal{O}$, which is not zero, see proof of (6). On the other hand, the module $\SheafHom_{\mathcal{O}_S}(\mathcal{F}, \mathcal{G})$ is zero. \medskip\noindent Proof of (10). Let $0 \to \mathcal{F}_1^a \to \mathcal{E} \to \mathcal{F}_2^a \to 0$ be a short exact sequence of $\mathcal{O}$-modules with $\mathcal{F}_1$ and $\mathcal{F}_2$ quasi-coherent on $S$. Consider the restriction $$ 0 \to \mathcal{F}_1 \to \mathcal{E}|_{S_{Zar}} \to \mathcal{F}_2 $$ to $S_{Zar}$. By Proposition \ref{proposition-same-cohomology-quasi-coherent} we see that on any affine $U \subset S$ we have $H^1(U, \mathcal{F}_1^a) = H^1(U, \mathcal{F}_1) = 0$. Hence the sequence above is also exact on the right. By Schemes, Section \ref{schemes-section-quasi-coherent} we conclude that $\mathcal{F} = \mathcal{E}|_{S_{Zar}}$ is quasi-coherent. Thus we obtain a commutative diagram $$ \xymatrix{ & \mathcal{F}_1^a \ar[r] \ar[d] & \mathcal{F}^a \ar[r] \ar[d] & \mathcal{F}_2^a \ar[r] \ar[d] & 0 \\ 0 \ar[r] & \mathcal{F}_1^a \ar[r] & \mathcal{E} \ar[r] & \mathcal{F}_2^a \ar[r] & 0 } $$ To finish the proof it suffices to show that the top row is also right exact. To do this, denote once more $U = \Spec(A) \subset S$ an affine open of $S$. We have seen above that $0 \to \mathcal{F}_1(U) \to \mathcal{E}(U) \to \mathcal{F}_2(U) \to 0$ is exact. For any affine scheme $V/U$, $V = \Spec(B)$ the map $\mathcal{F}_1^a(V) \to \mathcal{E}(V)$ is injective. We have $\mathcal{F}_1^a(V) = \mathcal{F}_1(U) \otimes_A B$ by definition. The injection $\mathcal{F}_1^a(V) \to \mathcal{E}(V)$ factors as $$ \mathcal{F}_1(U) \otimes_A B \to \mathcal{E}(U) \otimes_A B \to \mathcal{E}(U) $$ Considering $A$-algebras $B$ of the form $B = A \oplus M$ we see that $\mathcal{F}_1(U) \to \mathcal{E}(U)$ is universally injective (see Algebra, Definition \ref{algebra-definition-universally-injective}). Since $\mathcal{E}(U) = \mathcal{F}(U)$ we conclude that $\mathcal{F}_1 \to \mathcal{F}$ remains injective after any base change, or equivalently that $\mathcal{F}_1^a \to \mathcal{F}^a$ is injective. \end{proof} \begin{lemma} \label{lemma-properties-quasi-coherent} Let $S$ be a scheme. The category $\QCoh(S_\etale, \mathcal{O})$ of quasi-coherent modules on $S_\etale$ has the following properties: \begin{enumerate} \item Any direct sum of quasi-coherent sheaves is quasi-coherent. \item Any colimit of quasi-coherent sheaves is quasi-coherent. \item The kernel and cokernel of a morphism of quasi-coherent sheaves is quasi-coherent. \item Given a short exact sequence of $\mathcal{O}$-modules $0 \to \mathcal{F}_1 \to \mathcal{F}_2 \to \mathcal{F}_3 \to 0$ if two out of three are quasi-coherent so is the third. \item Given two quasi-coherent $\mathcal{O}$-modules the tensor product is quasi-coherent. \item Given two quasi-coherent $\mathcal{O}$-modules $\mathcal{F}$, $\mathcal{G}$ such that $\mathcal{F}$ is of finite presentation. then the internal hom $\SheafHom_\mathcal{O}(\mathcal{F}, \mathcal{G})$ is quasi-coherent. \end{enumerate} \end{lemma} \begin{proof} The corresponding facts hold for quasi-coherent modules on the scheme $S$, see Schemes, Section \ref{schemes-section-quasi-coherent}. The proof will be to use Lemma \ref{lemma-equivalence-quasi-coherent-limits} to transfer these truths to $S_\etale$. \medskip\noindent Proof of (1). Let $\mathcal{F}_i$, $i \in I$ be a family of objects of $\QCoh(S_\etale, \mathcal{O})$. Write $\mathcal{F}_i = \mathcal{G}_i^a$ for some quasi-coherent modules $\mathcal{G}_i$ on $S$. Then $\bigoplus \mathcal{F}_i = (\bigoplus \mathcal{G}_i)^a$ by the lemma cited and we conclude. \medskip\noindent Proof of (2). Let $\mathcal{I} \to \QCoh(S_\etale, \mathcal{O})$, $i \mapsto \mathcal{F}_i$ be a diagram. Write $\mathcal{F}_i = \mathcal{G}_i^a$ so we get a diagram $\mathcal{I} \to \QCoh(\mathcal{O}_S)$. Then $\colim \mathcal{F}_i = (\colim \mathcal{G}_i)^a$ by the lemma cited and we conclude. \medskip\noindent Proof of (3). Let $a : \mathcal{F} \to \mathcal{F}'$ be an arrow of $\QCoh(S_\etale, \mathcal{O})$. Write $a = b^a$ for some map $b : \mathcal{G} \to \mathcal{G}'$ of quasi-coherent modules on $S$. By the lemma cited we have $\Ker(a) = \Ker(b)^a$ and $\Coker(a) = \Coker(b)^a$ and we conclude. \medskip\noindent Proof of (4). This follows from (3) except in the case when we know $\mathcal{F}_1$ and $\mathcal{F}_3$ are quasi-coherent. In this case write $\mathcal{F}_1 = \mathcal{G}_1^a$ and $\mathcal{F}_3 = \mathcal{G}_3^a$ with $\mathcal{G}_i$ quasi-coherent on $S$. By Lemma \ref{lemma-equivalence-quasi-coherent-limits} part (10) we conclude. \medskip\noindent Proof of (5). Let $\mathcal{F}$ and $\mathcal{F}'$ be in $\QCoh(S_\etale, \mathcal{O})$. Write $\mathcal{F} = \mathcal{G}^a$ and $\mathcal{F}' = (\mathcal{G}')^a$ with $\mathcal{G}$ and $\mathcal{G}'$ quasi-coherent on $S$. By the lemma cited we have $\mathcal{F} \otimes_\mathcal{O} \mathcal{F}' = (\mathcal{G} \otimes_{\mathcal{O}_S} \mathcal{G}')^a$ and we conclude. \medskip\noindent Proof of (6). Let $\mathcal{F}$ and $\mathcal{G}$ be in $\QCoh(S_\etale, \mathcal{O})$ with $\mathcal{F}$ of finite presentation. Write $\mathcal{F} = \mathcal{H}^a$ and $\mathcal{G} = (\mathcal{I})^a$ with $\mathcal{H}$ and $\mathcal{I}$ quasi-coherent on $S$. By Lemma \ref{lemma-equivalence-quasi-coherent-properties} we see that $\mathcal{H}$ is of finite presentation. By Lemma \ref{lemma-equivalence-quasi-coherent-limits} part (8) we have $\SheafHom_\mathcal{O}(\mathcal{F}, \mathcal{G}) = (\SheafHom_{\mathcal{O}_S}(\mathcal{H}, \mathcal{I}))^a$ and we conclude. \end{proof} \begin{lemma} \label{lemma-properties-quasi-coherent-on-big} Let $S$ be a scheme. Let $\tau \in \{Zariski, \linebreak[0] \etale, \linebreak[0] smooth, \linebreak[0] syntomic, \linebreak[0] fppf\}$. The category $\QCoh((\Sch/S)_\tau, \mathcal{O})$ of quasi-coherent modules on $(\Sch/S)_\tau$ has the following properties: \begin{enumerate} \item Any direct sum of quasi-coherent sheaves is quasi-coherent. \item Any colimit of quasi-coherent sheaves is quasi-coherent. \item The cokernel of a morphism of quasi-coherent sheaves is quasi-coherent. \item Given a short exact sequence of $\mathcal{O}$-modules $0 \to \mathcal{F}_1 \to \mathcal{F}_2 \to \mathcal{F}_3 \to 0$ if $\mathcal{F}_1$ and $\mathcal{F}_3$ are quasi-coherent so is $\mathcal{F}_2$. \item Given two quasi-coherent $\mathcal{O}$-modules the tensor product is quasi-coherent. \item Given two quasi-coherent $\mathcal{O}$-modules $\mathcal{F}$, $\mathcal{G}$ such that $\mathcal{F}$ is finite locally free, the internal hom $\SheafHom_\mathcal{O}(\mathcal{F}, \mathcal{G})$ is quasi-coherent. \end{enumerate} \end{lemma} \begin{proof} The corresponding facts hold for quasi-coherent modules on the scheme $S$, see Schemes, Section \ref{schemes-section-quasi-coherent}. The proof will be to use Lemma \ref{lemma-equivalence-quasi-coherent-limits} to transfer these truths to $(\Sch/S)_\tau$. \medskip\noindent Proof of (1). Let $\mathcal{F}_i$, $i \in I$ be a family of objects of $\QCoh((\Sch/S)_\tau, \mathcal{O})$. Write $\mathcal{F}_i = \mathcal{G}_i^a$ for some quasi-coherent modules $\mathcal{G}_i$ on $S$. Then $\bigoplus \mathcal{F}_i = (\bigoplus \mathcal{G}_i)^a$ by the lemma cited and we conclude. \medskip\noindent Proof of (2). Let $\mathcal{I} \to \QCoh((\Sch/S)_\tau, \mathcal{O})$, $i \mapsto \mathcal{F}_i$ be a diagram. Write $\mathcal{F}_i = \mathcal{G}_i^a$ so we get a diagram $\mathcal{I} \to \QCoh(\mathcal{O}_S)$. Then $\colim \mathcal{F}_i = (\colim \mathcal{G}_i)^a$ by the lemma cited and we conclude. \medskip\noindent Proof of (3). Let $a : \mathcal{F} \to \mathcal{F}'$ be an arrow of $\QCoh((\Sch/S)_\tau, \mathcal{O})$. Write $a = b^a$ for some map $b : \mathcal{G} \to \mathcal{G}'$ of quasi-coherent modules on $S$. By the lemma cited we have $\Coker(a) = \Coker(b)^a$ (because a cokernel is a colimit) and we conclude. \medskip\noindent Proof of (4). Write $\mathcal{F}_1 = \mathcal{G}_1^a$ and $\mathcal{F}_3 = \mathcal{G}_3^a$ with $\mathcal{G}_i$ quasi-coherent on $S$. By Lemma \ref{lemma-equivalence-quasi-coherent-limits} part (10) we conclude. \medskip\noindent Proof of (5). Let $\mathcal{F}$ and $\mathcal{F}'$ be in $\QCoh((\Sch/S)_\tau, \mathcal{O})$. Write $\mathcal{F} = \mathcal{G}^a$ and $\mathcal{F}' = (\mathcal{G}')^a$ with $\mathcal{G}$ and $\mathcal{G}'$ quasi-coherent on $S$. By the lemma cited we have $\mathcal{F} \otimes_\mathcal{O} \mathcal{F}' = (\mathcal{G} \otimes_{\mathcal{O}_S} \mathcal{G}')^a$ and we conclude. \medskip\noindent Proof of (6). Write $\mathcal{F} = \mathcal{H}^a$ for some quasi-coherent $\mathcal{O}_S$-module. By Lemma \ref{lemma-equivalence-quasi-coherent-properties} we see that $\mathcal{H}$ is finite locally free. The problem is Zariski local on $S$ (details omitted) hence we may assume $\mathcal{H} = \mathcal{O}_S^{\oplus n}$ is finite free. Then $\mathcal{F} = \mathcal{O}^{\oplus n}$ and $\SheafHom_\mathcal{O}(\mathcal{F}, \mathcal{G}) = \mathcal{G}^{\oplus n}$ is quasi-coherent. \end{proof} \begin{example} \label{example-internal-hom-not-qcoh} Let $S$ be a scheme. Let $\mathcal{F}$ and $\mathcal{G}$ be quasi-coherent modules on $(\Sch/S)_\tau$ for one of the topologies $\tau$ considered in Lemma \ref{lemma-properties-quasi-coherent-on-big}. In general it is not the case that $\SheafHom_\mathcal{O}(\mathcal{F}, \mathcal{G})$ is quasi-coherent even if $\mathcal{F}$ is of finite presentation. Namely, say $S = \Spec(\mathbf{Z})$, $\mathcal{F} = \Coker(2 : \mathcal{O} \to \mathcal{O})$, and $\mathcal{G} = \mathcal{O}$. Then $\SheafHom_\mathcal{O}(\mathcal{F}, \mathcal{G}) = \mathcal{O}[2]$ is equal to the $2$-torsion in $\mathcal{O}$, which is not quasi-coherent. \end{example} \begin{lemma} \label{lemma-qc-colimits} Let $S$ be a scheme. \begin{enumerate} \item The category $\QCoh((\Sch/S)_{fppf}, \mathcal{O})$ has colimits and they agree with colimits in the categories $\textit{Mod}((\Sch/S)_{Zar}, \mathcal{O})$, $\textit{Mod}((\Sch/S)_\etale, \mathcal{O})$, and $\textit{Mod}((\Sch/S)_{fppf}, \mathcal{O})$. \item Given $\mathcal{F}, \mathcal{G}$ in $\QCoh((\Sch/S)_{fppf}, \mathcal{O})$ the tensor products $\mathcal{F} \otimes_\mathcal{O} \mathcal{G}$ computed in $\textit{Mod}((\Sch/S)_{Zar}, \mathcal{O})$, $\textit{Mod}((\Sch/S)_\etale, \mathcal{O})$, or $\textit{Mod}((\Sch/S)_{fppf}, \mathcal{O})$ agree and the common value is an object of $\QCoh((\Sch/S)_{fppf}, \mathcal{O})$. \item Given $\mathcal{F}, \mathcal{G}$ in $\QCoh((\Sch/S)_{fppf}, \mathcal{O})$ with $\mathcal{F}$ finite locally free (in fppf, or equivalently \'etale, or equivalently Zariski topology) the internal homs $\SheafHom_\mathcal{O}(\mathcal{F}, \mathcal{G})$ computed in $\textit{Mod}((\Sch/S)_{Zar}, \mathcal{O})$, $\textit{Mod}((\Sch/S)_\etale, \mathcal{O})$, or $\textit{Mod}((\Sch/S)_{fppf}, \mathcal{O})$ agree and the common value is an object of $\QCoh((\Sch/S)_{fppf}, \mathcal{O})$. \end{enumerate} \end{lemma} \begin{proof} This lemma collects the results shown above in a slightly different manner. First of all, by Lemma \ref{lemma-properties-quasi-coherent-on-big} we already know the output of the construction in (1), (2), or (3) ends up in $\QCoh((\Sch/S)_\tau, \mathcal{O})$. It remains to show in each case that the result is independent of the topology used. The key to this is that the equivalence $\QCoh(\mathcal{O}_S) \to \QCoh((\Sch/S)_\tau, \mathcal{O})$, $\mathcal{F} \mapsto \mathcal{F}^a$ of Proposition \ref{proposition-equivalence-quasi-coherent} is given by the same formula independent of the choice of the topology $\tau \in \{Zariski, \etale, fppf\}$. \medskip\noindent Proof of (1). Let $\mathcal{I} \to \QCoh((\Sch/S)_{fppf}, \mathcal{O})$, $i \mapsto \mathcal{F}_i$ be a diagram. Write $\mathcal{F}_i = \mathcal{G}_i^a$ so we get a diagram $\mathcal{I} \to \QCoh(\mathcal{O}_S)$. Then $\colim \mathcal{F}_i = (\colim \mathcal{G}_i)^a$ in $\textit{Mod}((\Sch/S)_\tau, \mathcal{O})$ for $\tau \in \{Zariski, \etale, fppf\}$ by Lemma \ref{lemma-equivalence-quasi-coherent-limits}. This proves (1). \medskip\noindent Proof of (2). Write $\mathcal{F} = \mathcal{H}^a$ and $\mathcal{G} = (\mathcal{I})^a$ with $\mathcal{H}$ and $\mathcal{I}$ quasi-coherent on $S$. Then $\mathcal{F} \otimes_\mathcal{O} \mathcal{G} = (\mathcal{H} \otimes_\mathcal{O} \mathcal{I})^a$ in $\textit{Mod}((\Sch/S)_\tau, \mathcal{O})$ for $\tau \in \{Zariski, \etale, fppf\}$ by Lemma \ref{lemma-equivalence-quasi-coherent-limits}. This proves (2). \medskip\noindent Proof of (3). Let $\mathcal{F}$ and $\mathcal{G}$ be in $\QCoh((\Sch/S)_{fppf}, \mathcal{O})$. Write $\mathcal{F} = \mathcal{H}^a$ with $\mathcal{H}$ quasi-coherent on $S$. By Lemma \ref{lemma-equivalence-quasi-coherent-properties} we have \begin{align*} \mathcal{F}\text{ finite locally free in fppf topology} & \Leftrightarrow \mathcal{H}\text{ finite locally free on }S \\ & \Leftrightarrow \mathcal{F}\text{ finite locally free in \'etale topology} \\ & \Leftrightarrow \mathcal{H}\text{ finite locally free on }S \\ & \Leftrightarrow \mathcal{F}\text{ finite locally free in Zariski topology} \end{align*} This explains the parenthetical statement of part (3). Now, if these equivalent conditions hold, then $\mathcal{H}$ is finite locally free. The construction of $\SheafHom_\mathcal{O}(\mathcal{F}, \mathcal{G})$ in Modules on Sites, Section \ref{sites-modules-section-internal-hom} depends only on $\mathcal{F}$ and $\mathcal{G}$ as presheaves of modules (only whether the output $\SheafHom$ is a sheaf depends on whether $\mathcal{F}$ and $\mathcal{G}$ are sheaves). \end{proof} \section{Quasi-coherent modules and affines} \label{section-alternative-quasi-coherent} \noindent Let $S$ be a scheme\footnote{In this section, as in Topologies, Section \ref{topologies-section-change-topologies}, we choose our sites $(\Sch/S)_\tau$ to have the same underlying category for $\tau \in \{Zariski, \etale, smooth, syntomic, fppf\}$. Then also the sites $(\textit{Aff}/S)_\tau$ have the same underlying category.}. Let $\tau \in \{Zariski, \etale, smooth, syntomic, fppf\}$. Recall that $(\textit{Aff}/S)_\tau$ is the full subcategory of $(\Sch/S)_\tau$ whose objects are affine turned into a site by declaring the coverings to be the standard $\tau$-coverings. By Topologies, Lemmas \ref{topologies-lemma-affine-big-site-Zariski}, \ref{topologies-lemma-affine-big-site-etale}, \ref{topologies-lemma-affine-big-site-smooth}, \ref{topologies-lemma-affine-big-site-syntomic}, and \ref{topologies-lemma-affine-big-site-fppf} we have an equivalence of topoi $g : \Sh((\textit{Aff}/S)_\tau) \to \Sh((\Sch/S)_\tau)$ whose pullback functor is given by restriction. Recalling that $\mathcal{O}$ denotes the structure sheaf on $(\Sch/S)_\tau$, let us temporarily and pedantically denote $\mathcal{O}_{\textit{Aff}}$ the restriction of $\mathcal{O}$ to $(\textit{Aff}/S)_\tau$. Then we obtain an equivalence \begin{equation} \label{equation-alternative-ringed} (\Sh((\textit{Aff}/S)_\tau), \mathcal{O}_{\textit{Aff}}) \longrightarrow (\Sh((\Sch/S)_\tau), \mathcal{O}) \end{equation} of ringed topoi. Having said this we can compare quasi-coherent modules as well. \begin{lemma} \label{lemma-quasi-coherent-alternative} Let $S$ be a scheme. Let $\mathcal{F}$ be a presheaf of $\mathcal{O}_{\textit{Aff}}$-modules on $(\textit{Aff}/S)_{fppf}$. The following are equivalent \begin{enumerate} \item for every morphism $U \to U'$ of $(\textit{Aff}/S)_{fppf}$ the map $\mathcal{F}(U') \otimes_{\mathcal{O}(U')} \mathcal{O}(U) \to \mathcal{F}(U)$ is an isomorphism, \item $\mathcal{F}$ is a sheaf on $(\textit{Aff}/S)_{Zar}$ and a quasi-coherent module on the ringed site $((\textit{Aff}/S)_{Zar}, \mathcal{O}_{\textit{Aff}})$ in the sense of Modules on Sites, Definition \ref{sites-modules-definition-site-local}, \item same as in (3) for the \'etale topology, \item same as in (3) for the smooth topology, \item same as in (3) for the syntomic topology, \item same as in (3) for the fppf topology, \item $\mathcal{F}$ corresponds to a quasi-coherent module on $(\Sch/S)_{Zar}$, $(\Sch/S)_\etale$, $(\Sch/S)_{smooth}$, $(\Sch/S)_{syntomic}$, or $(\Sch/S)_{fppf}$ via the equivalence (\ref{equation-alternative-ringed}), \item $\mathcal{F}$ comes from a unique quasi-coherent $\mathcal{O}_S$-module $\mathcal{G}$ by the procedure described in Section \ref{section-quasi-coherent-sheaves}. \end{enumerate} \end{lemma} \begin{proof} Since the notion of a quasi-coherent module is intrinsic (Modules on Sites, Lemma \ref{sites-modules-lemma-special-locally-free}) we see that the equivalence (\ref{equation-alternative-ringed}) induces an equivalence between categories of quasi-coherent modules. Proposition \ref{proposition-equivalence-quasi-coherent} says the topology we use to study quasi-coherent modules on $\Sch/S$ does not matter and it also tells us that (8) is the same as (7). Hence we see that (2) -- (8) are all equivalent. \medskip\noindent Assume the equivalent conditions (2) -- (8) hold and let $\mathcal{G}$ be as in (8). Let $h : U \to U' \to S$ be a morphism of $\textit{Aff}/S$. Denote $f : U \to S$ and $f' : U' \to S$ the structure morphisms, so that $f = f' \circ h$. We have $\mathcal{F}(U') = \Gamma(U', (f')^*\mathcal{G})$ and $\mathcal{F}(U) = \Gamma(U, f^*\mathcal{G}) = \Gamma(U, h^*(f')^*\mathcal{G})$. Hence (1) holds by Schemes, Lemma \ref{schemes-lemma-widetilde-pullback}. \medskip\noindent Assume (1) holds. To finish the proof it suffices to prove (2). Let $U$ be an object of $(\textit{Aff}/S)_{Zar}$. Say $U = \Spec(R)$. A standard open covering $U = U_1 \cup \ldots \cup U_n$ is given by $U_i = D(f_i)$ for some elements $f_1, \ldots, f_n \in R$ generating the unit ideal of $R$. By property (1) we see that $$ \mathcal{F}(U_i) = \mathcal{F}(U) \otimes_R R_{f_i} = \mathcal{F}(U)_{f_i} $$ and $$ \mathcal{F}(U_i \cap U_j) = \mathcal{F}(U) \otimes_R R_{f_if_j} = \mathcal{F}(U)_{f_if_j} $$ Thus we conclude from Algebra, Lemma \ref{algebra-lemma-cover-module} that $\mathcal{F}$ is a sheaf on $(\textit{Aff}/S)_{Zar}$. Choose a presentation $$ \bigoplus\nolimits_{k \in K} R \longrightarrow \bigoplus\nolimits_{l \in L} R \longrightarrow \mathcal{F}(U) \longrightarrow 0 $$ by free $R$-modules. By property (1) and the right exactness of tensor product we see that for every morphism $U' \to U$ in $(\textit{Aff}/S)_{Zar}$ we obtain a presentation $$ \bigoplus\nolimits_{k \in K} \mathcal{O}_{Aff}(U') \longrightarrow \bigoplus\nolimits_{l \in L} \mathcal{O}_{Aff}(U') \longrightarrow \mathcal{F}(U') \longrightarrow 0 $$ In other words, we see that the restriction of $\mathcal{F}$ to the localized category $(\textit{Aff}/S)_{Zar}/U$ has a presentation $$ \bigoplus\nolimits_{k \in K} \mathcal{O}_{Aff}|_{(\textit{Aff}/S)_{Zar}/U} \longrightarrow \bigoplus\nolimits_{l \in L} \mathcal{O}_{Aff}|_{(\textit{Aff}/S)_{Zar}/U} \longrightarrow \mathcal{F}|_{(\textit{Aff}/S)_{Zar}/U} \longrightarrow 0 $$ With apologies for the horrible notation, this finishes the proof. \end{proof} \noindent We continue the discussion started in the introduction to this section. Let $\tau \in \{Zariski, \etale\}$. Recall that $S_{affine, \tau}$ is the full subcategory of $S_\tau$ whose objects are affine turned into a site by declaring the coverings to be the standard $\tau$ coverings. See Topologies, Definitions \ref{topologies-definition-big-small-Zariski} and \ref{topologies-definition-big-small-etale}. By Topologies, Lemmas \ref{topologies-lemma-alternative-zariski}, resp.\ \ref{topologies-lemma-alternative} we have an equivalence of topoi $g : \Sh(S_{affine, \tau}) \to \Sh(S_\tau)$, whose pullback functor is given by restriction. Recalling that $\mathcal{O}$ denotes the structure sheaf on $S_\tau$ let us temporarily and pedantically denote $\mathcal{O}_{affine}$ the restriction of $\mathcal{O}$ to $S_{affine, \tau}$. Then we obtain an equivalence \begin{equation} \label{equation-alternative-small-ringed} (\Sh(S_{affine, \tau}), \mathcal{O}_{affine}) \longrightarrow (\Sh(S_\tau), \mathcal{O}) \end{equation} of ringed topoi. Having said this we can compare quasi-coherent modules as well. \begin{lemma} \label{lemma-quasi-coherent-alternative-small} Let $S$ be a scheme. Let $\tau \in \{Zariski, \etale\}$. Let $\mathcal{F}$ be a presheaf of $\mathcal{O}_{affine}$-modules on $S_{affine, \tau}$. The following are equivalent \begin{enumerate} \item for every morphism $U \to U'$ of $S_{affine, \tau}$ the map $\mathcal{F}(U') \otimes_{\mathcal{O}(U')} \mathcal{O}(U) \to \mathcal{F}(U)$ is an isomorphism, \item $\mathcal{F}$ is a sheaf on $S_{affine, \tau}$ and a quasi-coherent module on the ringed site $(S_{affine, \tau}, \mathcal{O}_{affine})$ in the sense of Modules on Sites, Definition \ref{sites-modules-definition-site-local}, \item $\mathcal{F}$ corresponds to a quasi-coherent module on $S_\tau$ via the equivalence (\ref{equation-alternative-small-ringed}), \item $\mathcal{F}$ comes from a unique quasi-coherent $\mathcal{O}_S$-module $\mathcal{G}$ by the procedure described in Section \ref{section-quasi-coherent-sheaves}. \end{enumerate} \end{lemma} \begin{proof} Let us prove this in the case of the \'etale topology. \medskip\noindent Assume (1) holds. To show that $\mathcal{F}$ is a sheaf, let $\mathcal{U} = \{U_i \to U\}_{i = 1, \ldots, n}$ be a covering of $S_{affine, \etale}$. The sheaf condition for $\mathcal{F}$ and $\mathcal{U}$, by our assumption on $\mathcal{F}$. reduces to showing that $$ 0 \to \mathcal{F}(U) \to \prod \mathcal{F}(U) \otimes_{\mathcal{O}(U)} \mathcal{O}(U_i) \to \prod \mathcal{F}(U) \otimes_{\mathcal{O}(U)} \mathcal{O}(U_i \times_U U_j) $$ is exact. This is true because $\mathcal{O}(U) \to \prod \mathcal{O}(U_i)$ is faithfully flat (by Lemma \ref{lemma-standard-covering-Cech} and the fact that coverings in $S_{affine, \etale}$ are standard \'etale coverings) and we may apply Lemma \ref{lemma-ff-exact}. Next, we show that $\mathcal{F}$ is quasi-coherent on $S_{affine, \etale}$. Namely, for $U$ in $S_{affine, \'etale}$, set $R = \mathcal{O}(U)$ and choose a presentation $$ \bigoplus\nolimits_{k \in K} R \longrightarrow \bigoplus\nolimits_{l \in L} R \longrightarrow \mathcal{F}(U) \longrightarrow 0 $$ by free $R$-modules. By property (1) and the right exactness of tensor product we see that for every morphism $U' \to U$ in $S_{affine, \etale}$ we obtain a presentation $$ \bigoplus\nolimits_{k \in K} \mathcal{O}(U') \longrightarrow \bigoplus\nolimits_{l \in L} \mathcal{O}(U') \longrightarrow \mathcal{F}(U') \longrightarrow 0 $$ In other words, we see that the restriction of $\mathcal{F}$ to the localized category $S_{affine, etale}/U$ has a presentation $$ \bigoplus\nolimits_{k \in K} \mathcal{O}_{affine}|_{S_{affine, \etale}/U} \longrightarrow \bigoplus\nolimits_{l \in L} \mathcal{O}_{affine}|_{S_{affine, \etale}/U} \longrightarrow \mathcal{F}|_{S_{affine, \etale}/U} \longrightarrow 0 $$ as required to show that $\mathcal{F}$ is quasi-coherent. With apologies for the horrible notation, this finishes the proof that (1) implies (2). \medskip\noindent Since the notion of a quasi-coherent module is intrinsic (Modules on Sites, Lemma \ref{sites-modules-lemma-special-locally-free}) we see that the equivalence (\ref{equation-alternative-small-ringed}) induces an equivalence between categories of quasi-coherent modules. Thus we have the equivalence of (2) and (3). \medskip\noindent The equivalence of (3) and (4) follows from Proposition \ref{proposition-equivalence-quasi-coherent}. \medskip\noindent Let us assume (4) and prove (1). Namely, let $\mathcal{G}$ be as in (4). Let $h : U \to U' \to S$ be a morphism of $S_{affine, \etale}$. Denote $f : U \to S$ and $f' : U' \to S$ the structure morphisms, so that $f = f' \circ h$. We have $\mathcal{F}(U') = \Gamma(U', (f')^*\mathcal{G})$ and $\mathcal{F}(U) = \Gamma(U, f^*\mathcal{G}) = \Gamma(U, h^*(f')^*\mathcal{G})$. Hence (1) holds by Schemes, Lemma \ref{schemes-lemma-widetilde-pullback}. \medskip\noindent We omit the proof in the case of the Zariski topology. \end{proof} \section{Parasitic modules} \label{section-parasitic} \noindent Parasitic modules are those which are zero when restricted to schemes flat over the base scheme. Here is the formal definition. \begin{definition} \label{definition-parasitic} Let $S$ be a scheme. Let $\tau \in \{Zar, \etale, smooth, syntomic, fppf\}$. Let $\mathcal{F}$ be a presheaf of $\mathcal{O}$-modules on $(\Sch/S)_\tau$. \begin{enumerate} \item $\mathcal{F}$ is called {\it parasitic}\footnote{This may be nonstandard notation.} if for every flat morphism $U \to S$ we have $\mathcal{F}(U) = 0$. \item $\mathcal{F}$ is called {\it parasitic for the $\tau$-topology} if for every $\tau$-covering $\{U_i \to S\}_{i \in I}$ we have $\mathcal{F}(U_i) = 0$ for all $i$. \end{enumerate} \end{definition} \noindent If $\tau = fppf$ this means that $\mathcal{F}|_{U_{Zar}} = 0$ whenever $U \to S$ is flat and locally of finite presentation; similar for the other cases. \begin{lemma} \label{lemma-cohomology-parasitic} Let $S$ be a scheme. Let $\tau \in \{Zar, \etale, smooth, syntomic, fppf\}$. Let $\mathcal{G}$ be a presheaf of $\mathcal{O}$-modules on $(\Sch/S)_\tau$. \begin{enumerate} \item If $\mathcal{G}$ is parasitic for the $\tau$-topology, then $H^p_\tau(U, \mathcal{G}) = 0$ for every $U$ open in $S$, resp.\ \'etale over $S$, resp.\ smooth over $S$, resp.\ syntomic over $S$, resp.\ flat and locally of finite presentation over $S$. \item If $\mathcal{G}$ is parasitic then $H^p_\tau(U, \mathcal{G}) = 0$ for every $U$ flat over $S$. \end{enumerate} \end{lemma} \begin{proof} Proof in case $\tau = fppf$; the other cases are proved in the exact same way. The assumption means that $\mathcal{G}(U) = 0$ for any $U \to S$ flat and locally of finite presentation. Apply Cohomology on Sites, Lemma \ref{sites-cohomology-lemma-cech-vanish-collection} to the subset $\mathcal{B} \subset \Ob((\Sch/S)_{fppf})$ consisting of $U \to S$ flat and locally of finite presentation and the collection $\text{Cov}$ of all fppf coverings of elements of $\mathcal{B}$. \end{proof} \begin{lemma} \label{lemma-direct-image-parasitic} Let $f : T \to S$ be a morphism of schemes. For any parasitic $\mathcal{O}$-module on $(\Sch/T)_\tau$ the pushforward $f_*\mathcal{F}$ and the higher direct images $R^if_*\mathcal{F}$ are parasitic $\mathcal{O}$-modules on $(\Sch/S)_\tau$. \end{lemma} \begin{proof} Recall that $R^if_*\mathcal{F}$ is the sheaf associated to the presheaf $$ U \mapsto H^i((\Sch/U \times_S T)_\tau, \mathcal{F}) $$ see Cohomology on Sites, Lemma \ref{sites-cohomology-lemma-higher-direct-images}. If $U \to S$ is flat, then $U \times_S T \to T$ is flat as a base change. Hence the displayed group is zero by Lemma \ref{lemma-cohomology-parasitic}. If $\{U_i \to U\}$ is a $\tau$-covering then $U_i \times_S T \to T$ is also flat. Hence it is clear that the sheafification of the displayed presheaf is zero on schemes $U$ flat over $S$. \end{proof} \begin{lemma} \label{lemma-quasi-coherent-and-flat-base-change} Let $S$ be a scheme. Let $\tau \in \{Zar, \etale\}$. Let $\mathcal{G}$ be a sheaf of $\mathcal{O}$-modules on $(\Sch/S)_{fppf}$ such that \begin{enumerate} \item $\mathcal{G}|_{S_\tau}$ is quasi-coherent, and \item for every flat, locally finitely presented morphism $g : U \to S$ the canonical map $g_{\tau, small}^*(\mathcal{G}|_{S_\tau}) \to \mathcal{G}|_{U_\tau}$ is an isomorphism. \end{enumerate} Then $H^p(U, \mathcal{G}) = H^p(U, \mathcal{G}|_{U_\tau})$ for every $U$ flat and locally of finite presentation over $S$. \end{lemma} \begin{proof} Let $\mathcal{F}$ be the pullback of $\mathcal{G}|_{S_\tau}$ to the big fppf site $(\Sch/S)_{fppf}$. Note that $\mathcal{F}$ is quasi-coherent. There is a canonical comparison map $\varphi : \mathcal{F} \to \mathcal{G}$ which by assumptions (1) and (2) induces an isomorphism $\mathcal{F}|_{U_\tau} \to \mathcal{G}|_{U_\tau}$ for all $g : U \to S$ flat and locally of finite presentation. Hence in the short exact sequences $$ 0 \to \Ker(\varphi) \to \mathcal{F} \to \Im(\varphi) \to 0 $$ and $$ 0 \to \Im(\varphi) \to \mathcal{G} \to \Coker(\varphi) \to 0 $$ the sheaves $\Ker(\varphi)$ and $\Coker(\varphi)$ are parasitic for the fppf topology. By Lemma \ref{lemma-cohomology-parasitic} we conclude that $H^p(U, \mathcal{F}) \to H^p(U, \mathcal{G})$ is an isomorphism for $g : U \to S$ flat and locally of finite presentation. Since the result holds for $\mathcal{F}$ by Proposition \ref{proposition-same-cohomology-quasi-coherent} we win. \end{proof} \section{Fpqc coverings are universal effective epimorphisms} \label{section-fpqc-universal-effective-epimorphisms} \noindent We apply the material above to prove an interesting result, namely Lemma \ref{lemma-fpqc-universal-effective-epimorphisms}. By Sites, Section \ref{sites-section-representable-sheaves} this lemma implies that the representable presheaves on any of the sites $(\Sch/S)_\tau$ are sheaves for $\tau \in \{Zariski, fppf, \etale, smooth, syntomic\}$. First we prove a helper lemma. \begin{lemma} \label{lemma-equiv-fibre-product} For a scheme $X$ denote $|X|$ the underlying set. Let $f : X \to S$ be a morphism of schemes. Then $$ |X \times_S X| \to |X| \times_{|S|} |X| $$ is surjective. \end{lemma} \begin{proof} Follows immediately from the description of points on the fibre product in Schemes, Lemma \ref{schemes-lemma-points-fibre-product}. \end{proof} \begin{lemma} \label{lemma-universal-effective-epimorphism-affine} Let $\{f_i : X_i \to X\}_{i \in I}$ be a family of morphisms of affine schemes. The following are equivalent \begin{enumerate} \item for any quasi-coherent $\mathcal{O}_X$-module $\mathcal{F}$ we have $$ \Gamma(X, \mathcal{F}) = \text{Equalizer}\left( \xymatrix{ \prod\nolimits_{i \in I} \Gamma(X_i, f_i^*\mathcal{F}) \ar@<1ex>[r] \ar@<-1ex>[r] & \prod\nolimits_{i, j \in I} \Gamma(X_i \times_X X_j, (f_i \times f_j)^*\mathcal{F}) } \right) $$ \item $\{f_i : X_i \to X\}_{i \in I}$ is a universal effective epimorphism (Sites, Definition \ref{sites-definition-universal-effective-epimorphisms}) in the category of affine schemes. \end{enumerate} \end{lemma} \begin{proof} Assume (2) holds and let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_X$-module. Consider the scheme (Constructions, Section \ref{constructions-section-spec}) $$ X' = \underline{\Spec}_X(\mathcal{O}_X \oplus \mathcal{F}) $$ where $\mathcal{O}_X \oplus \mathcal{F}$ is an $\mathcal{O}_X$-algebra with multiplication $(f, s)(f', s') = (ff', fs' + f's)$. If $s_i \in \Gamma(X_i, f_i^*\mathcal{F})$ is a section, then $s_i$ determines a unique element of $$ \Gamma(X' \times_X X_i, \mathcal{O}_{X' \times_X X_i}) = \Gamma(X_i, \mathcal{O}_{X_i}) \oplus \Gamma(X_i, f_i^*\mathcal{F}) $$ Proof of equality omitted. If $(s_i)_{i \in I}$ is in the equalizer of (1), then, using the equality $$ \Mor(T, \mathbf{A}^1_\mathbf{Z}) = \Gamma(T, \mathcal{O}_T) $$ which holds for any scheme $T$, we see that these sections define a family of morphisms $h_i : X' \times_X X_i \to \mathbf{A}^1_\mathbf{Z}$ with $h_i \circ \text{pr}_1 = h_j \circ \text{pr}_2$ as morphisms $(X' \times_X X_i) \times_{X'} (X' \times_X X_j) \to \mathbf{A}^1_\mathbf{Z}$. Since we've assume (2) we obtain a morphism $h : X' \to \mathbf{A}^1_\mathbf{Z}$ compatible with the morphisms $h_i$ which in turn determines an element $s \in \Gamma(X, \mathcal{F})$. We omit the verification that $s$ maps to $s_i$ in $\Gamma(X_i, f_i^*\mathcal{F})$. \medskip\noindent Assume (1). Let $T$ be an affine scheme and let $h_i : X_i \to T$ be a family of morphisms such that $h_i \circ \text{pr}_1 = h_j \circ \text{pr}_2$ on $X_i \times_X X_j$ for all $i, j \in I$. Then $$ \prod h_i^\sharp : \Gamma(T, \mathcal{O}_T) \to \prod \Gamma(X_i, \mathcal{O}_{X_i}) $$ maps into the equalizer and we find that we get a ring map $\Gamma(T, \mathcal{O}_T) \to \Gamma(X, \mathcal{O}_X)$ by the assumption of the lemma for $\mathcal{F} = \mathcal{O}_X$. This ring map corresponds to a morphism $h : X \to T$ such that $h_i = h \circ f_i$. Hence our family is an effective epimorphism. \medskip\noindent Let $p : Y \to X$ be a morphism of affines. We will show the base changes $g_i : Y_i \to Y$ of $f_i$ form an effective epimorphism by applying the result of the previous paragraph. Namely, if $\mathcal{G}$ is a quasi-coherent $\mathcal{O}_Y$-module, then $$ \Gamma(Y, \mathcal{G}) = \Gamma(X, p_*\mathcal{G}),\quad \Gamma(Y_i, g_i^*\mathcal{G}) = \Gamma(X, f_i^*p_*\mathcal{G}), $$ and $$ \Gamma(Y_i \times_Y Y_j, (g_i \times g_j)^*\mathcal{G}) = \Gamma(X, (f_i \times f_j)^*p_*\mathcal{G}) $$ by the trivial base change formula (Cohomology of Schemes, Lemma \ref{coherent-lemma-affine-base-change}). Thus we see property (1) lemma holds for the family $g_i$. \end{proof} \begin{lemma} \label{lemma-universal-effective-epimorphism-surjective} Let $\{f_i : X_i \to X\}_{i \in I}$ be a family of morphisms of schemes. \begin{enumerate} \item If the family is universal effective epimorphism in the category of schemes, then $\coprod f_i$ is surjective. \item If $X$ and $X_i$ are affine and the family is a universal effective epimorphism in the category of affine schemes, then $\coprod f_i$ is surjective. \end{enumerate} \end{lemma} \begin{proof} Omitted. Hint: perform base change by $\Spec(\kappa(x)) \to X$ to see that any $x \in X$ has to be in the image. \end{proof} \begin{lemma} \label{lemma-check-universal-effective-epimorphism-affine} Let $\{f_i : X_i \to X\}_{i \in I}$ be a family of morphisms of schemes. If for every morphism $Y \to X$ with $Y$ affine the family of base changes $g_i : Y_i \to Y$ forms an effective epimorphism, then the family of $f_i$ forms a universal effective epimorphism in the category of schemes. \end{lemma} \begin{proof} Let $Y \to X$ be a morphism of schemes. We have to show that the base changes $g_i : Y_i \to Y$ form an effective epimorphism. To do this, assume given a scheme $T$ and morphisms $h_i : Y_i \to T$ with $h_i \circ \text{pr}_1 = h_j \circ \text{pr}_2$ on $Y_i \times_Y Y_j$. Choose an affine open covering $Y = \bigcup V_\alpha$. Set $V_{\alpha, i}$ equal to the inverse image of $V_\alpha$ in $Y_i$. Then we see that $V_{\alpha, i} \to V_\alpha$ is the base change of $f_i$ by $V_\alpha \to X$. Thus by assumption the family of restrictions $h_i|_{V_{\alpha, i}}$ come from a morphism of schemes $h_\alpha : V_\alpha \to T$. We leave it to the reader to show that these agree on overlaps and define the desired morphism $Y \to T$. See discussion in Schemes, Section \ref{schemes-section-glueing-schemes}. \end{proof} \begin{lemma} \label{lemma-universal-effective-epimorphism} Let $\{f_i : X_i \to X\}_{i \in I}$ be a family of morphisms of affine schemes. Assume the equivalent assumption of Lemma \ref{lemma-universal-effective-epimorphism-affine} hold and that moreover for any morphism of affines $Y \to X$ the map $$ \coprod X_i \times_X Y \longrightarrow Y $$ is a submersive map of topological spaces (Topology, Definition \ref{topology-definition-submersive}). Then our family of morphisms is a universal effective epimorphism in the category of schemes. \end{lemma} \begin{proof} By Lemma \ref{lemma-check-universal-effective-epimorphism-affine} it suffices to base change our family of morphisms by $Y \to X$ with $Y$ affine. Set $Y_i = X_i \times_X Y$. Let $T$ be a scheme and let $h_i : Y_i \to Y$ be a family of morphisms such that $h_i \circ \text{pr}_1 = h_j \circ \text{pr}_2$ on $Y_i \times_Y Y_j$. Note that $Y$ as a set is the coequalizer of the two maps from $\coprod Y_i \times_Y Y_j$ to $\coprod Y_i$. Namely, surjectivity by the affine case of Lemma \ref{lemma-universal-effective-epimorphism-surjective} and injectivity by Lemma \ref{lemma-equiv-fibre-product}. Hence there is a set map of underlying sets $h : Y \to T$ compatible with the maps $h_i$. By the second condition of the lemma we see that $h$ is continuous! Thus if $y \in Y$ and $U \subset T$ is an affine open neighbourhood of $h(y)$, then we can find an affine open $V \subset Y$ such that $h(V) \subset U$. Setting $V_i = Y_i \times_Y V = X_i \times_X V$ we can use the result proved in Lemma \ref{lemma-universal-effective-epimorphism-affine} to see that $h|_V : V \to U \subset T$ comes from a unique morphism of affine schemes $h_V : V \to U$ agreeing with $h_i|_{V_i}$ as morphisms of schemes for all $i$. Glueing these $h_V$ (see Schemes, Section \ref{schemes-section-glueing-schemes}) gives a morphism $Y \to T$ as desired. \end{proof} \begin{lemma} \label{lemma-open-fpqc-covering} Let $\{f_i : T_i \to T\}_{i \in I}$ be a fpqc covering. Suppose that for each $i$ we have an open subset $W_i \subset T_i$ such that for all $i, j \in I$ we have $\text{pr}_0^{-1}(W_i) = \text{pr}_1^{-1}(W_j)$ as open subsets of $T_i \times_T T_j$. Then there exists a unique open subset $W \subset T$ such that $W_i = f_i^{-1}(W)$ for each $i$. \end{lemma} \begin{proof} Apply Lemma \ref{lemma-equiv-fibre-product} to the map $\coprod_{i \in I} T_i \to T$. It implies there exists a subset $W \subset T$ such that $W_i = f_i^{-1}(W)$ for each $i$, namely $W = \bigcup f_i(W_i)$. To see that $W$ is open we may work Zariski locally on $T$. Hence we may assume that $T$ is affine. Using the definition of a fpqc covering, this reduces us to the case where $\{f_i : T_i \to T\}$ is a standard fpqc covering. In this case we may apply Morphisms, Lemma \ref{morphisms-lemma-fpqc-quotient-topology} to the morphism $\coprod T_i \to T$ to conclude that $W$ is open. \end{proof} \begin{lemma} \label{lemma-fpqc-universal-effective-epimorphisms} Let $\{T_i \to T\}$ be an fpqc covering, see Topologies, Definition \ref{topologies-definition-fpqc-covering}. Then $\{T_i \to T\}$ is a universal effective epimorphism in the category of schemes, see Sites, Definition \ref{sites-definition-universal-effective-epimorphisms}. In other words, every representable functor on the category of schemes satisfies the sheaf condition for the fpqc topology, see Topologies, Definition \ref{topologies-definition-sheaf-property-fpqc}. \end{lemma} \begin{proof} Let $S$ be a scheme. We have to show the following: Given morphisms $\varphi_i : T_i \to S$ such that $\varphi_i|_{T_i \times_T T_j} = \varphi_j|_{T_i \times_T T_j}$ there exists a unique morphism $T \to S$ which restricts to $\varphi_i$ on each $T_i$. In other words, we have to show that the functor $h_S = \Mor_{\Sch}( - , S)$ satisfies the sheaf property for the fpqc topology. \medskip\noindent If $\{T_i \to T\}$ is a Zariski covering, then this follows from Schemes, Lemma \ref{schemes-lemma-glue}. Thus Topologies, Lemma \ref{topologies-lemma-sheaf-property-fpqc} reduces us to the case of a covering $\{X \to Y\}$ given by a single surjective flat morphism of affines. \medskip\noindent First proof. By Lemma \ref{lemma-sheaf-condition-holds} we have the sheaf condition for quasi-coherent modules for $\{X \to Y\}$. By Lemma \ref{lemma-open-fpqc-covering} the morphism $X \to Y$ is universally submersive. Hence we may apply Lemma \ref{lemma-universal-effective-epimorphism} to see that $\{X \to Y\}$ is a universal effective epimorphism. \medskip\noindent Second proof. Let $R \to A$ be the faithfully flat ring map corresponding to our surjective flat morphism $\pi : X \to Y$. Let $f : X \to S$ be a morphism such that $f \circ \text{pr}_1 = f \circ \text{pr}_2$ as morphisms $X \times_Y X = \Spec(A \otimes_R A) \to S$. By Lemma \ref{lemma-equiv-fibre-product} we see that as a map on the underlying sets $f$ is of the form $f = g \circ \pi$ for some (set theoretic) map $g : \Spec(R) \to S$. By Morphisms, Lemma \ref{morphisms-lemma-fpqc-quotient-topology} and the fact that $f$ is continuous we see that $g$ is continuous. \medskip\noindent Pick $y \in Y = \Spec(R)$. Choose $U \subset S$ affine open containing $g(y)$. Say $U = \Spec(B)$. By the above we may choose an $r \in R$ such that $y \in D(r) \subset g^{-1}(U)$. The restriction of $f$ to $\pi^{-1}(D(r))$ into $U$ corresponds to a ring map $B \to A_r$. The two induced ring maps $B \to A_r \otimes_{R_r} A_r = (A \otimes_R A)_r$ are equal by assumption on $f$. Note that $R_r \to A_r$ is faithfully flat. By Lemma \ref{lemma-ff-exact} the equalizer of the two arrows $A_r \to A_r \otimes_{R_r} A_r$ is $R_r$. We conclude that $B \to A_r$ factors uniquely through a map $B \to R_r$. This map in turn gives a morphism of schemes $D(r) \to U \to S$, see Schemes, Lemma \ref{schemes-lemma-morphism-into-affine}. \medskip\noindent What have we proved so far? We have shown that for any prime $\mathfrak p \subset R$, there exists a standard affine open $D(r) \subset \Spec(R)$ such that the morphism $f|_{\pi^{-1}(D(r))} : \pi^{-1}(D(r)) \to S$ factors uniquely through some morphism of schemes $D(r) \to S$. We omit the verification that these morphisms glue to the desired morphism $\Spec(R) \to S$. \end{proof} \begin{lemma} \label{lemma-coequalizer-fpqc-local} Consider schemes $X, Y, Z$ and morphisms $a, b : X \to Y$ and a morphism $c : Y \to Z$ with $c \circ a = c \circ b$. Set $d = c \circ a = c \circ b$. If there exists an fpqc covering $\{Z_i \to Z\}$ such that \begin{enumerate} \item for all $i$ the morphism $Y \times_{c, Z} Z_i \to Z_i$ is the coequalizer of $(a, 1) : X \times_{d, Z} Z_i \to Y \times_{c, Z} Z_i$ and $(b, 1) : X \times_{d, Z} Z_i \to Y \times_{c, Z} Z_i$, and \item for all $i$ and $i'$ the morphism $Y \times_{c, Z} (Z_i \times_Z Z_{i'}) \to (Z_i \times_Z Z_{i'})$ is the coequalizer of $(a, 1) : X \times_{d, Z} (Z_i \times_Z Z_{i'}) \to Y \times_{c, Z} (Z_i \times_Z Z_{i'})$ and $(b, 1) : X \times_{d, Z} (Z_i \times_Z Z_{i'}) \to Y \times_{c, Z} (Z_i \times_Z Z_{i'})$ \end{enumerate} then $c$ is the coequalizer of $a$ and $b$. \end{lemma} \begin{proof} Namely, for a scheme $T$ a morphism $Z \to T$ is the same thing as a collection of morphism $Z_i \to T$ which agree on overlaps by Lemma \ref{lemma-fpqc-universal-effective-epimorphisms}. \end{proof} \section{Descent of finiteness and smoothness properties of morphisms} \label{section-descent-finiteness-morphisms} \noindent In this section we show that several properties of morphisms (being smooth, locally of finite presentation, and so on) descend under faithfully flat morphisms. We start with an algebraic version. (The ``Noetherian'' reader should consult Lemma \ref{lemma-finite-type-local-source-fppf-algebra} instead of the next lemma.) \begin{lemma} \label{lemma-flat-finitely-presented-permanence-algebra} Let $R \to A \to B$ be ring maps. Assume $R \to B$ is of finite presentation and $A \to B$ faithfully flat and of finite presentation. Then $R \to A$ is of finite presentation. \end{lemma} \begin{proof} Consider the algebra $C = B \otimes_A B$ together with the pair of maps $p, q : B \to C$ given by $p(b) = b \otimes 1$ and $q(b) = 1 \otimes b$. Of course the two compositions $A \to B \to C$ are the same. Note that as $p : B \to C$ is flat and of finite presentation (base change of $A \to B$), the ring map $R \to C$ is of finite presentation (as the composite of $R \to B \to C$). \medskip\noindent We are going to use the criterion Algebra, Lemma \ref{algebra-lemma-characterize-finite-presentation} to show that $R \to A$ is of finite presentation. Let $S$ be any $R$-algebra, and suppose that $S = \colim_{\lambda \in \Lambda} S_\lambda$ is written as a directed colimit of $R$-algebras. Let $A \to S$ be an $R$-algebra homomorphism. We have to show that $A \to S$ factors through one of the $S_\lambda$. Consider the rings $B' = S \otimes_A B$ and $C' = S \otimes_A C = B' \otimes_S B'$. As $B$ is faithfully flat of finite presentation over $A$, also $B'$ is faithfully flat of finite presentation over $S$. By Algebra, Lemma \ref{algebra-lemma-flat-finite-presentation-limit-flat} part (2) applied to the pair $(S \to B', B')$ and the system $(S_\lambda)$ there exists a $\lambda_0 \in \Lambda$ and a flat, finitely presented $S_{\lambda_0}$-algebra $B_{\lambda_0}$ such that $B' = S \otimes_{S_{\lambda_0}} B_{\lambda_0}$. For $\lambda \geq \lambda_0$ set $B_\lambda = S_\lambda \otimes_{S_{\lambda_0}} B_{\lambda_0}$ and $C_\lambda = B_\lambda \otimes_{S_\lambda} B_\lambda$. \medskip\noindent We interrupt the flow of the argument to show that $S_\lambda \to B_\lambda$ is faithfully flat for $\lambda$ large enough. (This should really be a separate lemma somewhere else, maybe in the chapter on limits.) Since $\Spec(B_{\lambda_0}) \to \Spec(S_{\lambda_0})$ is flat and of finite presentation it is open (see Morphisms, Lemma \ref{morphisms-lemma-fppf-open}). Let $I \subset S_{\lambda_0}$ be an ideal such that $V(I) \subset \Spec(S_{\lambda_0})$ is the complement of the image. Note that formation of the image commutes with base change. Hence, since $\Spec(B') \to \Spec(S)$ is surjective, and $B' = B_{\lambda_0} \otimes_{S_{\lambda_0}} S$ we see that $IS = S$. Thus for some $\lambda \geq \lambda_0$ we have $IS_{\lambda} = S_\lambda$. For this and all greater $\lambda$ the morphism $\Spec(B_\lambda) \to \Spec(S_\lambda)$ is surjective. \medskip\noindent By analogy with the notation in the first paragraph of the proof denote $p_\lambda, q_\lambda : B_\lambda \to C_\lambda$ the two canonical maps. Then $B' = \colim_{\lambda \geq \lambda_0} B_\lambda$ and $C' = \colim_{\lambda \geq \lambda_0} C_\lambda$. Since $B$ and $C$ are finitely presented over $R$ there exist (by Algebra, Lemma \ref{algebra-lemma-characterize-finite-presentation} applied several times) a $\lambda \geq \lambda_0$ and an $R$-algebra maps $B \to B_\lambda$, $C \to C_\lambda$ such that the diagram $$ \xymatrix{ C \ar[rr] & & C_\lambda \\ B \ar[rr] \ar@<1ex>[u]^-p \ar@<-1ex>[u]_-q & & B_\lambda \ar@<1ex>[u]^-{p_\lambda} \ar@<-1ex>[u]_-{q_\lambda} } $$ is commutative. OK, and this means that $A \to B \to B_\lambda$ maps into the equalizer of $p_\lambda$ and $q_\lambda$. By Lemma \ref{lemma-ff-exact} we see that $S_\lambda$ is the equalizer of $p_\lambda$ and $q_\lambda$. Thus we get the desired ring map $A \to S_\lambda$ and we win. \end{proof} \noindent Here is an easier version of this dealing with the property of being of finite type. \begin{lemma} \label{lemma-finite-type-local-source-fppf-algebra} Let $R \to A \to B$ be ring maps. Assume $R \to B$ is of finite type and $A \to B$ faithfully flat and of finite presentation. Then $R \to A$ is of finite type. \end{lemma} \begin{proof} By Algebra, Lemma \ref{algebra-lemma-descend-faithfully-flat-finite-presentation} there exists a commutative diagram $$ \xymatrix{ R \ar[r] \ar@{=}[d] & A_0 \ar[d] \ar[r] & B_0 \ar[d] \\ R \ar[r] & A \ar[r] & B } $$ with $R \to A_0$ of finite presentation, $A_0 \to B_0$ faithfully flat of finite presentation and $B = A \otimes_{A_0} B_0$. Since $R \to B$ is of finite type by assumption, we may add some elements to $A_0$ and assume that the map $B_0 \to B$ is surjective! In this case, since $A_0 \to B_0$ is faithfully flat, we see that as $$ (A_0 \to A) \otimes_{A_0} B_0 \cong (B_0 \to B) $$ is surjective, also $A_0 \to A$ is surjective. Hence we win. \end{proof} \begin{lemma} \label{lemma-flat-finitely-presented-permanence} \begin{reference} \cite[IV, 17.7.5 (i) and (ii)]{EGA}. \end{reference} Let $$ \xymatrix{ X \ar[rr]_f \ar[rd]_p & & Y \ar[dl]^q \\ & S } $$ be a commutative diagram of morphisms of schemes. Assume that $f$ is surjective, flat and locally of finite presentation and assume that $p$ is locally of finite presentation (resp.\ locally of finite type). Then $q$ is locally of finite presentation (resp.\ locally of finite type). \end{lemma} \begin{proof} The problem is local on $S$ and $Y$. Hence we may assume that $S$ and $Y$ are affine. Since $f$ is flat and locally of finite presentation, we see that $f$ is open (Morphisms, Lemma \ref{morphisms-lemma-fppf-open}). Hence, since $Y$ is quasi-compact, there exist finitely many affine opens $X_i \subset X$ such that $Y = \bigcup f(X_i)$. Clearly we may replace $X$ by $\coprod X_i$, and hence we may assume $X$ is affine as well. In this case the lemma is equivalent to Lemma \ref{lemma-flat-finitely-presented-permanence-algebra} (resp. Lemma \ref{lemma-finite-type-local-source-fppf-algebra}) above. \end{proof} \noindent We use this to improve some of the results on morphisms obtained earlier. \begin{lemma} \label{lemma-syntomic-smooth-etale-permanence} Let $$ \xymatrix{ X \ar[rr]_f \ar[rd]_p & & Y \ar[dl]^q \\ & S } $$ be a commutative diagram of morphisms of schemes. Assume that \begin{enumerate} \item $f$ is surjective, and syntomic (resp.\ smooth, resp.\ \'etale), \item $p$ is syntomic (resp.\ smooth, resp.\ \'etale). \end{enumerate} Then $q$ is syntomic (resp.\ smooth, resp.\ \'etale). \end{lemma} \begin{proof} Combine Morphisms, Lemmas \ref{morphisms-lemma-syntomic-permanence}, \ref{morphisms-lemma-smooth-permanence}, and \ref{morphisms-lemma-etale-permanence-two} with Lemma \ref{lemma-flat-finitely-presented-permanence} above. \end{proof} \noindent Actually we can strengthen this result as follows. \begin{lemma} \label{lemma-smooth-permanence} Let $$ \xymatrix{ X \ar[rr]_f \ar[rd]_p & & Y \ar[dl]^q \\ & S } $$ be a commutative diagram of morphisms of schemes. Assume that \begin{enumerate} \item $f$ is surjective, flat, and locally of finite presentation, \item $p$ is smooth (resp.\ \'etale). \end{enumerate} Then $q$ is smooth (resp.\ \'etale). \end{lemma} \begin{proof} Assume (1) and that $p$ is smooth. By Lemma \ref{lemma-flat-finitely-presented-permanence} we see that $q$ is locally of finite presentation. By Morphisms, Lemma \ref{morphisms-lemma-flat-permanence} we see that $q$ is flat. Hence now it suffices to show that the fibres of $q$ are smooth, see Morphisms, Lemma \ref{morphisms-lemma-smooth-flat-smooth-fibres}. Apply Varieties, Lemma \ref{varieties-lemma-flat-under-smooth} to the flat surjective morphisms $X_s \to Y_s$ for $s \in S$ to conclude. We omit the proof of the \'etale case. \end{proof} \begin{remark} \label{remark-smooth-permanence} With the assumptions (1) and $p$ smooth in Lemma \ref{lemma-smooth-permanence} it is not automatically the case that $X \to Y$ is smooth. A counter example is $S = \Spec(k)$, $X = \Spec(k[s])$, $Y = \Spec(k[t])$ and $f$ given by $t \mapsto s^2$. But see also Lemma \ref{lemma-syntomic-permanence} for some information on the structure of $f$. \end{remark} \begin{lemma} \label{lemma-syntomic-permanence} Let $$ \xymatrix{ X \ar[rr]_f \ar[rd]_p & & Y \ar[dl]^q \\ & S } $$ be a commutative diagram of morphisms of schemes. Assume that \begin{enumerate} \item $f$ is surjective, flat, and locally of finite presentation, \item $p$ is syntomic. \end{enumerate} Then both $q$ and $f$ are syntomic. \end{lemma} \begin{proof} By Lemma \ref{lemma-flat-finitely-presented-permanence} we see that $q$ is of finite presentation. By Morphisms, Lemma \ref{morphisms-lemma-flat-permanence} we see that $q$ is flat. By Morphisms, Lemma \ref{morphisms-lemma-syntomic-locally-standard-syntomic} it now suffices to show that the local rings of the fibres of $Y \to S$ and the fibres of $X \to Y$ are local complete intersection rings. To do this we may take the fibre of $X \to Y \to S$ at a point $s \in S$, i.e., we may assume $S$ is the spectrum of a field. Pick a point $x \in X$ with image $y \in Y$ and consider the ring map $$ \mathcal{O}_{Y, y} \longrightarrow \mathcal{O}_{X, x} $$ This is a flat local homomorphism of local Noetherian rings. The local ring $\mathcal{O}_{X, x}$ is a complete intersection. Thus may use Avramov's result, see Divided Power Algebra, Lemma \ref{dpa-lemma-avramov}, to conclude that both $\mathcal{O}_{Y, y}$ and $\mathcal{O}_{X, x}/\mathfrak m_y\mathcal{O}_{X, x}$ are complete intersection rings. \end{proof} \noindent The following type of lemma is occasionally useful. \begin{lemma} \label{lemma-curiosity} Let $X \to Y \to Z$ be morphism of schemes. Let $P$ be one of the following properties of morphisms of schemes: flat, locally finite type, locally finite presentation. Assume that $X \to Z$ has $P$ and that $\{X \to Y\}$ can be refined by an fppf covering of $Y$. Then $Y \to Z$ is $P$. \end{lemma} \begin{proof} Let $\Spec(C) \subset Z$ be an affine open and let $\Spec(B) \subset Y$ be an affine open which maps into $\Spec(C)$. The assumption on $X \to Y$ implies we can find a standard affine fppf covering $\{\Spec(B_j) \to \Spec(B)\}$ and lifts $x_j : \Spec(B_j) \to X$. Since $\Spec(B_j)$ is quasi-compact we can find finitely many affine opens $\Spec(A_i) \subset X$ lying over $\Spec(B)$ such that the image of each $x_j$ is contained in the union $\bigcup \Spec(A_i)$. Hence after replacing each $\Spec(B_j)$ by a standard affine Zariski coverings of itself we may assume we have a standard affine fppf covering $\{\Spec(B_i) \to \Spec(B)\}$ such that each $\Spec(B_i) \to Y$ factors through an affine open $\Spec(A_i) \subset X$ lying over $\Spec(B)$. In other words, we have ring maps $C \to B \to A_i \to B_i$ for each $i$. Note that we can also consider $$ C \to B \to A = \prod A_i \to B' = \prod B_i $$ and that the ring map $B \to \prod B_i$ is faithfully flat and of finite presentation. \medskip\noindent The case $P = flat$. In this case we know that $C \to A$ is flat and we have to prove that $C \to B$ is flat. Suppose that $N \to N' \to N''$ is an exact sequence of $C$-modules. We want to show that $N \otimes_C B \to N' \otimes_C B \to N'' \otimes_C B$ is exact. Let $H$ be its cohomology and let $H'$ be the cohomology of $N \otimes_C B' \to N' \otimes_C B' \to N'' \otimes_C B'$. As $B \to B'$ is flat we know that $H' = H \otimes_B B'$. On the other hand $N \otimes_C A \to N' \otimes_C A \to N'' \otimes_C A$ is exact hence has zero cohomology. Hence the map $H \to H'$ is zero (as it factors through the zero module). Thus $H' = 0$. As $B \to B'$ is faithfully flat we conclude that $H = 0$ as desired. \medskip\noindent The case $P = locally\ finite\ type$. In this case we know that $C \to A$ is of finite type and we have to prove that $C \to B$ is of finite type. Because $B \to B'$ is of finite presentation (hence of finite type) we see that $A \to B'$ is of finite type, see Algebra, Lemma \ref{algebra-lemma-compose-finite-type}. Therefore $C \to B'$ is of finite type and we conclude by Lemma \ref{lemma-finite-type-local-source-fppf-algebra}. \medskip\noindent The case $P = locally\ finite\ presentation$. In this case we know that $C \to A$ is of finite presentation and we have to prove that $C \to B$ is of finite presentation. Because $B \to B'$ is of finite presentation and $B \to A$ of finite type we see that $A \to B'$ is of finite presentation, see Algebra, Lemma \ref{algebra-lemma-compose-finite-type}. Therefore $C \to B'$ is of finite presentation and we conclude by Lemma \ref{lemma-flat-finitely-presented-permanence-algebra}. \end{proof} \section{Local properties of schemes} \label{section-descending-properties} \noindent It often happens one can prove the members of a covering of a scheme have a certain property. In many cases this implies the scheme has the property too. For example, if $S$ is a scheme, and $f : S' \to S$ is a surjective flat morphism such that $S'$ is a reduced scheme, then $S$ is reduced. You can prove this by looking at local rings and using Algebra, Lemma \ref{algebra-lemma-descent-reduced}. We say that the property of being reduced {\it descends through flat surjective morphisms}. Some results of this type are collected in Algebra, Section \ref{algebra-section-descending-properties} and for schemes in Section \ref{section-variants}. Some analogous results on descending properties of morphisms are in Section \ref{section-descent-finiteness-morphisms}. \medskip\noindent On the other hand, there are examples of surjective flat morphisms $f : S' \to S$ with $S$ reduced and $S'$ not, for example the morphism $\Spec(k[x]/(x^2)) \to \Spec(k)$. Hence the property of being reduced does not {\it ascend along flat morphisms}. Having infinite residue fields is a property which does ascend along flat morphisms (but does not descend along surjective flat morphisms of course). Some results of this type are collected in Algebra, Section \ref{algebra-section-ascending-properties}. \medskip\noindent Finally, we say that a property is {\it local for the flat topology} if it ascends along flat morphisms and descends along flat surjective morphisms. A somewhat silly example is the property of having residue fields of a given characteristic. To be more precise, and to tie this in with the various topologies on schemes, we make the following formal definition. \begin{definition} \label{definition-property-local} Let $\mathcal{P}$ be a property of schemes. Let $\tau \in \{fpqc, \linebreak[0] fppf, \linebreak[0] syntomic, \linebreak[0] smooth, \linebreak[0] \etale, \linebreak[0] Zariski\}$. We say $\mathcal{P}$ is {\it local in the $\tau$-topology} if for any $\tau$-covering $\{S_i \to S\}_{i \in I}$ (see Topologies, Section \ref{topologies-section-procedure}) we have $$ S \text{ has }\mathcal{P} \Leftrightarrow \text{each }S_i \text{ has }\mathcal{P}. $$ \end{definition} \noindent To be sure, since isomorphisms are always coverings we see (or require) that property $\mathcal{P}$ holds for $S$ if and only if it holds for any scheme $S'$ isomorphic to $S$. In fact, if $\tau = fpqc, \linebreak[0] fppf, \linebreak[0] syntomic, \linebreak[0] smooth, \linebreak[0] \etale$, or $Zariski$, then if $S$ has $\mathcal{P}$ and $S' \to S$ is flat, flat and locally of finite presentation, syntomic, smooth, \'etale, or an open immersion, then $S'$ has $\mathcal{P}$. This is true because we can always extend $\{S' \to S\}$ to a $\tau$-covering. \medskip\noindent We have the following implications: $\mathcal{P}$ is local in the fpqc topology $\Rightarrow$ $\mathcal{P}$ is local in the fppf topology $\Rightarrow$ $\mathcal{P}$ is local in the syntomic topology $\Rightarrow$ $\mathcal{P}$ is local in the smooth topology $\Rightarrow$ $\mathcal{P}$ is local in the \'etale topology $\Rightarrow$ $\mathcal{P}$ is local in the Zariski topology. This follows from Topologies, Lemmas \ref{topologies-lemma-zariski-etale}, \ref{topologies-lemma-zariski-etale-smooth}, \ref{topologies-lemma-zariski-etale-smooth-syntomic}, \ref{topologies-lemma-zariski-etale-smooth-syntomic-fppf}, and \ref{topologies-lemma-zariski-etale-smooth-syntomic-fppf-fpqc}. \begin{lemma} \label{lemma-descending-properties} Let $\mathcal{P}$ be a property of schemes. Let $\tau \in \{fpqc, \linebreak[0] fppf, \linebreak[0] \etale, \linebreak[0] smooth, \linebreak[0] syntomic\}$. Assume that \begin{enumerate} \item the property is local in the Zariski topology, \item for any morphism of affine schemes $S' \to S$ which is flat, flat of finite presentation, \'etale, smooth or syntomic depending on whether $\tau$ is fpqc, fppf, \'etale, smooth, or syntomic, property $\mathcal{P}$ holds for $S'$ if property $\mathcal{P}$ holds for $S$, and \item for any surjective morphism of affine schemes $S' \to S$ which is flat, flat of finite presentation, \'etale, smooth or syntomic depending on whether $\tau$ is fpqc, fppf, \'etale, smooth, or syntomic, property $\mathcal{P}$ holds for $S$ if property $\mathcal{P}$ holds for $S'$. \end{enumerate} Then $\mathcal{P}$ is $\tau$ local on the base. \end{lemma} \begin{proof} This follows almost immediately from the definition of a $\tau$-covering, see Topologies, Definition \ref{topologies-definition-fpqc-covering} \ref{topologies-definition-fppf-covering} \ref{topologies-definition-etale-covering} \ref{topologies-definition-smooth-covering}, or \ref{topologies-definition-syntomic-covering} and Topologies, Lemma \ref{topologies-lemma-fpqc-affine}, \ref{topologies-lemma-fppf-affine}, \ref{topologies-lemma-etale-affine}, \ref{topologies-lemma-smooth-affine}, or \ref{topologies-lemma-syntomic-affine}. Details omitted. \end{proof} \begin{remark} \label{remark-descending-properties-standard} In Lemma \ref{lemma-descending-properties} above if $\tau = smooth$ then in condition (3) we may assume that the morphism is a (surjective) standard smooth morphism. Similarly, when $\tau = syntomic$ or $\tau = \etale$. \end{remark} \section{Properties of schemes local in the fppf topology} \label{section-descending-properties-fppf} \noindent In this section we find some properties of schemes which are local on the base in the fppf topology. \begin{lemma} \label{lemma-Noetherian-local-fppf} The property $\mathcal{P}(S) =$``$S$ is locally Noetherian'' is local in the fppf topology. \end{lemma} \begin{proof} We will use Lemma \ref{lemma-descending-properties}. First we note that ``being locally Noetherian'' is local in the Zariski topology. This is clear from the definition, see Properties, Definition \ref{properties-definition-noetherian}. Next, we show that if $S' \to S$ is a flat, finitely presented morphism of affines and $S$ is locally Noetherian, then $S'$ is locally Noetherian. This is Morphisms, Lemma \ref{morphisms-lemma-finite-type-noetherian}. Finally, we have to show that if $S' \to S$ is a surjective flat, finitely presented morphism of affines and $S'$ is locally Noetherian, then $S$ is locally Noetherian. This follows from Algebra, Lemma \ref{algebra-lemma-descent-Noetherian}. Thus (1), (2) and (3) of Lemma \ref{lemma-descending-properties} hold and we win. \end{proof} \begin{lemma} \label{lemma-Jacobson-local-fppf} The property $\mathcal{P}(S) =$``$S$ is Jacobson'' is local in the fppf topology. \end{lemma} \begin{proof} We will use Lemma \ref{lemma-descending-properties}. First we note that ``being Jacobson'' is local in the Zariski topology. This is Properties, Lemma \ref{properties-lemma-locally-jacobson}. Next, we show that if $S' \to S$ is a flat, finitely presented morphism of affines and $S$ is Jacobson, then $S'$ is Jacobson. This is Morphisms, Lemma \ref{morphisms-lemma-Jacobson-universally-Jacobson}. Finally, we have to show that if $f : S' \to S$ is a surjective flat, finitely presented morphism of affines and $S'$ is Jacobson, then $S$ is Jacobson. Say $S = \Spec(A)$ and $S' = \Spec(B)$ and $S' \to S$ given by $A \to B$. Then $A \to B$ is finitely presented and faithfully flat. Moreover, the ring $B$ is Jacobson, see Properties, Lemma \ref{properties-lemma-locally-jacobson}. \medskip\noindent By Algebra, Lemma \ref{algebra-lemma-fppf-fpqf} there exists a diagram $$ \xymatrix{ B \ar[rr] & & B' \\ & A \ar[ru] \ar[lu] & } $$ with $A \to B'$ finitely presented, faithfully flat and quasi-finite. In particular, $B \to B'$ is finite type, and we see from Algebra, Proposition \ref{algebra-proposition-Jacobson-permanence} that $B'$ is Jacobson. Hence we may assume that $A \to B$ is quasi-finite as well as faithfully flat and of finite presentation. \medskip\noindent Assume $A$ is not Jacobson to get a contradiction. According to Algebra, Lemma \ref{algebra-lemma-characterize-jacobson} there exists a nonmaximal prime $\mathfrak p \subset A$ and an element $f \in A$, $f \not \in \mathfrak p$ such that $V(\mathfrak p) \cap D(f) = \{\mathfrak p\}$. \medskip\noindent This leads to a contradiction as follows. First let $\mathfrak p \subset \mathfrak m$ be a maximal ideal of $A$. Pick a prime $\mathfrak m' \subset B$ lying over $\mathfrak m$ (exists because $A \to B$ is faithfully flat, see Algebra, Lemma \ref{algebra-lemma-ff-rings}). As $A \to B$ is flat, by going down see Algebra, Lemma \ref{algebra-lemma-flat-going-down}, we can find a prime $\mathfrak q \subset \mathfrak m'$ lying over $\mathfrak p$. In particular we see that $\mathfrak q$ is not maximal. Hence according to Algebra, Lemma \ref{algebra-lemma-characterize-jacobson} again the set $V(\mathfrak q) \cap D(f)$ is infinite (here we finally use that $B$ is Jacobson). All points of $V(\mathfrak q) \cap D(f)$ map to $V(\mathfrak p) \cap D(f) = \{\mathfrak p\}$. Hence the fibre over $\mathfrak p$ is infinite. This contradicts the fact that $A \to B$ is quasi-finite (see Algebra, Lemma \ref{algebra-lemma-quasi-finite} or more explicitly Morphisms, Lemma \ref{morphisms-lemma-quasi-finite}). Thus the lemma is proved. \end{proof} \begin{lemma} \label{lemma-locally-finite-nr-irred-local-fppf} The property $\mathcal{P}(S) =$``every quasi-compact open of $S$ has a finite number of irreducible components'' is local in the fppf topology. \end{lemma} \begin{proof} We will use Lemma \ref{lemma-descending-properties}. First we note that $\mathcal{P}$ is local in the Zariski topology. Next, we show that if $T \to S$ is a flat, finitely presented morphism of affines and $S$ has a finite number of irreducible components, then so does $T$. Namely, since $T \to S$ is flat, the generic points of $T$ map to the generic points of $S$, see Morphisms, Lemma \ref{morphisms-lemma-generalizations-lift-flat}. Hence it suffices to show that for $s \in S$ the fibre $T_s$ has a finite number of generic points. Note that $T_s$ is an affine scheme of finite type over $\kappa(s)$, see Morphisms, Lemma \ref{morphisms-lemma-base-change-finite-type}. Hence $T_s$ is Noetherian and has a finite number of irreducible components (Morphisms, Lemma \ref{morphisms-lemma-finite-type-noetherian} and Properties, Lemma \ref{properties-lemma-Noetherian-irreducible-components}). Finally, we have to show that if $T \to S$ is a surjective flat, finitely presented morphism of affines and $T$ has a finite number of irreducible components, then so does $S$. This follows from Topology, Lemma \ref{topology-lemma-surjective-continuous-irreducible-components}. Thus (1), (2) and (3) of Lemma \ref{lemma-descending-properties} hold and we win. \end{proof} \section{Properties of schemes local in the syntomic topology} \label{section-descending-properties-syntomic} \noindent In this section we find some properties of schemes which are local on the base in the syntomic topology. \begin{lemma} \label{lemma-Sk-local-syntomic} The property $\mathcal{P}(S) =$``$S$ is locally Noetherian and $(S_k)$'' is local in the syntomic topology. \end{lemma} \begin{proof} We will check (1), (2) and (3) of Lemma \ref{lemma-descending-properties}. As a syntomic morphism is flat of finite presentation (Morphisms, Lemmas \ref{morphisms-lemma-syntomic-flat} and \ref{morphisms-lemma-syntomic-locally-finite-presentation}) we have already checked this for ``being locally Noetherian'' in the proof of Lemma \ref{lemma-Noetherian-local-fppf}. We will use this without further mention in the proof. First we note that $\mathcal{P}$ is local in the Zariski topology. This is clear from the definition, see Cohomology of Schemes, Definition \ref{coherent-definition-depth}. Next, we show that if $S' \to S$ is a syntomic morphism of affines and $S$ has $\mathcal{P}$, then $S'$ has $\mathcal{P}$. This is Algebra, Lemma \ref{algebra-lemma-Sk-goes-up} (use Morphisms, Lemma \ref{morphisms-lemma-syntomic-characterize} and Algebra, Definition \ref{algebra-definition-lci} and Lemma \ref{algebra-lemma-lci-CM}). Finally, we show that if $S' \to S$ is a surjective syntomic morphism of affines and $S'$ has $\mathcal{P}$, then $S$ has $\mathcal{P}$. This is Algebra, Lemma \ref{algebra-lemma-descent-Sk}. Thus (1), (2) and (3) of Lemma \ref{lemma-descending-properties} hold and we win. \end{proof} \begin{lemma} \label{lemma-CM-local-syntomic} The property $\mathcal{P}(S) =$``$S$ is Cohen-Macaulay'' is local in the syntomic topology. \end{lemma} \begin{proof} This is clear from Lemma \ref{lemma-Sk-local-syntomic} above since a scheme is Cohen-Macaulay if and only if it is locally Noetherian and $(S_k)$ for all $k \geq 0$, see Properties, Lemma \ref{properties-lemma-scheme-CM-iff-all-Sk}. \end{proof} \section{Properties of schemes local in the smooth topology} \label{section-descending-properties-smooth} \noindent In this section we find some properties of schemes which are local on the base in the smooth topology. \begin{lemma} \label{lemma-reduced-local-smooth} The property $\mathcal{P}(S) =$``$S$ is reduced'' is local in the smooth topology. \end{lemma} \begin{proof} We will use Lemma \ref{lemma-descending-properties}. First we note that ``being reduced'' is local in the Zariski topology. This is clear from the definition, see Schemes, Definition \ref{schemes-definition-reduced}. Next, we show that if $S' \to S$ is a smooth morphism of affines and $S$ is reduced, then $S'$ is reduced. This is Algebra, Lemma \ref{algebra-lemma-reduced-goes-up}. Finally, we show that if $S' \to S$ is a surjective smooth morphism of affines and $S'$ is reduced, then $S$ is reduced. This is Algebra, Lemma \ref{algebra-lemma-descent-reduced}. Thus (1), (2) and (3) of Lemma \ref{lemma-descending-properties} hold and we win. \end{proof} \begin{lemma} \label{lemma-normal-local-smooth} \begin{slogan} Normality is local in the smooth topology. \end{slogan} The property $\mathcal{P}(S) =$``$S$ is normal'' is local in the smooth topology. \end{lemma} \begin{proof} We will use Lemma \ref{lemma-descending-properties}. First we show ``being normal'' is local in the Zariski topology. This is clear from the definition, see Properties, Definition \ref{properties-definition-normal}. Next, we show that if $S' \to S$ is a smooth morphism of affines and $S$ is normal, then $S'$ is normal. This is Algebra, Lemma \ref{algebra-lemma-normal-goes-up}. Finally, we show that if $S' \to S$ is a surjective smooth morphism of affines and $S'$ is normal, then $S$ is normal. This is Algebra, Lemma \ref{algebra-lemma-descent-normal}. Thus (1), (2) and (3) of Lemma \ref{lemma-descending-properties} hold and we win. \end{proof} \begin{lemma} \label{lemma-Rk-local-smooth} The property $\mathcal{P}(S) =$``$S$ is locally Noetherian and $(R_k)$'' is local in the smooth topology. \end{lemma} \begin{proof} We will check (1), (2) and (3) of Lemma \ref{lemma-descending-properties}. As a smooth morphism is flat of finite presentation (Morphisms, Lemmas \ref{morphisms-lemma-smooth-flat} and \ref{morphisms-lemma-smooth-locally-finite-presentation}) we have already checked this for ``being locally Noetherian'' in the proof of Lemma \ref{lemma-Noetherian-local-fppf}. We will use this without further mention in the proof. First we note that $\mathcal{P}$ is local in the Zariski topology. This is clear from the definition, see Properties, Definition \ref{properties-definition-Rk}. Next, we show that if $S' \to S$ is a smooth morphism of affines and $S$ has $\mathcal{P}$, then $S'$ has $\mathcal{P}$. This is Algebra, Lemmas \ref{algebra-lemma-Rk-goes-up} (use Morphisms, Lemma \ref{morphisms-lemma-smooth-characterize}, Algebra, Lemmas \ref{algebra-lemma-base-change-smooth} and \ref{algebra-lemma-characterize-smooth-over-field}). Finally, we show that if $S' \to S$ is a surjective smooth morphism of affines and $S'$ has $\mathcal{P}$, then $S$ has $\mathcal{P}$. This is Algebra, Lemma \ref{algebra-lemma-descent-Rk}. Thus (1), (2) and (3) of Lemma \ref{lemma-descending-properties} hold and we win. \end{proof} \begin{lemma} \label{lemma-regular-local-smooth} The property $\mathcal{P}(S) =$``$S$ is regular'' is local in the smooth topology. \end{lemma} \begin{proof} This is clear from Lemma \ref{lemma-Rk-local-smooth} above since a locally Noetherian scheme is regular if and only if it is locally Noetherian and $(R_k)$ for all $k \geq 0$. \end{proof} \begin{lemma} \label{lemma-Nagata-local-smooth} The property $\mathcal{P}(S) =$``$S$ is Nagata'' is local in the smooth topology. \end{lemma} \begin{proof} We will check (1), (2) and (3) of Lemma \ref{lemma-descending-properties}. First we note that being Nagata is local in the Zariski topology. This is Properties, Lemma \ref{properties-lemma-locally-nagata}. Next, we show that if $S' \to S$ is a smooth morphism of affines and $S$ is Nagata, then $S'$ is Nagata. This is Morphisms, Lemma \ref{morphisms-lemma-finite-type-nagata}. Finally, we show that if $S' \to S$ is a surjective smooth morphism of affines and $S'$ is Nagata, then $S$ is Nagata. This is Algebra, Lemma \ref{algebra-lemma-descent-nagata}. Thus (1), (2) and (3) of Lemma \ref{lemma-descending-properties} hold and we win. \end{proof} \section{Variants on descending properties} \label{section-variants} \noindent Sometimes one can descend properties, which are not local. We put results of this kind in this section. See also Section \ref{section-descent-finiteness-morphisms} on descending properties of morphisms, such as smoothness. \begin{lemma} \label{lemma-descend-reduced} If $f : X \to Y$ is a flat and surjective morphism of schemes and $X$ is reduced, then $Y$ is reduced. \end{lemma} \begin{proof} The result follows by looking at local rings (Schemes, Definition \ref{schemes-definition-reduced}) and Algebra, Lemma \ref{algebra-lemma-descent-reduced}. \end{proof} \begin{lemma} \label{lemma-descend-regular} Let $f : X \to Y$ be a morphism of algebraic spaces. If $f$ is locally of finite presentation, flat, and surjective and $X$ is regular, then $Y$ is regular. \end{lemma} \begin{proof} This lemma reduces to the following algebra statement: If $A \to B$ is a faithfully flat, finitely presented ring homomorphism with $B$ Noetherian and regular, then $A$ is Noetherian and regular. We see that $A$ is Noetherian by Algebra, Lemma \ref{algebra-lemma-descent-Noetherian} and regular by Algebra, Lemma \ref{algebra-lemma-flat-under-regular}. \end{proof} \section{Germs of schemes} \label{section-germs} \begin{definition} \label{definition-germs} Germs of schemes. \begin{enumerate} \item A pair $(X, x)$ consisting of a scheme $X$ and a point $x \in X$ is called the {\it germ of $X$ at $x$}. \item A {\it morphism of germs} $f : (X, x) \to (S, s)$ is an equivalence class of morphisms of schemes $f : U \to S$ with $f(x) = s$ where $U \subset X$ is an open neighbourhood of $x$. Two such $f$, $f'$ are said to be equivalent if and only if $f$ and $f'$ agree in some open neighbourhood of $x$. \item We define the {\it composition of morphisms of germs} by composing representatives (this is well defined). \end{enumerate} \end{definition} \noindent Before we continue we need one more definition. \begin{definition} \label{definition-etale-morphism-germs} Let $f : (X, x) \to (S, s)$ be a morphism of germs. We say $f$ is {\it \'etale} (resp.\ {\it smooth}) if there exists a representative $f : U \to S$ of $f$ which is an \'etale morphism (resp.\ a smooth morphism) of schemes. \end{definition} \section{Local properties of germs} \label{section-properties-germs-local} \begin{definition} \label{definition-local-at-point} Let $\mathcal{P}$ be a property of germs of schemes. We say that $\mathcal{P}$ is {\it \'etale local} (resp.\ {\it smooth local}) if for any \'etale (resp.\ smooth) morphism of germs $(U', u') \to (U, u)$ we have $\mathcal{P}(U, u) \Leftrightarrow \mathcal{P}(U', u')$. \end{definition} \noindent Let $(X, x)$ be a germ of a scheme. The dimension of $X$ at $x$ is the minimum of the dimensions of open neighbourhoods of $x$ in $X$, and any small enough open neighbourhood has this dimension. Hence this is an invariant of the isomorphism class of the germ. We denote this simply $\dim_x(X)$. The following lemma tells us that the assertion $\dim_x(X) = d$ is an \'etale local property of germs. \begin{lemma} \label{lemma-dimension-at-point-local} Let $f : U \to V$ be an \'etale morphism of schemes. Let $u \in U$ and $v = f(u)$. Then $\dim_u(U) = \dim_v(V)$. \end{lemma} \begin{proof} In the statement $\dim_u(U)$ is the dimension of $U$ at $u$ as defined in Topology, Definition \ref{topology-definition-Krull} as the minimum of the Krull dimensions of open neighbourhoods of $u$ in $U$. Similarly for $\dim_v(V)$. \medskip\noindent Let us show that $\dim_v(V) \geq \dim_u(U)$. Let $V'$ be an open neighbourhood of $v$ in $V$. Then there exists an open neighbourhood $U'$ of $u$ in $U$ contained in $f^{-1}(V')$ such that $\dim_u(U) = \dim(U')$. Suppose that $Z_0 \subset Z_1 \subset \ldots \subset Z_n$ is a chain of irreducible closed subschemes of $U'$. If $\xi_i \in Z_i$ is the generic point then we have specializations $\xi_n \leadsto \xi_{n - 1} \leadsto \ldots \leadsto \xi_0$. This gives specializations $f(\xi_n) \leadsto f(\xi_{n - 1}) \leadsto \ldots \leadsto f(\xi_0)$ in $V'$. Note that $f(\xi_j) \not = f(\xi_i)$ if $i \not = j$ as the fibres of $f$ are discrete (see Morphisms, Lemma \ref{morphisms-lemma-etale-over-field}). Hence we see that $\dim(V') \geq n$. The inequality $\dim_v(V) \geq \dim_u(U)$ follows formally. \medskip\noindent Let us show that $\dim_u(U) \geq \dim_v(V)$. Let $U'$ be an open neighbourhood of $u$ in $U$. Note that $V' = f(U')$ is an open neighbourhood of $v$ by Morphisms, Lemma \ref{morphisms-lemma-fppf-open}. Hence $\dim(V') \geq \dim_v(V)$. Pick a chain $Z_0 \subset Z_1 \subset \ldots \subset Z_n$ of irreducible closed subschemes of $V'$. Let $\xi_i \in Z_i$ be the generic point, so we have specializations $\xi_n \leadsto \xi_{n - 1} \leadsto \ldots \leadsto \xi_0$. Since $\xi_0 \in f(U')$ we can find a point $\eta_0 \in U'$ with $f(\eta_0) = \xi_0$. Consider the map of local rings $$ \mathcal{O}_{V', \xi_0} \longrightarrow \mathcal{O}_{U', \eta_0} $$ which is a flat local ring map by Morphisms, Lemma \ref{morphisms-lemma-etale-flat}. Note that the points $\xi_i$ correspond to primes of the ring on the left by Schemes, Lemma \ref{schemes-lemma-specialize-points}. Hence by going down (see Algebra, Section \ref{algebra-section-going-up}) for the displayed ring map we can find a sequence of specializations $\eta_n \leadsto \eta_{n - 1} \leadsto \ldots \leadsto \eta_0$ in $U'$ mapping to the sequence $\xi_n \leadsto \xi_{n - 1} \leadsto \ldots \leadsto \xi_0$ under $f$. This implies that $\dim_u(U) \geq \dim_v(V)$. \end{proof} \noindent Let $(X, x)$ be a germ of a scheme. The isomorphism class of the local ring $\mathcal{O}_{X, x}$ is an invariant of the germ. The following lemma says that the property $\dim(\mathcal{O}_{X, x}) = d$ is an \'etale local property of germs. \begin{lemma} \label{lemma-dimension-local-ring-local} Let $f : U \to V$ be an \'etale morphism of schemes. Let $u \in U$ and $v = f(u)$. Then $\dim(\mathcal{O}_{U, u}) = \dim(\mathcal{O}_{V, v})$. \end{lemma} \begin{proof} The algebraic statement we are asked to prove is the following: If $A \to B$ is an \'etale ring map and $\mathfrak q$ is a prime of $B$ lying over $\mathfrak p \subset A$, then $\dim(A_{\mathfrak p}) = \dim(B_{\mathfrak q})$. This is More on Algebra, Lemma \ref{more-algebra-lemma-dimension-etale-extension}. \end{proof} \noindent Let $(X, x)$ be a germ of a scheme. The isomorphism class of the local ring $\mathcal{O}_{X, x}$ is an invariant of the germ. The following lemma says that the property ``$\mathcal{O}_{X, x}$ is regular'' is an \'etale local property of germs. \begin{lemma} \label{lemma-regular-local-ring-local} Let $f : U \to V$ be an \'etale morphism of schemes. Let $u \in U$ and $v = f(u)$. Then $\mathcal{O}_{U, u}$ is a regular local ring if and only if $\mathcal{O}_{V, v}$ is a regular local ring. \end{lemma} \begin{proof} The algebraic statement we are asked to prove is the following: If $A \to B$ is an \'etale ring map and $\mathfrak q$ is a prime of $B$ lying over $\mathfrak p \subset A$, then $A_{\mathfrak p}$ is regular if and only if $B_{\mathfrak q}$ is regular. This is More on Algebra, Lemma \ref{more-algebra-lemma-regular-etale-extension}. \end{proof} \section{Properties of morphisms local on the target} \label{section-descending-properties-morphisms} \noindent Suppose that $f : X \to Y$ is a morphism of schemes. Let $g : Y' \to Y$ be a morphism of schemes. Let $f' : X' \to Y'$ be the base change of $f$ by $g$: $$ \xymatrix{ X' \ar[d]_{f'} \ar[r]_{g'} & X \ar[d]^f \\ Y' \ar[r]^g & Y } $$ Let $\mathcal{P}$ be a property of morphisms of schemes. Then we can wonder if (a) $\mathcal{P}(f) \Rightarrow \mathcal{P}(f')$, and also whether the converse (b) $\mathcal{P}(f') \Rightarrow \mathcal{P}(f)$ is true. If (a) holds whenever $g$ is flat, then we say $\mathcal{P}$ is preserved under flat base change. If (b) holds whenever $g$ is surjective and flat, then we say $\mathcal{P}$ descends through flat surjective base changes. If $\mathcal{P}$ is preserved under flat base changes and descends through flat surjective base changes, then we say $\mathcal{P}$ is flat local on the target. Compare with the discussion in Section \ref{section-descending-properties}. This turns out to be a very important notion which we formalize in the following definition. \begin{definition} \label{definition-property-morphisms-local} Let $\mathcal{P}$ be a property of morphisms of schemes over a base. Let $\tau \in \{fpqc, fppf, syntomic, smooth, \etale, Zariski\}$. We say $\mathcal{P}$ is {\it $\tau$ local on the base}, or {\it $\tau$ local on the target}, or {\it local on the base for the $\tau$-topology} if for any $\tau$-covering $\{Y_i \to Y\}_{i \in I}$ (see Topologies, Section \ref{topologies-section-procedure}) and any morphism of schemes $f : X \to Y$ over $S$ we have $$ f \text{ has }\mathcal{P} \Leftrightarrow \text{each }Y_i \times_Y X \to Y_i\text{ has }\mathcal{P}. $$ \end{definition} \noindent To be sure, since isomorphisms are always coverings we see (or require) that property $\mathcal{P}$ holds for $X \to Y$ if and only if it holds for any arrow $X' \to Y'$ isomorphic to $X \to Y$. If a property is $\tau$-local on the target then it is preserved by base changes by morphisms which occur in $\tau$-coverings. Here is a formal statement. \begin{lemma} \label{lemma-pullback-property-local-target} Let $\tau \in \{fpqc, fppf, syntomic, smooth, \etale, Zariski\}$. Let $\mathcal{P}$ be a property of morphisms which is $\tau$ local on the target. Let $f : X \to Y$ have property $\mathcal{P}$. For any morphism $Y' \to Y$ which is flat, resp.\ flat and locally of finite presentation, resp.\ syntomic, resp.\ \'etale, resp.\ an open immersion, the base change $f' : Y' \times_Y X \to Y'$ of $f$ has property $\mathcal{P}$. \end{lemma} \begin{proof} This is true because we can fit $Y' \to Y$ into a family of morphisms which forms a $\tau$-covering. \end{proof} \noindent A simple often used consequence of the above is that if $f : X \to Y$ has property $\mathcal{P}$ which is $\tau$-local on the target and $f(X) \subset V$ for some open subscheme $V \subset Y$, then also the induced morphism $X \to V$ has $\mathcal{P}$. Proof: The base change $f$ by $V \to Y$ gives $X \to V$. \begin{lemma} \label{lemma-largest-open-of-the-base} Let $\tau \in \{fppf, syntomic, smooth, \etale\}$. Let $\mathcal{P}$ be a property of morphisms which is $\tau$ local on the target. For any morphism of schemes $f : X \to Y$ there exists a largest open $W(f) \subset Y$ such that the restriction $X_{W(f)} \to W(f)$ has $\mathcal{P}$. Moreover, \begin{enumerate} \item if $g : Y' \to Y$ is flat and locally of finite presentation, syntomic, smooth, or \'etale and the base change $f' : X_{Y'} \to Y'$ has $\mathcal{P}$, then $g(Y') \subset W(f)$, \item if $g : Y' \to Y$ is flat and locally of finite presentation, syntomic, smooth, or \'etale, then $W(f') = g^{-1}(W(f))$, and \item if $\{g_i : Y_i \to Y\}$ is a $\tau$-covering, then $g_i^{-1}(W(f)) = W(f_i)$, where $f_i$ is the base change of $f$ by $Y_i \to Y$. \end{enumerate} \end{lemma} \begin{proof} Consider the union $W$ of the images $g(Y') \subset Y$ of morphisms $g : Y' \to Y$ with the properties: \begin{enumerate} \item $g$ is flat and locally of finite presentation, syntomic, smooth, or \'etale, and \item the base change $Y' \times_{g, Y} X \to Y'$ has property $\mathcal{P}$. \end{enumerate} Since such a morphism $g$ is open (see Morphisms, Lemma \ref{morphisms-lemma-fppf-open}) we see that $W \subset Y$ is an open subset of $Y$. Since $\mathcal{P}$ is local in the $\tau$ topology the restriction $X_W \to W$ has property $\mathcal{P}$ because we are given a covering $\{Y' \to W\}$ of $W$ such that the pullbacks have $\mathcal{P}$. This proves the existence and proves that $W(f)$ has property (1). To see property (2) note that $W(f') \supset g^{-1}(W(f))$ because $\mathcal{P}$ is stable under base change by flat and locally of finite presentation, syntomic, smooth, or \'etale morphisms, see Lemma \ref{lemma-pullback-property-local-target}. On the other hand, if $Y'' \subset Y'$ is an open such that $X_{Y''} \to Y''$ has property $\mathcal{P}$, then $Y'' \to Y$ factors through $W$ by construction, i.e., $Y'' \subset g^{-1}(W(f))$. This proves (2). Assertion (3) follows from (2) because each morphism $Y_i \to Y$ is flat and locally of finite presentation, syntomic, smooth, or \'etale by our definition of a $\tau$-covering. \end{proof} \begin{lemma} \label{lemma-descending-properties-morphisms} Let $\mathcal{P}$ be a property of morphisms of schemes over a base. Let $\tau \in \{fpqc, fppf, \etale, smooth, syntomic\}$. Assume that \begin{enumerate} \item the property is preserved under flat, flat and locally of finite presentation, \'etale, smooth, or syntomic base change depending on whether $\tau$ is fpqc, fppf, \'etale, smooth, or syntomic (compare with Schemes, Definition \ref{schemes-definition-preserved-by-base-change}), \item the property is Zariski local on the base. \item for any surjective morphism of affine schemes $S' \to S$ which is flat, flat of finite presentation, \'etale, smooth or syntomic depending on whether $\tau$ is fpqc, fppf, \'etale, smooth, or syntomic, and any morphism of schemes $f : X \to S$ property $\mathcal{P}$ holds for $f$ if property $\mathcal{P}$ holds for the base change $f' : X' = S' \times_S X \to S'$. \end{enumerate} Then $\mathcal{P}$ is $\tau$ local on the base. \end{lemma} \begin{proof} This follows almost immediately from the definition of a $\tau$-covering, see Topologies, Definition \ref{topologies-definition-fpqc-covering} \ref{topologies-definition-fppf-covering} \ref{topologies-definition-etale-covering} \ref{topologies-definition-smooth-covering}, or \ref{topologies-definition-syntomic-covering} and Topologies, Lemma \ref{topologies-lemma-fpqc-affine}, \ref{topologies-lemma-fppf-affine}, \ref{topologies-lemma-etale-affine}, \ref{topologies-lemma-smooth-affine}, or \ref{topologies-lemma-syntomic-affine}. Details omitted. \end{proof} \begin{remark} \label{remark-descending-properties-morphisms-standard} (This is a repeat of Remark \ref{remark-descending-properties-standard} above.) In Lemma \ref{lemma-descending-properties-morphisms} above if $\tau = smooth$ then in condition (3) we may assume that the morphism is a (surjective) standard smooth morphism. Similarly, when $\tau = syntomic$ or $\tau = \etale$. \end{remark} \section{Properties of morphisms local in the fpqc topology on the target} \label{section-descending-properties-morphisms-fpqc} \noindent In this section we find a large number of properties of morphisms of schemes which are local on the base in the fpqc topology. By contrast, in Examples, Section \ref{examples-section-non-descending-property-projective} we will show that the properties ``projective'' and ``quasi-projective'' are not local on the base even in the Zariski topology. \begin{lemma} \label{lemma-descending-property-quasi-compact} The property $\mathcal{P}(f) =$``$f$ is quasi-compact'' is fpqc local on the base. \end{lemma} \begin{proof} A base change of a quasi-compact morphism is quasi-compact, see Schemes, Lemma \ref{schemes-lemma-quasi-compact-preserved-base-change}. Being quasi-compact is Zariski local on the base, see Schemes, Lemma \ref{schemes-lemma-quasi-compact-affine}. Finally, let $S' \to S$ be a flat surjective morphism of affine schemes, and let $f : X \to S$ be a morphism. Assume that the base change $f' : X' \to S'$ is quasi-compact. Then $X'$ is quasi-compact, and $X' \to X$ is surjective. Hence $X$ is quasi-compact. This implies that $f$ is quasi-compact. Therefore Lemma \ref{lemma-descending-properties-morphisms} applies and we win. \end{proof} \begin{lemma} \label{lemma-descending-property-quasi-separated} The property $\mathcal{P}(f) =$``$f$ is quasi-separated'' is fpqc local on the base. \end{lemma} \begin{proof} Any base change of a quasi-separated morphism is quasi-separated, see Schemes, Lemma \ref{schemes-lemma-separated-permanence}. Being quasi-separated is Zariski local on the base (from the definition or by Schemes, Lemma \ref{schemes-lemma-characterize-quasi-separated}). Finally, let $S' \to S$ be a flat surjective morphism of affine schemes, and let $f : X \to S$ be a morphism. Assume that the base change $f' : X' \to S'$ is quasi-separated. This means that $\Delta' : X' \to X'\times_{S'} X'$ is quasi-compact. Note that $\Delta'$ is the base change of $\Delta : X \to X \times_S X$ via $S' \to S$. By Lemma \ref{lemma-descending-property-quasi-compact} this implies $\Delta$ is quasi-compact, and hence $f$ is quasi-separated. Therefore Lemma \ref{lemma-descending-properties-morphisms} applies and we win. \end{proof} \begin{lemma} \label{lemma-descending-property-universally-closed} The property $\mathcal{P}(f) =$``$f$ is universally closed'' is fpqc local on the base. \end{lemma} \begin{proof} A base change of a universally closed morphism is universally closed by definition. Being universally closed is Zariski local on the base (from the definition or by Morphisms, Lemma \ref{morphisms-lemma-universally-closed-local-on-the-base}). Finally, let $S' \to S$ be a flat surjective morphism of affine schemes, and let $f : X \to S$ be a morphism. Assume that the base change $f' : X' \to S'$ is universally closed. Let $T \to S$ be any morphism. Consider the diagram $$ \xymatrix{ X' \ar[d] & S' \times_S T \times_S X \ar[d] \ar[r] \ar[l] & T \times_S X \ar[d] \\ S' & S' \times_S T \ar[r] \ar[l] & T } $$ in which both squares are cartesian. Thus the assumption implies that the middle vertical arrow is closed. The right horizontal arrows are flat, quasi-compact and surjective (as base changes of $S' \to S$). Hence a subset of $T$ is closed if and only if its inverse image in $S' \times_S T$ is closed, see Morphisms, Lemma \ref{morphisms-lemma-fpqc-quotient-topology}. An easy diagram chase shows that the right vertical arrow is closed too, and we conclude $X \to S$ is universally closed. Therefore Lemma \ref{lemma-descending-properties-morphisms} applies and we win. \end{proof} \begin{lemma} \label{lemma-descending-property-universally-open} The property $\mathcal{P}(f) =$``$f$ is universally open'' is fpqc local on the base. \end{lemma} \begin{proof} The proof is the same as the proof of Lemma \ref{lemma-descending-property-universally-closed}. \end{proof} \begin{lemma} \label{lemma-descending-property-universally-submersive} The property $\mathcal{P}(f) =$``$f$ is universally submersive'' is fpqc local on the base. \end{lemma} \begin{proof} The proof is the same as the proof of Lemma \ref{lemma-descending-property-universally-closed} using that a quasi-compact flat surjective morphism is universally submersive by Morphisms, Lemma \ref{morphisms-lemma-fpqc-quotient-topology}. \end{proof} \begin{lemma} \label{lemma-descending-property-separated} The property $\mathcal{P}(f) =$``$f$ is separated'' is fpqc local on the base. \end{lemma} \begin{proof} A base change of a separated morphism is separated, see Schemes, Lemma \ref{schemes-lemma-separated-permanence}. Being separated is Zariski local on the base (from the definition or by Schemes, Lemma \ref{schemes-lemma-characterize-separated}). Finally, let $S' \to S$ be a flat surjective morphism of affine schemes, and let $f : X \to S$ be a morphism. Assume that the base change $f' : X' \to S'$ is separated. This means that $\Delta' : X' \to X'\times_{S'} X'$ is a closed immersion, hence universally closed. Note that $\Delta'$ is the base change of $\Delta : X \to X \times_S X$ via $S' \to S$. By Lemma \ref{lemma-descending-property-universally-closed} this implies $\Delta$ is universally closed. Since it is an immersion (Schemes, Lemma \ref{schemes-lemma-diagonal-immersion}) we conclude $\Delta$ is a closed immersion. Hence $f$ is separated. Therefore Lemma \ref{lemma-descending-properties-morphisms} applies and we win. \end{proof} \begin{lemma} \label{lemma-descending-property-surjective} The property $\mathcal{P}(f) =$``$f$ is surjective'' is fpqc local on the base. \end{lemma} \begin{proof} This is clear. \end{proof} \begin{lemma} \label{lemma-descending-property-universally-injective} The property $\mathcal{P}(f) =$``$f$ is universally injective'' is fpqc local on the base. \end{lemma} \begin{proof} A base change of a universally injective morphism is universally injective (this is formal). Being universally injective is Zariski local on the base; this is clear from the definition. Finally, let $S' \to S$ be a flat surjective morphism of affine schemes, and let $f : X \to S$ be a morphism. Assume that the base change $f' : X' \to S'$ is universally injective. Let $K$ be a field, and let $a, b : \Spec(K) \to X$ be two morphisms such that $f \circ a = f \circ b$. As $S' \to S$ is surjective and by the discussion in Schemes, Section \ref{schemes-section-points} there exists a field extension $K'/K$ and a morphism $\Spec(K') \to S'$ such that the following solid diagram commutes $$ \xymatrix{ \Spec(K') \ar[rrd] \ar@{-->}[rd]_{a', b'} \ar[dd] \\ & X' \ar[r] \ar[d] & S' \ar[d] \\ \Spec(K) \ar[r]^{a, b} & X \ar[r] & S } $$ As the square is cartesian we get the two dotted arrows $a'$, $b'$ making the diagram commute. Since $X' \to S'$ is universally injective we get $a' = b'$, by Morphisms, Lemma \ref{morphisms-lemma-universally-injective}. Clearly this forces $a = b$ (by the discussion in Schemes, Section \ref{schemes-section-points}). Therefore Lemma \ref{lemma-descending-properties-morphisms} applies and we win. \medskip\noindent An alternative proof would be to use the characterization of a universally injective morphism as one whose diagonal is surjective, see Morphisms, Lemma \ref{morphisms-lemma-universally-injective}. The lemma then follows from the fact that the property of being surjective is fpqc local on the base, see Lemma \ref{lemma-descending-property-surjective}. (Hint: use that the base change of the diagonal is the diagonal of the base change.) \end{proof} \begin{lemma} \label{lemma-descending-property-universal-homeomorphism} The property $\mathcal{P}(f) =$``$f$ is a universal homeomorphism'' is fpqc local on the base. \end{lemma} \begin{proof} This can be proved in exactly the same manner as Lemma \ref{lemma-descending-property-universally-closed}. Alternatively, one can use that a map of topological spaces is a homeomorphism if and only if it is injective, surjective, and open. Thus a universal homeomorphism is the same thing as a surjective, universally injective, and universally open morphism. Thus the lemma follows from Lemmas \ref{lemma-descending-property-surjective}, \ref{lemma-descending-property-universally-injective}, and \ref{lemma-descending-property-universally-open}. \end{proof} \begin{lemma} \label{lemma-descending-property-locally-finite-type} The property $\mathcal{P}(f) =$``$f$ is locally of finite type'' is fpqc local on the base. \end{lemma} \begin{proof} Being locally of finite type is preserved under base change, see Morphisms, Lemma \ref{morphisms-lemma-base-change-finite-type}. Being locally of finite type is Zariski local on the base, see Morphisms, Lemma \ref{morphisms-lemma-locally-finite-type-characterize}. Finally, let $S' \to S$ be a flat surjective morphism of affine schemes, and let $f : X \to S$ be a morphism. Assume that the base change $f' : X' \to S'$ is locally of finite type. Let $U \subset X$ be an affine open. Then $U' = S' \times_S U$ is affine and of finite type over $S'$. Write $S = \Spec(R)$, $S' = \Spec(R')$, $U = \Spec(A)$, and $U' = \Spec(A')$. We know that $R \to R'$ is faithfully flat, $A' = R' \otimes_R A$ and $R' \to A'$ is of finite type. We have to show that $R \to A$ is of finite type. This is the result of Algebra, Lemma \ref{algebra-lemma-finite-type-descends}. It follows that $f$ is locally of finite type. Therefore Lemma \ref{lemma-descending-properties-morphisms} applies and we win. \end{proof} \begin{lemma} \label{lemma-descending-property-locally-finite-presentation} The property $\mathcal{P}(f) =$``$f$ is locally of finite presentation'' is fpqc local on the base. \end{lemma} \begin{proof} Being locally of finite presentation is preserved under base change, see Morphisms, Lemma \ref{morphisms-lemma-base-change-finite-presentation}. Being locally of finite type is Zariski local on the base, see Morphisms, Lemma \ref{morphisms-lemma-locally-finite-presentation-characterize}. Finally, let $S' \to S$ be a flat surjective morphism of affine schemes, and let $f : X \to S$ be a morphism. Assume that the base change $f' : X' \to S'$ is locally of finite presentation. Let $U \subset X$ be an affine open. Then $U' = S' \times_S U$ is affine and of finite type over $S'$. Write $S = \Spec(R)$, $S' = \Spec(R')$, $U = \Spec(A)$, and $U' = \Spec(A')$. We know that $R \to R'$ is faithfully flat, $A' = R' \otimes_R A$ and $R' \to A'$ is of finite presentation. We have to show that $R \to A$ is of finite presentation. This is the result of Algebra, Lemma \ref{algebra-lemma-finite-presentation-descends}. It follows that $f$ is locally of finite presentation. Therefore Lemma \ref{lemma-descending-properties-morphisms} applies and we win. \end{proof} \begin{lemma} \label{lemma-descending-property-finite-type} The property $\mathcal{P}(f) =$``$f$ is of finite type'' is fpqc local on the base. \end{lemma} \begin{proof} Combine Lemmas \ref{lemma-descending-property-quasi-compact} and \ref{lemma-descending-property-locally-finite-type}. \end{proof} \begin{lemma} \label{lemma-descending-property-finite-presentation} The property $\mathcal{P}(f) =$``$f$ is of finite presentation'' is fpqc local on the base. \end{lemma} \begin{proof} Combine Lemmas \ref{lemma-descending-property-quasi-compact}, \ref{lemma-descending-property-quasi-separated} and \ref{lemma-descending-property-locally-finite-presentation}. \end{proof} \begin{lemma} \label{lemma-descending-property-proper} The property $\mathcal{P}(f) =$``$f$ is proper'' is fpqc local on the base. \end{lemma} \begin{proof} The lemma follows by combining Lemmas \ref{lemma-descending-property-universally-closed}, \ref{lemma-descending-property-separated} and \ref{lemma-descending-property-finite-type}. \end{proof} \begin{lemma} \label{lemma-descending-property-flat} The property $\mathcal{P}(f) =$``$f$ is flat'' is fpqc local on the base. \end{lemma} \begin{proof} Being flat is preserved under arbitrary base change, see Morphisms, Lemma \ref{morphisms-lemma-base-change-flat}. Being flat is Zariski local on the base by definition. Finally, let $S' \to S$ be a flat surjective morphism of affine schemes, and let $f : X \to S$ be a morphism. Assume that the base change $f' : X' \to S'$ is flat. Let $U \subset X$ be an affine open. Then $U' = S' \times_S U$ is affine. Write $S = \Spec(R)$, $S' = \Spec(R')$, $U = \Spec(A)$, and $U' = \Spec(A')$. We know that $R \to R'$ is faithfully flat, $A' = R' \otimes_R A$ and $R' \to A'$ is flat. Goal: Show that $R \to A$ is flat. This follows immediately from Algebra, Lemma \ref{algebra-lemma-flatness-descends}. Hence $f$ is flat. Therefore Lemma \ref{lemma-descending-properties-morphisms} applies and we win. \end{proof} \begin{lemma} \label{lemma-descending-property-open-immersion} The property $\mathcal{P}(f) =$``$f$ is an open immersion'' is fpqc local on the base. \end{lemma} \begin{proof} The property of being an open immersion is stable under base change, see Schemes, Lemma \ref{schemes-lemma-base-change-immersion}. The property of being an open immersion is Zariski local on the base (this is obvious). \medskip\noindent Let $S' \to S$ be a flat surjective morphism of affine schemes, and let $f : X \to S$ be a morphism. Assume that the base change $f' : X' \to S'$ is an open immersion. We claim that $f$ is an open immersion. Then $f'$ is universally open, and universally injective. Hence we conclude that $f$ is universally open by Lemma \ref{lemma-descending-property-universally-open}, and universally injective by Lemma \ref{lemma-descending-property-universally-injective}. In particular $f(X) \subset S$ is open. If for every affine open $U \subset f(X)$ we can prove that $f^{-1}(U) \to U$ is an isomorphism, then $f$ is an open immersion and we're done. If $U' \subset S'$ denotes the inverse image of $U$, then $U' \to U$ is a faithfully flat morphism of affines and $(f')^{-1}(U') \to U'$ is an isomorphism (as $f'(X')$ contains $U'$ by our choice of $U$). Thus we reduce to the case discussed in the next paragraph. \medskip\noindent Let $S' \to S$ be a flat surjective morphism of affine schemes, let $f : X \to S$ be a morphism, and assume that the base change $f' : X' \to S'$ is an isomorphism. We have to show that $f$ is an isomorphism also. It is clear that $f$ is surjective, universally injective, and universally open (see arguments above for the last two). Hence $f$ is bijective, i.e., $f$ is a homeomorphism. Thus $f$ is affine by Morphisms, Lemma \ref{morphisms-lemma-homeomorphism-affine}. Since $$ \mathcal{O}(S') \to \mathcal{O}(X') = \mathcal{O}(S') \otimes_{\mathcal{O}(S)} \mathcal{O}(X) $$ is an isomorphism and since $\mathcal{O}(S) \to \mathcal{O}(S')$ is faithfully flat this implies that $\mathcal{O}(S) \to \mathcal{O}(X)$ is an isomorphism. Thus $f$ is an isomorphism. This finishes the proof of the claim above. Therefore Lemma \ref{lemma-descending-properties-morphisms} applies and we win. \end{proof} \begin{lemma} \label{lemma-descending-property-isomorphism} The property $\mathcal{P}(f) =$``$f$ is an isomorphism'' is fpqc local on the base. \end{lemma} \begin{proof} Combine Lemmas \ref{lemma-descending-property-surjective} and \ref{lemma-descending-property-open-immersion}. \end{proof} \begin{lemma} \label{lemma-descending-property-affine} The property $\mathcal{P}(f) =$``$f$ is affine'' is fpqc local on the base. \end{lemma} \begin{proof} A base change of an affine morphism is affine, see Morphisms, Lemma \ref{morphisms-lemma-base-change-affine}. Being affine is Zariski local on the base, see Morphisms, Lemma \ref{morphisms-lemma-characterize-affine}. Finally, let $g : S' \to S$ be a flat surjective morphism of affine schemes, and let $f : X \to S$ be a morphism. Assume that the base change $f' : X' \to S'$ is affine. In other words, $X'$ is affine, say $X' = \Spec(A')$. Also write $S = \Spec(R)$ and $S' = \Spec(R')$. We have to show that $X$ is affine. \medskip\noindent By Lemmas \ref{lemma-descending-property-quasi-compact} and \ref{lemma-descending-property-separated} we see that $X \to S$ is separated and quasi-compact. Thus $f_*\mathcal{O}_X$ is a quasi-coherent sheaf of $\mathcal{O}_S$-algebras, see Schemes, Lemma \ref{schemes-lemma-push-forward-quasi-coherent}. Hence $f_*\mathcal{O}_X = \widetilde{A}$ for some $R$-algebra $A$. In fact $A = \Gamma(X, \mathcal{O}_X)$ of course. Also, by flat base change (see for example Cohomology of Schemes, Lemma \ref{coherent-lemma-flat-base-change-cohomology}) we have $g^*f_*\mathcal{O}_X = f'_*\mathcal{O}_{X'}$. In other words, we have $A' = R' \otimes_R A$. Consider the canonical morphism $$ X \longrightarrow \Spec(A) $$ over $S$ from Schemes, Lemma \ref{schemes-lemma-morphism-into-affine}. By the above the base change of this morphism to $S'$ is an isomorphism. Hence it is an isomorphism by Lemma \ref{lemma-descending-property-isomorphism}. Therefore Lemma \ref{lemma-descending-properties-morphisms} applies and we win. \end{proof} \begin{lemma} \label{lemma-descending-property-closed-immersion} The property $\mathcal{P}(f) =$``$f$ is a closed immersion'' is fpqc local on the base. \end{lemma} \begin{proof} Let $f : X \to Y$ be a morphism of schemes. Let $\{Y_i \to Y\}$ be an fpqc covering. Assume that each $f_i : Y_i \times_Y X \to Y_i$ is a closed immersion. This implies that each $f_i$ is affine, see Morphisms, Lemma \ref{morphisms-lemma-closed-immersion-affine}. By Lemma \ref{lemma-descending-property-affine} we conclude that $f$ is affine. It remains to show that $\mathcal{O}_Y \to f_*\mathcal{O}_X$ is surjective. For every $y \in Y$ there exists an $i$ and a point $y_i \in Y_i$ mapping to $y$. By Cohomology of Schemes, Lemma \ref{coherent-lemma-flat-base-change-cohomology} the sheaf $f_{i, *}(\mathcal{O}_{Y_i \times_Y X})$ is the pullback of $f_*\mathcal{O}_X$. By assumption it is a quotient of $\mathcal{O}_{Y_i}$. Hence we see that $$ \Big( \mathcal{O}_{Y, y} \longrightarrow (f_*\mathcal{O}_X)_y \Big) \otimes_{\mathcal{O}_{Y, y}} \mathcal{O}_{Y_i, y_i} $$ is surjective. Since $\mathcal{O}_{Y_i, y_i}$ is faithfully flat over $\mathcal{O}_{Y, y}$ this implies the surjectivity of $\mathcal{O}_{Y, y} \longrightarrow (f_*\mathcal{O}_X)_y$ as desired. \end{proof} \begin{lemma} \label{lemma-descending-property-quasi-affine} The property $\mathcal{P}(f) =$``$f$ is quasi-affine'' is fpqc local on the base. \end{lemma} \begin{proof} Let $f : X \to Y$ be a morphism of schemes. Let $\{g_i : Y_i \to Y\}$ be an fpqc covering. Assume that each $f_i : Y_i \times_Y X \to Y_i$ is quasi-affine. This implies that each $f_i$ is quasi-compact and separated. By Lemmas \ref{lemma-descending-property-quasi-compact} and \ref{lemma-descending-property-separated} this implies that $f$ is quasi-compact and separated. Consider the sheaf of $\mathcal{O}_Y$-algebras $\mathcal{A} = f_*\mathcal{O}_X$. By Schemes, Lemma \ref{schemes-lemma-push-forward-quasi-coherent} it is a quasi-coherent $\mathcal{O}_Y$-algebra. Consider the canonical morphism $$ j : X \longrightarrow \underline{\Spec}_Y(\mathcal{A}) $$ see Constructions, Lemma \ref{constructions-lemma-canonical-morphism}. By flat base change (see for example Cohomology of Schemes, Lemma \ref{coherent-lemma-flat-base-change-cohomology}) we have $g_i^*f_*\mathcal{O}_X = f_{i, *}\mathcal{O}_{X'}$ where $g_i : Y_i \to Y$ are the given flat maps. Hence the base change $j_i$ of $j$ by $g_i$ is the canonical morphism of Constructions, Lemma \ref{constructions-lemma-canonical-morphism} for the morphism $f_i$. By assumption and Morphisms, Lemma \ref{morphisms-lemma-characterize-quasi-affine} all of these morphisms $j_i$ are quasi-compact open immersions. Hence, by Lemmas \ref{lemma-descending-property-quasi-compact} and \ref{lemma-descending-property-open-immersion} we see that $j$ is a quasi-compact open immersion. Hence by Morphisms, Lemma \ref{morphisms-lemma-characterize-quasi-affine} again we conclude that $f$ is quasi-affine. \end{proof} \begin{lemma} \label{lemma-descending-property-quasi-compact-immersion} The property $\mathcal{P}(f) =$``$f$ is a quasi-compact immersion'' is fpqc local on the base. \end{lemma} \begin{proof} Let $f : X \to Y$ be a morphism of schemes. Let $\{Y_i \to Y\}$ be an fpqc covering. Write $X_i = Y_i \times_Y X$ and $f_i : X_i \to Y_i$ the base change of $f$. Also denote $q_i : Y_i \to Y$ the given flat morphisms. Assume each $f_i$ is a quasi-compact immersion. By Schemes, Lemma \ref{schemes-lemma-immersions-monomorphisms} each $f_i$ is separated. By Lemmas \ref{lemma-descending-property-quasi-compact} and \ref{lemma-descending-property-separated} this implies that $f$ is quasi-compact and separated. Let $X \to Z \to Y$ be the factorization of $f$ through its scheme theoretic image. By Morphisms, Lemma \ref{morphisms-lemma-quasi-compact-scheme-theoretic-image} the closed subscheme $Z \subset Y$ is cut out by the quasi-coherent sheaf of ideals $\mathcal{I} = \Ker(\mathcal{O}_Y \to f_*\mathcal{O}_X)$ as $f$ is quasi-compact. By flat base change (see for example Cohomology of Schemes, Lemma \ref{coherent-lemma-flat-base-change-cohomology}; here we use $f$ is separated) we see $f_{i, *}\mathcal{O}_{X_i}$ is the pullback $q_i^*f_*\mathcal{O}_X$. Hence $Y_i \times_Y Z$ is cut out by the quasi-coherent sheaf of ideals $q_i^*\mathcal{I} = \Ker(\mathcal{O}_{Y_i} \to f_{i, *}\mathcal{O}_{X_i})$. By Morphisms, Lemma \ref{morphisms-lemma-quasi-compact-immersion} the morphisms $X_i \to Y_i \times_Y Z$ are open immersions. Hence by Lemma \ref{lemma-descending-property-open-immersion} we see that $X \to Z$ is an open immersion and hence $f$ is a immersion as desired (we already saw it was quasi-compact). \end{proof} \begin{lemma} \label{lemma-descending-property-integral} The property $\mathcal{P}(f) =$``$f$ is integral'' is fpqc local on the base. \end{lemma} \begin{proof} An integral morphism is the same thing as an affine, universally closed morphism. See Morphisms, Lemma \ref{morphisms-lemma-integral-universally-closed}. Hence the lemma follows on combining Lemmas \ref{lemma-descending-property-universally-closed} and \ref{lemma-descending-property-affine}. \end{proof} \begin{lemma} \label{lemma-descending-property-finite} The property $\mathcal{P}(f) =$``$f$ is finite'' is fpqc local on the base. \end{lemma} \begin{proof} An finite morphism is the same thing as an integral morphism which is locally of finite type. See Morphisms, Lemma \ref{morphisms-lemma-finite-integral}. Hence the lemma follows on combining Lemmas \ref{lemma-descending-property-locally-finite-type} and \ref{lemma-descending-property-integral}. \end{proof} \begin{lemma} \label{lemma-descending-property-quasi-finite} The properties $\mathcal{P}(f) =$``$f$ is locally quasi-finite'' and $\mathcal{P}(f) =$``$f$ is quasi-finite'' are fpqc local on the base. \end{lemma} \begin{proof} Let $f : X \to S$ be a morphism of schemes, and let $\{S_i \to S\}$ be an fpqc covering such that each base change $f_i : X_i \to S_i$ is locally quasi-finite. We have already seen (Lemma \ref{lemma-descending-property-locally-finite-type}) that ``locally of finite type'' is fpqc local on the base, and hence we see that $f$ is locally of finite type. Then it follows from Morphisms, Lemma \ref{morphisms-lemma-base-change-quasi-finite} that $f$ is locally quasi-finite. The quasi-finite case follows as we have already seen that ``quasi-compact'' is fpqc local on the base (Lemma \ref{lemma-descending-property-quasi-compact}). \end{proof} \begin{lemma} \label{lemma-descending-property-relative-dimension-d} The property $\mathcal{P}(f) =$``$f$ is locally of finite type of relative dimension $d$'' is fpqc local on the base. \end{lemma} \begin{proof} This follows immediately from the fact that being locally of finite type is fpqc local on the base and Morphisms, Lemma \ref{morphisms-lemma-dimension-fibre-after-base-change}. \end{proof} \begin{lemma} \label{lemma-descending-property-syntomic} The property $\mathcal{P}(f) =$``$f$ is syntomic'' is fpqc local on the base. \end{lemma} \begin{proof} A morphism is syntomic if and only if it is locally of finite presentation, flat, and has locally complete intersections as fibres. We have seen already that being flat and locally of finite presentation are fpqc local on the base (Lemmas \ref{lemma-descending-property-flat}, and \ref{lemma-descending-property-locally-finite-presentation}). Hence the result follows for syntomic from Morphisms, Lemma \ref{morphisms-lemma-set-points-where-fibres-lci}. \end{proof} \begin{lemma} \label{lemma-descending-property-smooth} The property $\mathcal{P}(f) =$``$f$ is smooth'' is fpqc local on the base. \end{lemma} \begin{proof} A morphism is smooth if and only if it is locally of finite presentation, flat, and has smooth fibres. We have seen already that being flat and locally of finite presentation are fpqc local on the base (Lemmas \ref{lemma-descending-property-flat}, and \ref{lemma-descending-property-locally-finite-presentation}). Hence the result follows for smooth from Morphisms, Lemma \ref{morphisms-lemma-set-points-where-fibres-smooth}. \end{proof} \begin{lemma} \label{lemma-descending-property-unramified} The property $\mathcal{P}(f) =$``$f$ is unramified'' is fpqc local on the base. The property $\mathcal{P}(f) =$``$f$ is G-unramified'' is fpqc local on the base. \end{lemma} \begin{proof} A morphism is unramified (resp.\ G-unramified) if and only if it is locally of finite type (resp.\ finite presentation) and its diagonal morphism is an open immersion (see Morphisms, Lemma \ref{morphisms-lemma-diagonal-unramified-morphism}). We have seen already that being locally of finite type (resp.\ locally of finite presentation) and an open immersion is fpqc local on the base (Lemmas \ref{lemma-descending-property-locally-finite-presentation}, \ref{lemma-descending-property-locally-finite-type}, and \ref{lemma-descending-property-open-immersion}). Hence the result follows formally. \end{proof} \begin{lemma} \label{lemma-descending-property-etale} The property $\mathcal{P}(f) =$``$f$ is \'etale'' is fpqc local on the base. \end{lemma} \begin{proof} A morphism is \'etale if and only if it flat and G-unramified. See Morphisms, Lemma \ref{morphisms-lemma-flat-unramified-etale}. We have seen already that being flat and G-unramified are fpqc local on the base (Lemmas \ref{lemma-descending-property-flat}, and \ref{lemma-descending-property-unramified}). Hence the result follows. \end{proof} \begin{lemma} \label{lemma-descending-property-finite-locally-free} The property $\mathcal{P}(f) =$``$f$ is finite locally free'' is fpqc local on the base. Let $d \geq 0$. The property $\mathcal{P}(f) =$``$f$ is finite locally free of degree $d$'' is fpqc local on the base. \end{lemma} \begin{proof} Being finite locally free is equivalent to being finite, flat and locally of finite presentation (Morphisms, Lemma \ref{morphisms-lemma-finite-flat}). Hence this follows from Lemmas \ref{lemma-descending-property-finite}, \ref{lemma-descending-property-flat}, and \ref{lemma-descending-property-locally-finite-presentation}. If $f : Z \to U$ is finite locally free, and $\{U_i \to U\}$ is a surjective family of morphisms such that each pullback $Z \times_U U_i \to U_i$ has degree $d$, then $Z \to U$ has degree $d$, for example because we can read off the degree in a point $u \in U$ from the fibre $(f_*\mathcal{O}_Z)_u \otimes_{\mathcal{O}_{U, u}} \kappa(u)$. \end{proof} \begin{lemma} \label{lemma-descending-property-monomorphism} The property $\mathcal{P}(f) =$``$f$ is a monomorphism'' is fpqc local on the base. \end{lemma} \begin{proof} Let $f : X \to S$ be a morphism of schemes. Let $\{S_i \to S\}$ be an fpqc covering, and assume each of the base changes $f_i : X_i \to S_i$ of $f$ is a monomorphism. Let $a, b : T \to X$ be two morphisms such that $f \circ a = f \circ b$. We have to show that $a = b$. Since $f_i$ is a monomorphism we see that $a_i = b_i$, where $a_i, b_i : S_i \times_S T \to X_i$ are the base changes. In particular the compositions $S_i \times_S T \to T \to X$ are equal. Since $\coprod S_i \times_S T \to T$ is an epimorphism (see e.g.\ Lemma \ref{lemma-fpqc-universal-effective-epimorphisms}) we conclude $a = b$. \end{proof} \begin{lemma} \label{lemma-descending-property-regular-immersion} The properties \begin{enumerate} \item[] $\mathcal{P}(f) =$``$f$ is a Koszul-regular immersion'', \item[] $\mathcal{P}(f) =$``$f$ is an $H_1$-regular immersion'', and \item[] $\mathcal{P}(f) =$``$f$ is a quasi-regular immersion'' \end{enumerate} are fpqc local on the base. \end{lemma} \begin{proof} We will use the criterion of Lemma \ref{lemma-descending-properties-morphisms} to prove this. By Divisors, Definition \ref{divisors-definition-regular-immersion} being a Koszul-regular (resp.\ $H_1$-regular, quasi-regular) immersion is Zariski local on the base. By Divisors, Lemma \ref{divisors-lemma-flat-base-change-regular-immersion} being a Koszul-regular (resp.\ $H_1$-regular, quasi-regular) immersion is preserved under flat base change. The final hypothesis (3) of Lemma \ref{lemma-descending-properties-morphisms} translates into the following algebra statement: Let $A \to B$ be a faithfully flat ring map. Let $I \subset A$ be an ideal. If $IB$ is locally on $\Spec(B)$ generated by a Koszul-regular (resp.\ $H_1$-regular, quasi-regular) sequence in $B$, then $I \subset A$ is locally on $\Spec(A)$ generated by a Koszul-regular (resp.\ $H_1$-regular, quasi-regular) sequence in $A$. This is More on Algebra, Lemma \ref{more-algebra-lemma-flat-descent-regular-ideal}. \end{proof} \section{Properties of morphisms local in the fppf topology on the target} \label{section-descending-properties-morphisms-fppf} \noindent In this section we find some properties of morphisms of schemes for which we could not (yet) show they are local on the base in the fpqc topology which, however, are local on the base in the fppf topology. \begin{lemma} \label{lemma-descending-fppf-property-immersion} The property $\mathcal{P}(f) =$``$f$ is an immersion'' is fppf local on the base. \end{lemma} \begin{proof} The property of being an immersion is stable under base change, see Schemes, Lemma \ref{schemes-lemma-base-change-immersion}. The property of being an immersion is Zariski local on the base. Finally, let $\pi : S' \to S$ be a surjective morphism of affine schemes, which is flat and locally of finite presentation. Note that $\pi : S' \to S$ is open by Morphisms, Lemma \ref{morphisms-lemma-fppf-open}. Let $f : X \to S$ be a morphism. Assume that the base change $f' : X' \to S'$ is an immersion. In particular we see that $f'(X') = \pi^{-1}(f(X))$ is locally closed. Hence by Topology, Lemma \ref{topology-lemma-open-morphism-quotient-topology} we see that $f(X) \subset S$ is locally closed. Let $Z \subset S$ be the closed subset $Z = \overline{f(X)} \setminus f(X)$. By Topology, Lemma \ref{topology-lemma-open-morphism-quotient-topology} again we see that $f'(X')$ is closed in $S' \setminus Z'$. Hence we may apply Lemma \ref{lemma-descending-property-closed-immersion} to the fpqc covering $\{S' \setminus Z' \to S \setminus Z\}$ and conclude that $f : X \to S \setminus Z$ is a closed immersion. In other words, $f$ is an immersion. Therefore Lemma \ref{lemma-descending-properties-morphisms} applies and we win. \end{proof} \section{Application of fpqc descent of properties of morphisms} \label{section-application-descending-properties-morphisms} \noindent The following lemma may seem a bit frivolous but turns out is a useful tool in studying \'etale and unramified morphisms. \begin{lemma} \label{lemma-flat-surjective-quasi-compact-monomorphism-isomorphism} Let $f : X \to Y$ be a flat, quasi-compact, surjective monomorphism. Then f is an isomorphism. \end{lemma} \begin{proof} As $f$ is a flat, quasi-compact, surjective morphism we see $\{X \to Y\}$ is an fpqc covering of $Y$. The diagonal $\Delta : X \to X \times_Y X$ is an isomorphism. This implies that the base change of $f$ by $f$ is an isomorphism. Hence we see $f$ is an isomorphism by Lemma \ref{lemma-descending-property-isomorphism}. \end{proof} \noindent We can use this lemma to show the following important result; we also give a proof avoiding fpqc descent. We will discuss this and related results in more detail in \'Etale Morphisms, Section \ref{etale-section-topological-etale}. \begin{lemma} \label{lemma-universally-injective-etale-open-immersion} A universally injective \'etale morphism is an open immersion. \end{lemma} \begin{proof}[First proof] Let $f : X \to Y$ be an \'etale morphism which is universally injective. Then $f$ is open (Morphisms, Lemma \ref{morphisms-lemma-etale-open}) hence we can replace $Y$ by $f(X)$ and we may assume that $f$ is surjective. Then $f$ is bijective and open hence a homeomorphism. Hence $f$ is quasi-compact. Thus by Lemma \ref{lemma-flat-surjective-quasi-compact-monomorphism-isomorphism} it suffices to show that $f$ is a monomorphism. As $X \to Y$ is \'etale the morphism $\Delta_{X/Y} : X \to X \times_Y X$ is an open immersion by Morphisms, Lemma \ref{morphisms-lemma-diagonal-unramified-morphism} (and Morphisms, Lemma \ref{morphisms-lemma-flat-unramified-etale}). As $f$ is universally injective $\Delta_{X/Y}$ is also surjective, see Morphisms, Lemma \ref{morphisms-lemma-universally-injective}. Hence $\Delta_{X/Y}$ is an isomorphism, i.e., $X \to Y$ is a monomorphism. \end{proof} \begin{proof}[Second proof] Let $f : X \to Y$ be an \'etale morphism which is universally injective. Then $f$ is open (Morphisms, Lemma \ref{morphisms-lemma-etale-open}) hence we can replace $Y$ by $f(X)$ and we may assume that $f$ is surjective. Since the hypotheses remain satisfied after any base change, we conclude that $f$ is a universal homeomorphism. Therefore $f$ is integral, see Morphisms, Lemma \ref{morphisms-lemma-universal-homeomorphism}. It follows that $f$ is finite by Morphisms, Lemma \ref{morphisms-lemma-finite-integral}. It follows that $f$ is finite locally free by Morphisms, Lemma \ref{morphisms-lemma-finite-flat}. To finish the proof, it suffices that $f$ is finite locally free of degree $1$ (a finite locally free morphism of degree $1$ is an isomorphism). There is decomposition of $Y$ into open and closed subschemes $V_d$ such that $f^{-1}(V_d) \to V_d$ is finite locally free of degree $d$, see Morphisms, Lemma \ref{morphisms-lemma-finite-locally-free}. If $V_d$ is not empty, we can pick a morphism $\Spec(k) \to V_d \subset Y$ where $k$ is an algebraically closed field (just take the algebraic closure of the residue field of some point of $V_d$). Then $\Spec(k) \times_Y X \to \Spec(k)$ is a disjoint union of copies of $\Spec(k)$, by Morphisms, Lemma \ref{morphisms-lemma-etale-over-field} and the fact that $k$ is algebraically closed. However, since $f$ is universally injective, there can only be one copy and hence $d = 1$ as desired. \end{proof} \noindent We can reformulate the hypotheses in the lemma above a bit by using the following characterization of flat universally injective morphisms. \begin{lemma} \label{lemma-flat-universally-injective} Let $f : X \to Y$ be a morphism of schemes. Let $X^0$ denote the set of generic points of irreducible components of $X$. If \begin{enumerate} \item $f$ is flat and separated, \item for $\xi \in X^0$ we have $\kappa(f(\xi)) = \kappa(\xi)$, and \item if $\xi, \xi' \in X^0$, $\xi \not = \xi'$, then $f(\xi) \not = f(\xi')$, \end{enumerate} then $f$ is universally injective. \end{lemma} \begin{proof} We have to show that $\Delta : X \to X \times_Y X$ is surjective, see Morphisms, Lemma \ref{morphisms-lemma-universally-injective}. As $X \to Y$ is separated, the image of $\Delta$ is closed. Thus if $\Delta$ is not surjective, we can find a generic point $\eta \in X \times_S X$ of an irreducible component of $X \times_S X$ which is not in the image of $\Delta$. The projection $\text{pr}_1 : X \times_Y X \to X$ is flat as a base change of the flat morphism $X \to Y$, see Morphisms, Lemma \ref{morphisms-lemma-base-change-flat}. Hence generalizations lift along $\text{pr}_1$, see Morphisms, Lemma \ref{morphisms-lemma-generalizations-lift-flat}. We conclude that $\xi = \text{pr}_1(\eta) \in X^0$. However, assumptions (2) and (3) guarantee that the scheme $(X \times_Y X)_{f(\xi)}$ has at most one point for every $\xi \in X^0$. In other words, we have $\Delta(\xi) = \eta$ a contradiction. \end{proof} \noindent Thus we can reformulate Lemma \ref{lemma-universally-injective-etale-open-immersion} as follows. \begin{lemma} \label{lemma-characterize-open-immersion} Let $f : X \to Y$ be a morphism of schemes. Let $X^0$ denote the set of generic points of irreducible components of $X$. If \begin{enumerate} \item $f$ is \'etale and separated, \item for $\xi \in X^0$ we have $\kappa(f(\xi)) = \kappa(\xi)$, and \item if $\xi, \xi' \in X^0$, $\xi \not = \xi'$, then $f(\xi) \not = f(\xi')$, \end{enumerate} then $f$ is an open immersion. \end{lemma} \begin{proof} Immediate from Lemmas \ref{lemma-flat-universally-injective} and \ref{lemma-universally-injective-etale-open-immersion}. \end{proof} \begin{lemma} \label{lemma-descending-property-proper-over-base} Let $f : X \to Y$ be a morphism of schemes which is locally of finite type. Let $Z$ be a closed subset of $X$. If there exists an fpqc covering $\{Y_i \to Y\}$ such that the inverse image $Z_i \subset Y_i \times_Y X$ is proper over $Y_i$ (Cohomology of Schemes, Definition \ref{coherent-definition-proper-over-base}) then $Z$ is proper over $Y$. \end{lemma} \begin{proof} Endow $Z$ with the reduced induced closed subscheme structure, see Schemes, Definition \ref{schemes-definition-reduced-induced-scheme}. For every $i$ the base change $Y_i \times_Y Z$ is a closed subscheme of $Y_i \times_Y X$ whose underlying closed subset is $Z_i$. By definition (via Cohomology of Schemes, Lemma \ref{coherent-lemma-closed-proper-over-base}) we conclude that the projections $Y_i \times_Y Z \to Y_i$ are proper morphisms. Hence $Z \to Y$ is a proper morphism by Lemma \ref{lemma-descending-property-proper}. Thus $Z$ is proper over $Y$ by definition. \end{proof} \begin{lemma} \label{lemma-descending-property-ample} Let $f : X \to S$ be a morphism of schemes. Let $\mathcal{L}$ be an invertible $\mathcal{O}_X$-module. Let $\{g_i : S_i \to S\}_{i \in I}$ be an fpqc covering. Let $f_i : X_i \to S_i$ be the base change of $f$ and let $\mathcal{L}_i$ be the pullback of $\mathcal{L}$ to $X_i$. The following are equivalent \begin{enumerate} \item $\mathcal{L}$ is ample on $X/S$, and \item $\mathcal{L}_i$ is ample on $X_i/S_i$ for every $i \in I$. \end{enumerate} \end{lemma} \begin{proof} The implication (1) $\Rightarrow$ (2) follows from Morphisms, Lemma \ref{morphisms-lemma-ample-base-change}. Assume $\mathcal{L}_i$ is ample on $X_i/S_i$ for every $i \in I$. By Morphisms, Definition \ref{morphisms-definition-relatively-ample} this implies that $X_i \to S_i$ is quasi-compact and by Morphisms, Lemma \ref{morphisms-lemma-relatively-ample-separated} this implies $X_i \to S$ is separated. Hence $f$ is quasi-compact and separated by Lemmas \ref{lemma-descending-property-quasi-compact} and \ref{lemma-descending-property-separated}. \medskip\noindent This means that $\mathcal{A} = \bigoplus_{d \geq 0} f_*\mathcal{L}^{\otimes d}$ is a quasi-coherent graded $\mathcal{O}_S$-algebra (Schemes, Lemma \ref{schemes-lemma-push-forward-quasi-coherent}). Moreover, the formation of $\mathcal{A}$ commutes with flat base change by Cohomology of Schemes, Lemma \ref{coherent-lemma-flat-base-change-cohomology}. In particular, if we set $\mathcal{A}_i = \bigoplus_{d \geq 0} f_{i, *}\mathcal{L}_i^{\otimes d}$ then we have $\mathcal{A}_i = g_i^*\mathcal{A}$. It follows that the natural maps $\psi_d : f^*\mathcal{A}_d \to \mathcal{L}^{\otimes d}$ of $\mathcal{O}_X$ pullback to give the natural maps $\psi_{i, d} : f_i^*(\mathcal{A}_i)_d \to \mathcal{L}_i^{\otimes d}$ of $\mathcal{O}_{X_i}$-modules. Since $\mathcal{L}_i$ is ample on $X_i/S_i$ we see that for any point $x_i \in X_i$, there exists a $d \geq 1$ such that $f_i^*(\mathcal{A}_i)_d \to \mathcal{L}_i^{\otimes d}$ is surjective on stalks at $x_i$. This follows either directly from the definition of a relatively ample module or from Morphisms, Lemma \ref{morphisms-lemma-characterize-relatively-ample}. If $x \in X$, then we can choose an $i$ and an $x_i \in X_i$ mapping to $x$. Since $\mathcal{O}_{X, x} \to \mathcal{O}_{X_i, x_i}$ is flat hence faithfully flat, we conclude that for every $x \in X$ there exists a $d \geq 1$ such that $f^*\mathcal{A}_d \to \mathcal{L}^{\otimes d}$ is surjective on stalks at $x$. This implies that the open subset $U(\psi) \subset X$ of Constructions, Lemma \ref{constructions-lemma-invertible-map-into-relative-proj} corresponding to the map $\psi : f^*\mathcal{A} \to \bigoplus_{d \geq 0} \mathcal{L}^{\otimes d}$ of graded $\mathcal{O}_X$-algebras is equal to $X$. Consider the corresponding morphism $$ r_{\mathcal{L}, \psi} : X \longrightarrow \underline{\text{Proj}}_S(\mathcal{A}) $$ It is clear from the above that the base change of $r_{\mathcal{L}, \psi}$ to $S_i$ is the morphism $r_{\mathcal{L}_i, \psi_i}$ which is an open immersion by Morphisms, Lemma \ref{morphisms-lemma-characterize-relatively-ample}. Hence $r_{\mathcal{L}, \psi}$ is an open immersion by Lemma \ref{lemma-descending-property-open-immersion} and we conclude $\mathcal{L}$ is ample on $X/S$ by Morphisms, Lemma \ref{morphisms-lemma-characterize-relatively-ample}. \end{proof} \section{Properties of morphisms local on the source} \label{section-properties-morphisms-local-source} \noindent It often happens one can prove a morphism has a certain property after precomposing with some other morphism. In many cases this implies the morphism has the property too. We formalize this in the following definition. \begin{definition} \label{definition-property-morphisms-local-source} Let $\mathcal{P}$ be a property of morphisms of schemes. Let $\tau \in \{Zariski, \linebreak[0] fpqc, \linebreak[0] fppf, \linebreak[0] \etale, \linebreak[0] smooth, \linebreak[0] syntomic\}$. We say $\mathcal{P}$ is {\it $\tau$ local on the source}, or {\it local on the source for the $\tau$-topology} if for any morphism of schemes $f : X \to Y$ over $S$, and any $\tau$-covering $\{X_i \to X\}_{i \in I}$ we have $$ f \text{ has }\mathcal{P} \Leftrightarrow \text{each }X_i \to Y\text{ has }\mathcal{P}. $$ \end{definition} \noindent To be sure, since isomorphisms are always coverings we see (or require) that property $\mathcal{P}$ holds for $X \to Y$ if and only if it holds for any arrow $X' \to Y'$ isomorphic to $X \to Y$. If a property is $\tau$-local on the source then it is preserved by precomposing with morphisms which occur in $\tau$-coverings. Here is a formal statement. \begin{lemma} \label{lemma-precompose-property-local-source} Let $\tau \in \{fpqc, fppf, syntomic, smooth, \etale, Zariski\}$. Let $\mathcal{P}$ be a property of morphisms which is $\tau$ local on the source. Let $f : X \to Y$ have property $\mathcal{P}$. For any morphism $a : X' \to X$ which is flat, resp.\ flat and locally of finite presentation, resp.\ syntomic, resp.\ \'etale, resp.\ an open immersion, the composition $f \circ a : X' \to Y$ has property $\mathcal{P}$. \end{lemma} \begin{proof} This is true because we can fit $X' \to X$ into a family of morphisms which forms a $\tau$-covering. \end{proof} \begin{lemma} \label{lemma-largest-open-of-the-source} Let $\tau \in \{fppf, syntomic, smooth, \etale\}$. Let $\mathcal{P}$ be a property of morphisms which is $\tau$ local on the source. For any morphism of schemes $f : X \to Y$ there exists a largest open $W(f) \subset X$ such that the restriction $f|_{W(f)} : W(f) \to Y$ has $\mathcal{P}$. Moreover, if $g : X' \to X$ is flat and locally of finite presentation, syntomic, smooth, or \'etale and $f' = f \circ g : X' \to Y$, then $g^{-1}(W(f)) = W(f')$. \end{lemma} \begin{proof} Consider the union $W$ of the images $g(X') \subset X$ of morphisms $g : X' \to X$ with the properties: \begin{enumerate} \item $g$ is flat and locally of finite presentation, syntomic, smooth, or \'etale, and \item the composition $X' \to X \to Y$ has property $\mathcal{P}$. \end{enumerate} Since such a morphism $g$ is open (see Morphisms, Lemma \ref{morphisms-lemma-fppf-open}) we see that $W \subset X$ is an open subset of $X$. Since $\mathcal{P}$ is local in the $\tau$ topology the restriction $f|_W : W \to Y$ has property $\mathcal{P}$ because we are given a $\tau$ covering $\{X' \to W\}$ of $W$ such that the pullbacks have $\mathcal{P}$. This proves the existence of $W(f)$. The compatibility stated in the last sentence follows immediately from the construction of $W(f)$. \end{proof} \begin{lemma} \label{lemma-properties-morphisms-local-source} Let $\mathcal{P}$ be a property of morphisms of schemes. Let $\tau \in \{fpqc, \linebreak[0] fppf, \linebreak[0] \etale, \linebreak[0] smooth, \linebreak[0] syntomic\}$. Assume that \begin{enumerate} \item the property is preserved under precomposing with flat, flat locally of finite presentation, \'etale, smooth or syntomic morphisms depending on whether $\tau$ is fpqc, fppf, \'etale, smooth, or syntomic, \item the property is Zariski local on the source, \item the property is Zariski local on the target, \item for any morphism of affine schemes $f : X \to Y$, and any surjective morphism of affine schemes $X' \to X$ which is flat, flat of finite presentation, \'etale, smooth or syntomic depending on whether $\tau$ is fpqc, fppf, \'etale, smooth, or syntomic, property $\mathcal{P}$ holds for $f$ if property $\mathcal{P}$ holds for the composition $f' : X' \to Y$. \end{enumerate} Then $\mathcal{P}$ is $\tau$ local on the source. \end{lemma} \begin{proof} This follows almost immediately from the definition of a $\tau$-covering, see Topologies, Definition \ref{topologies-definition-fpqc-covering} \ref{topologies-definition-fppf-covering} \ref{topologies-definition-etale-covering} \ref{topologies-definition-smooth-covering}, or \ref{topologies-definition-syntomic-covering} and Topologies, Lemma \ref{topologies-lemma-fpqc-affine}, \ref{topologies-lemma-fppf-affine}, \ref{topologies-lemma-etale-affine}, \ref{topologies-lemma-smooth-affine}, or \ref{topologies-lemma-syntomic-affine}. Details omitted. (Hint: Use locality on the source and target to reduce the verification of property $\mathcal{P}$ to the case of a morphism between affines. Then apply (1) and (4).) \end{proof} \begin{remark} \label{remark-properties-morphisms-local-source-standard} (This is a repeat of Remarks \ref{remark-descending-properties-standard} and \ref{remark-descending-properties-morphisms-standard} above.) In Lemma \ref{lemma-properties-morphisms-local-source} above if $\tau = smooth$ then in condition (4) we may assume that the morphism is a (surjective) standard smooth morphism. Similarly, when $\tau = syntomic$ or $\tau = \etale$. \end{remark} \section{Properties of morphisms local in the fpqc topology on the source} \label{section-fpqc-local-source} \noindent Here are some properties of morphisms that are fpqc local on the source. \begin{lemma} \label{lemma-flat-fpqc-local-source} The property $\mathcal{P}(f)=$``$f$ is flat'' is fpqc local on the source. \end{lemma} \begin{proof} Since flatness is defined in terms of the maps of local rings (Morphisms, Definition \ref{morphisms-definition-flat}) what has to be shown is the following algebraic fact: Suppose $A \to B \to C$ are local homomorphisms of local rings, and assume $B \to C$ is flat. Then $A \to B$ is flat if and only if $A \to C$ is flat. If $A \to B$ is flat, then $A \to C$ is flat by Algebra, Lemma \ref{algebra-lemma-composition-flat}. Conversely, assume $A \to C$ is flat. Note that $B \to C$ is faithfully flat, see Algebra, Lemma \ref{algebra-lemma-local-flat-ff}. Hence $A \to B$ is flat by Algebra, Lemma \ref{algebra-lemma-flat-permanence}. (Also see Morphisms, Lemma \ref{morphisms-lemma-flat-permanence} for a direct proof.) \end{proof} \begin{lemma} \label{lemma-injective-local-rings-fpqc-local-source} Then property $\mathcal{P}(f : X \to Y)=$``for every $x \in X$ the map of local rings $\mathcal{O}_{Y, f(x)} \to \mathcal{O}_{X, x}$ is injective'' is fpqc local on the source. \end{lemma} \begin{proof} Omitted. This is just a (probably misguided) attempt to be playful. \end{proof} \section{Properties of morphisms local in the fppf topology on the source} \label{section-fppf-local-source} \noindent Here are some properties of morphisms that are fppf local on the source. \begin{lemma} \label{lemma-locally-finite-presentation-fppf-local-source} The property $\mathcal{P}(f)=$``$f$ is locally of finite presentation'' is fppf local on the source. \end{lemma} \begin{proof} Being locally of finite presentation is Zariski local on the source and the target, see Morphisms, Lemma \ref{morphisms-lemma-locally-finite-presentation-characterize}. It is a property which is preserved under composition, see Morphisms, Lemma \ref{morphisms-lemma-composition-finite-presentation}. This proves (1), (2) and (3) of Lemma \ref{lemma-properties-morphisms-local-source}. The final condition (4) is Lemma \ref{lemma-flat-finitely-presented-permanence-algebra}. Hence we win. \end{proof} \begin{lemma} \label{lemma-locally-finite-type-fppf-local-source} The property $\mathcal{P}(f)=$``$f$ is locally of finite type'' is fppf local on the source. \end{lemma} \begin{proof} Being locally of finite type is Zariski local on the source and the target, see Morphisms, Lemma \ref{morphisms-lemma-locally-finite-type-characterize}. It is a property which is preserved under composition, see Morphisms, Lemma \ref{morphisms-lemma-composition-finite-type}, and a flat morphism locally of finite presentation is locally of finite type, see Morphisms, Lemma \ref{morphisms-lemma-finite-presentation-finite-type}. This proves (1), (2) and (3) of Lemma \ref{lemma-properties-morphisms-local-source}. The final condition (4) is Lemma \ref{lemma-finite-type-local-source-fppf-algebra}. Hence we win. \end{proof} \begin{lemma} \label{lemma-open-fppf-local-source} The property $\mathcal{P}(f)=$``$f$ is open'' is fppf local on the source. \end{lemma} \begin{proof} Being an open morphism is clearly Zariski local on the source and the target. It is a property which is preserved under composition, see Morphisms, Lemma \ref{morphisms-lemma-composition-open}, and a flat morphism of finite presentation is open, see Morphisms, Lemma \ref{morphisms-lemma-fppf-open} This proves (1), (2) and (3) of Lemma \ref{lemma-properties-morphisms-local-source}. The final condition (4) follows from Morphisms, Lemma \ref{morphisms-lemma-fpqc-quotient-topology}. Hence we win. \end{proof} \begin{lemma} \label{lemma-universally-open-fppf-local-source} The property $\mathcal{P}(f)=$``$f$ is universally open'' is fppf local on the source. \end{lemma} \begin{proof} Let $f : X \to Y$ be a morphism of schemes. Let $\{X_i \to X\}_{i \in I}$ be an fppf covering. Denote $f_i : X_i \to X$ the compositions. We have to show that $f$ is universally open if and only if each $f_i$ is universally open. If $f$ is universally open, then also each $f_i$ is universally open since the maps $X_i \to X$ are universally open and compositions of universally open morphisms are universally open (Morphisms, Lemmas \ref{morphisms-lemma-fppf-open} and \ref{morphisms-lemma-composition-open}). Conversely, assume each $f_i$ is universally open. Let $Y' \to Y$ be a morphism of schemes. Denote $X' = Y' \times_Y X$ and $X'_i = Y' \times_Y X_i$. Note that $\{X_i' \to X'\}_{i \in I}$ is an fppf covering also. The morphisms $f'_i : X_i' \to Y'$ are open by assumption. Hence by the Lemma \ref{lemma-open-fppf-local-source} above we conclude that $f' : X' \to Y'$ is open as desired. \end{proof} \section{Properties of morphisms local in the syntomic topology on the source} \label{section-syntomic-local-source} \noindent Here are some properties of morphisms that are syntomic local on the source. \begin{lemma} \label{lemma-syntomic-syntomic-local-source} The property $\mathcal{P}(f)=$``$f$ is syntomic'' is syntomic local on the source. \end{lemma} \begin{proof} Combine Lemma \ref{lemma-properties-morphisms-local-source} with Morphisms, Lemma \ref{morphisms-lemma-syntomic-characterize} (local for Zariski on source and target), Morphisms, Lemma \ref{morphisms-lemma-composition-syntomic} (pre-composing), and Lemma \ref{lemma-syntomic-smooth-etale-permanence} (part (4)). \end{proof} \section{Properties of morphisms local in the smooth topology on the source} \label{section-smooth-local-source} \noindent Here are some properties of morphisms that are smooth local on the source. Note also the (in some respects stronger) result on descending smoothness via flat morphisms, Lemma \ref{lemma-smooth-permanence}. \begin{lemma} \label{lemma-smooth-smooth-local-source} The property $\mathcal{P}(f)=$``$f$ is smooth'' is smooth local on the source. \end{lemma} \begin{proof} Combine Lemma \ref{lemma-properties-morphisms-local-source} with Morphisms, Lemma \ref{morphisms-lemma-smooth-characterize} (local for Zariski on source and target), Morphisms, Lemma \ref{morphisms-lemma-composition-smooth} (pre-composing), and Lemma \ref{lemma-syntomic-smooth-etale-permanence} (part (4)). \end{proof} \section{Properties of morphisms local in the \'etale topology on the source} \label{section-etale-local-source} \noindent Here are some properties of morphisms that are \'etale local on the source. \begin{lemma} \label{lemma-etale-etale-local-source} The property $\mathcal{P}(f)=$``$f$ is \'etale'' is \'etale local on the source. \end{lemma} \begin{proof} Combine Lemma \ref{lemma-properties-morphisms-local-source} with Morphisms, Lemma \ref{morphisms-lemma-etale-characterize} (local for Zariski on source and target), Morphisms, Lemma \ref{morphisms-lemma-composition-etale} (pre-composing), and Lemma \ref{lemma-syntomic-smooth-etale-permanence} (part (4)). \end{proof} \begin{lemma} \label{lemma-locally-quasi-finite-etale-local-source} The property $\mathcal{P}(f)=$``$f$ is locally quasi-finite'' is \'etale local on the source. \end{lemma} \begin{proof} We are going to use Lemma \ref{lemma-properties-morphisms-local-source}. By Morphisms, Lemma \ref{morphisms-lemma-locally-quasi-finite-characterize} the property of being locally quasi-finite is local for Zariski on source and target. By Morphisms, Lemmas \ref{morphisms-lemma-composition-quasi-finite} and \ref{morphisms-lemma-etale-locally-quasi-finite} we see the precomposition of a locally quasi-finite morphism by an \'etale morphism is locally quasi-finite. Finally, suppose that $X \to Y$ is a morphism of affine schemes and that $X' \to X$ is a surjective \'etale morphism of affine schemes such that $X' \to Y$ is locally quasi-finite. Then $X' \to Y$ is of finite type, and by Lemma \ref{lemma-finite-type-local-source-fppf-algebra} we see that $X \to Y$ is of finite type also. Moreover, by assumption $X' \to Y$ has finite fibres, and hence $X \to Y$ has finite fibres also. We conclude that $X \to Y$ is quasi-finite by Morphisms, Lemma \ref{morphisms-lemma-quasi-finite}. This proves the last assumption of Lemma \ref{lemma-properties-morphisms-local-source} and finishes the proof. \end{proof} \begin{lemma} \label{lemma-unramified-etale-local-source} The property $\mathcal{P}(f)=$``$f$ is unramified'' is \'etale local on the source. The property $\mathcal{P}(f)=$``$f$ is G-unramified'' is \'etale local on the source. \end{lemma} \begin{proof} We are going to use Lemma \ref{lemma-properties-morphisms-local-source}. By Morphisms, Lemma \ref{morphisms-lemma-unramified-characterize} the property of being unramified (resp.\ G-unramified) is local for Zariski on source and target. By Morphisms, Lemmas \ref{morphisms-lemma-composition-unramified} and \ref{morphisms-lemma-etale-smooth-unramified} we see the precomposition of an unramified (resp.\ G-unramified) morphism by an \'etale morphism is unramified (resp.\ G-unramified). Finally, suppose that $X \to Y$ is a morphism of affine schemes and that $f : X' \to X$ is a surjective \'etale morphism of affine schemes such that $X' \to Y$ is unramified (resp.\ G-unramified). Then $X' \to Y$ is of finite type (resp.\ finite presentation), and by Lemma \ref{lemma-finite-type-local-source-fppf-algebra} (resp.\ Lemma \ref{lemma-flat-finitely-presented-permanence-algebra}) we see that $X \to Y$ is of finite type (resp.\ finite presentation) also. By Morphisms, Lemma \ref{morphisms-lemma-triangle-differentials-smooth} we have a short exact sequence $$ 0 \to f^*\Omega_{X/Y} \to \Omega_{X'/Y} \to \Omega_{X'/X} \to 0. $$ As $X' \to Y$ is unramified we see that the middle term is zero. Hence, as $f$ is faithfully flat we see that $\Omega_{X/Y} = 0$. Hence $X \to Y$ is unramified (resp.\ G-unramified), see Morphisms, Lemma \ref{morphisms-lemma-unramified-omega-zero}. This proves the last assumption of Lemma \ref{lemma-properties-morphisms-local-source} and finishes the proof. \end{proof} \section{Properties of morphisms \'etale local on source-and-target} \label{section-properties-etale-local-source-target} \noindent Let $\mathcal{P}$ be a property of morphisms of schemes. There is an intuitive meaning to the phrase ``$\mathcal{P}$ is \'etale local on the source and target''. However, it turns out that this notion is not the same as asking $\mathcal{P}$ to be both \'etale local on the source and \'etale local on the target. Before we discuss this further we give two silly examples. \begin{example} \label{example-silly-one} Consider the property $\mathcal{P}$ of morphisms of schemes defined by the rule $\mathcal{P}(X \to Y) = $``$Y$ is locally Noetherian''. The reader can verify that this is \'etale local on the source and \'etale local on the target (omitted, see Lemma \ref{lemma-Noetherian-local-fppf}). But it is {\bf not} true that if $f : X \to Y$ has $\mathcal{P}$ and $g : Y \to Z$ is \'etale, then $g \circ f$ has $\mathcal{P}$. Namely, $f$ could be the identity on $Y$ and $g$ could be an open immersion of a locally Noetherian scheme $Y$ into a non locally Noetherian scheme $Z$. \end{example} \noindent The following example is in some sense worse. \begin{example} \label{example-silly-two} Consider the property $\mathcal{P}$ of morphisms of schemes defined by the rule $\mathcal{P}(f : X \to Y) = $``for every $y \in Y$ which is a specialization of some $f(x)$, $x \in X$ the local ring $\mathcal{O}_{Y, y}$ is Noetherian''. Let us verify that this is \'etale local on the source and \'etale local on the target. We will freely use Schemes, Lemma \ref{schemes-lemma-specialize-points}. \medskip\noindent Local on the target: Let $\{g_i : Y_i \to Y\}$ be an \'etale covering. Let $f_i : X_i \to Y_i$ be the base change of $f$, and denote $h_i : X_i \to X$ the projection. Assume $\mathcal{P}(f)$. Let $f(x_i) \leadsto y_i$ be a specialization. Then $f(h_i(x_i)) \leadsto g_i(y_i)$ so $\mathcal{P}(f)$ implies $\mathcal{O}_{Y, g_i(y_i)}$ is Noetherian. Also $\mathcal{O}_{Y, g_i(y_i)} \to \mathcal{O}_{Y_i, y_i}$ is a localization of an \'etale ring map. Hence $\mathcal{O}_{Y_i, y_i}$ is Noetherian by Algebra, Lemma \ref{algebra-lemma-Noetherian-permanence}. Conversely, assume $\mathcal{P}(f_i)$ for all $i$. Let $f(x) \leadsto y$ be a specialization. Choose an $i$ and $y_i \in Y_i$ mapping to $y$. Since $x$ can be viewed as a point of $\Spec(\mathcal{O}_{Y, y}) \times_Y X$ and $\mathcal{O}_{Y, y} \to \mathcal{O}_{Y_i, y_i}$ is faithfully flat, there exists a point $x_i \in \Spec(\mathcal{O}_{Y_i, y_i}) \times_Y X$ mapping to $x$. Then $x_i \in X_i$, and $f_i(x_i)$ specializes to $y_i$. Thus we see that $\mathcal{O}_{Y_i, y_i}$ is Noetherian by $\mathcal{P}(f_i)$ which implies that $\mathcal{O}_{Y, y}$ is Noetherian by Algebra, Lemma \ref{algebra-lemma-descent-Noetherian}. \medskip\noindent Local on the source: Let $\{h_i : X_i \to X\}$ be an \'etale covering. Let $f_i : X_i \to Y$ be the composition $f \circ h_i$. Assume $\mathcal{P}(f)$. Let $f(x_i) \leadsto y$ be a specialization. Then $f(h_i(x_i)) \leadsto y$ so $\mathcal{P}(f)$ implies $\mathcal{O}_{Y, y}$ is Noetherian. Thus $\mathcal{P}(f_i)$ holds. Conversely, assume $\mathcal{P}(f_i)$ for all $i$. Let $f(x) \leadsto y$ be a specialization. Choose an $i$ and $x_i \in X_i$ mapping to $x$. Then $y$ is a specialization of $f_i(x_i) = f(x)$. Hence $\mathcal{P}(f_i)$ implies $\mathcal{O}_{Y, y}$ is Noetherian as desired. \medskip\noindent We claim that there exists a commutative diagram $$ \xymatrix{ U \ar[d]_a \ar[r]_h & V \ar[d]^b \\ X \ar[r]^f & Y } $$ with surjective \'etale vertical arrows, such that $h$ has $\mathcal{P}$ and $f$ does not have $\mathcal{P}$. Namely, let $$ Y = \Spec\Big( \mathbf{C}[x_n; n \in \mathbf{Z}]/(x_n x_m; n \not = m) \Big) $$ and let $X \subset Y$ be the open subscheme which is the complement of the point all of whose coordinates $x_n = 0$. Let $U = X$, let $V = X \amalg Y$, let $a, b$ the obvious map, and let $h : U \to V$ be the inclusion of $U = X$ into the first summand of $V$. The claim above holds because $U$ is locally Noetherian, but $Y$ is not. \end{example} \noindent What should be the correct notion of a property which is \'etale local on the source-and-target? We think that, by analogy with Morphisms, Definition \ref{morphisms-definition-property-local} it should be the following. \begin{definition} \label{definition-local-source-target} Let $\mathcal{P}$ be a property of morphisms of schemes. We say $\mathcal{P}$ is {\it \'etale local on source-and-target} if \begin{enumerate} \item (stable under precomposing with \'etale maps) if $f : X \to Y$ is \'etale and $g : Y \to Z$ has $\mathcal{P}$, then $g \circ f$ has $\mathcal{P}$, \item (stable under \'etale base change) if $f : X \to Y$ has $\mathcal{P}$ and $Y' \to Y$ is \'etale, then the base change $f' : Y' \times_Y X \to Y'$ has $\mathcal{P}$, and \item (locality) given a morphism $f : X \to Y$ the following are equivalent \begin{enumerate} \item $f$ has $\mathcal{P}$, \item for every $x \in X$ there exists a commutative diagram $$ \xymatrix{ U \ar[d]_a \ar[r]_h & V \ar[d]^b \\ X \ar[r]^f & Y } $$ with \'etale vertical arrows and $u \in U$ with $a(u) = x$ such that $h$ has $\mathcal{P}$. \end{enumerate} \end{enumerate} \end{definition} \noindent It turns out this definition excludes the behavior seen in Examples \ref{example-silly-one} and \ref{example-silly-two}. We will compare this to the definition in the paper \cite{DM} by Deligne and Mumford in Remark \ref{remark-compare-definitions}. Moreover, a property which is \'etale local on the source-and-target is \'etale local on the source and \'etale local on the target. Finally, the converse is almost true as we will see in Lemma \ref{lemma-etale-local-source-target}. \begin{lemma} \label{lemma-local-source-target-implies} Let $\mathcal{P}$ be a property of morphisms of schemes which is \'etale local on source-and-target. Then \begin{enumerate} \item $\mathcal{P}$ is \'etale local on the source, \item $\mathcal{P}$ is \'etale local on the target, \item $\mathcal{P}$ is stable under postcomposing with \'etale morphisms: if $f : X \to Y$ has $\mathcal{P}$ and $g : Y \to Z$ is \'etale, then $g \circ f$ has $\mathcal{P}$, and \item $\mathcal{P}$ has a permanence property: given $f : X \to Y$ and $g : Y \to Z$ \'etale such that $g \circ f$ has $\mathcal{P}$, then $f$ has $\mathcal{P}$. \end{enumerate} \end{lemma} \begin{proof} We write everything out completely. \medskip\noindent Proof of (1). Let $f : X \to Y$ be a morphism of schemes. Let $\{X_i \to X\}_{i \in I}$ be an \'etale covering of $X$. If each composition $h_i : X_i \to Y$ has $\mathcal{P}$, then for each $x \in X$ we can find an $i \in I$ and a point $x_i \in X_i$ mapping to $x$. Then $(X_i, x_i) \to (X, x)$ is an \'etale morphism of germs, and $\text{id}_Y : Y \to Y$ is an \'etale morphism, and $h_i$ is as in part (3) of Definition \ref{definition-local-source-target}. Thus we see that $f$ has $\mathcal{P}$. Conversely, if $f$ has $\mathcal{P}$ then each $X_i \to Y$ has $\mathcal{P}$ by Definition \ref{definition-local-source-target} part (1). \medskip\noindent Proof of (2). Let $f : X \to Y$ be a morphism of schemes. Let $\{Y_i \to Y\}_{i \in I}$ be an \'etale covering of $Y$. Write $X_i = Y_i \times_Y X$ and $h_i : X_i \to Y_i$ for the base change of $f$. If each $h_i : X_i \to Y_i$ has $\mathcal{P}$, then for each $x \in X$ we pick an $i \in I$ and a point $x_i \in X_i$ mapping to $x$. Then $(X_i, x_i) \to (X, x)$ is an \'etale morphism of germs, $Y_i \to Y$ is \'etale, and $h_i$ is as in part (3) of Definition \ref{definition-local-source-target}. Thus we see that $f$ has $\mathcal{P}$. Conversely, if $f$ has $\mathcal{P}$, then each $X_i \to Y_i$ has $\mathcal{P}$ by Definition \ref{definition-local-source-target} part (2). \medskip\noindent Proof of (3). Assume $f : X \to Y$ has $\mathcal{P}$ and $g : Y \to Z$ is \'etale. For every $x \in X$ we can think of $(X, x) \to (X, x)$ as an \'etale morphism of germs, $Y \to Z$ is an \'etale morphism, and $h = f$ is as in part (3) of Definition \ref{definition-local-source-target}. Thus we see that $g \circ f$ has $\mathcal{P}$. \medskip\noindent Proof of (4). Let $f : X \to Y$ be a morphism and $g : Y \to Z$ \'etale such that $g \circ f$ has $\mathcal{P}$. Then by Definition \ref{definition-local-source-target} part (2) we see that $\text{pr}_Y : Y \times_Z X \to Y$ has $\mathcal{P}$. But the morphism $(f, 1) : X \to Y \times_Z X$ is \'etale as a section to the \'etale projection $\text{pr}_X : Y \times_Z X \to X$, see Morphisms, Lemma \ref{morphisms-lemma-etale-permanence}. Hence $f = \text{pr}_Y \circ (f, 1)$ has $\mathcal{P}$ by Definition \ref{definition-local-source-target} part (1). \end{proof} \noindent The following lemma is the analogue of Morphisms, Lemma \ref{morphisms-lemma-locally-P-characterize}. \begin{lemma} \label{lemma-local-source-target-characterize} Let $\mathcal{P}$ be a property of morphisms of schemes which is \'etale local on source-and-target. Let $f : X \to Y$ be a morphism of schemes. The following are equivalent: \begin{enumerate} \item[(a)] $f$ has property $\mathcal{P}$, \item[(b)] for every $x \in X$ there exists an \'etale morphism of germs $a : (U, u) \to (X, x)$, an \'etale morphism $b : V \to Y$, and a morphism $h : U \to V$ such that $f \circ a = b \circ h$ and $h$ has $\mathcal{P}$, \item[(c)] for any commutative diagram $$ \xymatrix{ U \ar[d]_a \ar[r]_h & V \ar[d]^b \\ X \ar[r]^f & Y } $$ with $a$, $b$ \'etale the morphism $h$ has $\mathcal{P}$, \item[(d)] for some diagram as in (c) with $a : U \to X$ surjective $h$ has $\mathcal{P}$, \item[(e)] there exists an \'etale covering $\{Y_i \to Y\}_{i \in I}$ such that each base change $Y_i \times_Y X \to Y_i$ has $\mathcal{P}$, \item[(f)] there exists an \'etale covering $\{X_i \to X\}_{i \in I}$ such that each composition $X_i \to Y$ has $\mathcal{P}$, \item[(g)] there exists an \'etale covering $\{Y_i \to Y\}_{i \in I}$ and for each $i \in I$ an \'etale covering $\{X_{ij} \to Y_i \times_Y X\}_{j \in J_i}$ such that each morphism $X_{ij} \to Y_i$ has $\mathcal{P}$. \end{enumerate} \end{lemma} \begin{proof} The equivalence of (a) and (b) is part of Definition \ref{definition-local-source-target}. The equivalence of (a) and (e) is Lemma \ref{lemma-local-source-target-implies} part (2). The equivalence of (a) and (f) is Lemma \ref{lemma-local-source-target-implies} part (1). As (a) is now equivalent to (e) and (f) it follows that (a) equivalent to (g). \medskip\noindent It is clear that (c) implies (a). If (a) holds, then for any diagram as in (c) the morphism $f \circ a$ has $\mathcal{P}$ by Definition \ref{definition-local-source-target} part (1), whereupon $h$ has $\mathcal{P}$ by Lemma \ref{lemma-local-source-target-implies} part (4). Thus (a) and (c) are equivalent. It is clear that (c) implies (d). To see that (d) implies (a) assume we have a diagram as in (c) with $a : U \to X$ surjective and $h$ having $\mathcal{P}$. Then $b \circ h$ has $\mathcal{P}$ by Lemma \ref{lemma-local-source-target-implies} part (3). Since $\{a : U \to X\}$ is an \'etale covering we conclude that $f$ has $\mathcal{P}$ by Lemma \ref{lemma-local-source-target-implies} part (1). \end{proof} \noindent It seems that the result of the following lemma is not a formality, i.e., it actually uses something about the geometry of \'etale morphisms. \begin{lemma} \label{lemma-etale-local-source-target} Let $\mathcal{P}$ be a property of morphisms of schemes. Assume \begin{enumerate} \item $\mathcal{P}$ is \'etale local on the source, \item $\mathcal{P}$ is \'etale local on the target, and \item $\mathcal{P}$ is stable under postcomposing with open immersions: if $f : X \to Y$ has $\mathcal{P}$ and $Y \subset Z$ is an open subscheme then $X \to Z$ has $\mathcal{P}$. \end{enumerate} Then $\mathcal{P}$ is \'etale local on the source-and-target. \end{lemma} \begin{proof} Let $\mathcal{P}$ be a property of morphisms of schemes which satisfies conditions (1), (2) and (3) of the lemma. By Lemma \ref{lemma-precompose-property-local-source} we see that $\mathcal{P}$ is stable under precomposing with \'etale morphisms. By Lemma \ref{lemma-pullback-property-local-target} we see that $\mathcal{P}$ is stable under \'etale base change. Hence it suffices to prove part (3) of Definition \ref{definition-local-source-target} holds. \medskip\noindent More precisely, suppose that $f : X \to Y$ is a morphism of schemes which satisfies Definition \ref{definition-local-source-target} part (3)(b). In other words, for every $x \in X$ there exists an \'etale morphism $a_x : U_x \to X$, a point $u_x \in U_x$ mapping to $x$, an \'etale morphism $b_x : V_x \to Y$, and a morphism $h_x : U_x \to V_x$ such that $f \circ a_x = b_x \circ h_x$ and $h_x$ has $\mathcal{P}$. The proof of the lemma is complete once we show that $f$ has $\mathcal{P}$. Set $U = \coprod U_x$, $a = \coprod a_x$, $V = \coprod V_x$, $b = \coprod b_x$, and $h = \coprod h_x$. We obtain a commutative diagram $$ \xymatrix{ U \ar[d]_a \ar[r]_h & V \ar[d]^b \\ X \ar[r]^f & Y } $$ with $a$, $b$ \'etale, $a$ surjective. Note that $h$ has $\mathcal{P}$ as each $h_x$ does and $\mathcal{P}$ is \'etale local on the target. Because $a$ is surjective and $\mathcal{P}$ is \'etale local on the source, it suffices to prove that $b \circ h$ has $\mathcal{P}$. This reduces the lemma to proving that $\mathcal{P}$ is stable under postcomposing with an \'etale morphism. \medskip\noindent During the rest of the proof we let $f : X \to Y$ be a morphism with property $\mathcal{P}$ and $g : Y \to Z$ is an \'etale morphism. Consider the following statements: \begin{enumerate} \item[(-)] With no additional assumptions $g \circ f$ has property $\mathcal{P}$. \item[(A)] Whenever $Z$ is affine $g \circ f$ has property $\mathcal{P}$. \item[(AA)] Whenever $X$ and $Z$ are affine $g \circ f$ has property $\mathcal{P}$. \item[(AAA)] Whenever $X$, $Y$, and $Z$ are affine $g \circ f$ has property $\mathcal{P}$. \end{enumerate} Once we have proved (-) the proof of the lemma will be complete. \medskip\noindent Claim 1: (AAA) $\Rightarrow$ (AA). Namely, let $f : X \to Y$, $g : Y \to Z$ be as above with $X$, $Z$ affine. As $X$ is affine hence quasi-compact we can find finitely many affine open $Y_i \subset Y$, $i = 1, \ldots, n$ such that $X = \bigcup_{i = 1, \ldots, n} f^{-1}(Y_i)$. Set $X_i = f^{-1}(Y_i)$. By Lemma \ref{lemma-pullback-property-local-target} each of the morphisms $X_i \to Y_i$ has $\mathcal{P}$. Hence $\coprod_{i = 1, \ldots, n} X_i \to \coprod_{i = 1, \ldots, n} Y_i$ has $\mathcal{P}$ as $\mathcal{P}$ is \'etale local on the target. By (AAA) applied to $\coprod_{i = 1, \ldots, n} X_i \to \coprod_{i = 1, \ldots, n} Y_i$ and the \'etale morphism $\coprod_{i = 1, \ldots, n} Y_i \to Z$ we see that $\coprod_{i = 1, \ldots, n} X_i \to Z$ has $\mathcal{P}$. Now $\{\coprod_{i = 1, \ldots, n} X_i \to X\}$ is an \'etale covering, hence as $\mathcal{P}$ is \'etale local on the source we conclude that $X \to Z$ has $\mathcal{P}$ as desired. \medskip\noindent Claim 2: (AAA) $\Rightarrow$ (A). Namely, let $f : X \to Y$, $g : Y \to Z$ be as above with $Z$ affine. Choose an affine open covering $X = \bigcup X_i$. As $\mathcal{P}$ is \'etale local on the source we see that each $f|_{X_i} : X_i \to Y$ has $\mathcal{P}$. By (AA), which follows from (AAA) according to Claim 1, we see that $X_i \to Z$ has $\mathcal{P}$ for each $i$. Since $\{X_i \to X\}$ is an \'etale covering and $\mathcal{P}$ is \'etale local on the source we conclude that $X \to Z$ has $\mathcal{P}$. \medskip\noindent Claim 3: (AAA) $\Rightarrow$ (-). Namely, let $f : X \to Y$, $g : Y \to Z$ be as above. Choose an affine open covering $Z = \bigcup Z_i$. Set $Y_i = g^{-1}(Z_i)$ and $X_i = f^{-1}(Y_i)$. By Lemma \ref{lemma-pullback-property-local-target} each of the morphisms $X_i \to Y_i$ has $\mathcal{P}$. By (A), which follows from (AAA) according to Claim 2, we see that $X_i \to Z_i$ has $\mathcal{P}$ for each $i$. Since $\mathcal{P}$ is local on the target and $X_i = (g \circ f)^{-1}(Z_i)$ we conclude that $X \to Z$ has $\mathcal{P}$. \medskip\noindent Thus to prove the lemma it suffices to prove (AAA). Let $f : X \to Y$ and $g : Y \to Z$ be as above $X, Y, Z$ affine. Note that an \'etale morphism of affines has universally bounded fibres, see Morphisms, Lemma \ref{morphisms-lemma-etale-locally-quasi-finite} and Lemma \ref{morphisms-lemma-locally-quasi-finite-qc-source-universally-bounded}. Hence we can do induction on the integer $n$ bounding the degree of the fibres of $Y \to Z$. See Morphisms, Lemma \ref{morphisms-lemma-etale-universally-bounded} for a description of this integer in the case of an \'etale morphism. If $n = 1$, then $Y \to Z$ is an open immersion, see Lemma \ref{lemma-universally-injective-etale-open-immersion}, and the result follows from assumption (3) of the lemma. Assume $n > 1$. \medskip\noindent Consider the following commutative diagram $$ \xymatrix{ X \times_Z Y \ar[d] \ar[r]_{f_Y} & Y \times_Z Y \ar[d] \ar[r]_-{\text{pr}} & Y \ar[d] \\ X \ar[r]^f & Y \ar[r]^g & Z } $$ Note that we have a decomposition into open and closed subschemes $Y \times_Z Y = \Delta_{Y/Z}(Y) \amalg Y'$, see Morphisms, Lemma \ref{morphisms-lemma-diagonal-unramified-morphism}. As a base change the degrees of the fibres of the second projection $\text{pr} : Y \times_Z Y \to Y$ are bounded by $n$, see Morphisms, Lemma \ref{morphisms-lemma-base-change-universally-bounded}. On the other hand, $\text{pr}|_{\Delta(Y)} : \Delta(Y) \to Y$ is an isomorphism and every fibre has exactly one point. Thus, on applying Morphisms, Lemma \ref{morphisms-lemma-etale-universally-bounded} we conclude the degrees of the fibres of the restriction $\text{pr}|_{Y'} : Y' \to Y$ are bounded by $n - 1$. Set $X' = f_Y^{-1}(Y')$. Picture $$ \xymatrix{ X \amalg X' \ar@{=}[d] \ar[r]_-{f \amalg f'} & \Delta(Y) \amalg Y' \ar@{=}[d] \ar[r] & Y \ar@{=}[d] \\ X \times_Z Y \ar[r]^{f_Y} & Y \times_Z Y \ar[r]^-{\text{pr}} & Y } $$ As $\mathcal{P}$ is \'etale local on the target and hence stable under \'etale base change (see Lemma \ref{lemma-pullback-property-local-target}) we see that $f_Y$ has $\mathcal{P}$. Hence, as $\mathcal{P}$ is \'etale local on the source, $f' = f_Y|_{X'}$ has $\mathcal{P}$. By induction hypothesis we see that $X' \to Y$ has $\mathcal{P}$. As $\mathcal{P}$ is local on the source, and $\{X \to X \times_Z Y, X' \to X \times_Y Z\}$ is an \'etale covering, we conclude that $\text{pr} \circ f_Y$ has $\mathcal{P}$. Note that $g \circ f$ can be viewed as a morphism $g \circ f : X \to g(Y)$. As $\text{pr} \circ f_Y$ is the pullback of $g \circ f : X \to g(Y)$ via the \'etale covering $\{Y \to g(Y)\}$, and as $\mathcal{P}$ is \'etale local on the target, we conclude that $g \circ f : X \to g(Y)$ has property $\mathcal{P}$. Finally, applying assumption (3) of the lemma once more we conclude that $g \circ f : X \to Z$ has property $\mathcal{P}$. \end{proof} \begin{remark} \label{remark-list-local-source-target} Using Lemma \ref{lemma-etale-local-source-target} and the work done in the earlier sections of this chapter it is easy to make a list of types of morphisms which are \'etale local on the source-and-target. In each case we list the lemma which implies the property is \'etale local on the source and the lemma which implies the property is \'etale local on the target. In each case the third assumption of Lemma \ref{lemma-etale-local-source-target} is trivial to check, and we omit it. Here is the list: \begin{enumerate} \item flat, see Lemmas \ref{lemma-flat-fpqc-local-source} and \ref{lemma-descending-property-flat}, \item locally of finite presentation, see Lemmas \ref{lemma-locally-finite-presentation-fppf-local-source} and \ref{lemma-descending-property-locally-finite-presentation}, \item locally finite type, see Lemmas \ref{lemma-locally-finite-type-fppf-local-source} and \ref{lemma-descending-property-locally-finite-type}, \item universally open, see Lemmas \ref{lemma-universally-open-fppf-local-source} and \ref{lemma-descending-property-universally-open}, \item syntomic, see Lemmas \ref{lemma-syntomic-syntomic-local-source} and \ref{lemma-descending-property-syntomic}, \item smooth, see Lemmas \ref{lemma-smooth-smooth-local-source} and \ref{lemma-descending-property-smooth}, \item \'etale, see Lemmas \ref{lemma-etale-etale-local-source} and \ref{lemma-descending-property-etale}, \item locally quasi-finite, see Lemmas \ref{lemma-locally-quasi-finite-etale-local-source} and \ref{lemma-descending-property-quasi-finite}, \item unramified, see Lemmas \ref{lemma-unramified-etale-local-source} and \ref{lemma-descending-property-unramified}, \item G-unramified, see Lemmas \ref{lemma-unramified-etale-local-source} and \ref{lemma-descending-property-unramified}, and \item add more here as needed. \end{enumerate} \end{remark} \begin{remark} \label{remark-compare-definitions} At this point we have three possible definitions of what it means for a property $\mathcal{P}$ of morphisms to be ``\'etale local on the source and target'': \begin{enumerate} \item[(ST)] $\mathcal{P}$ is \'etale local on the source and $\mathcal{P}$ is \'etale local on the target, \item[(DM)] (the definition in the paper \cite[Page 100]{DM} by Deligne and Mumford) for every diagram $$ \xymatrix{ U \ar[d]_a \ar[r]_h & V \ar[d]^b \\ X \ar[r]^f & Y } $$ with surjective \'etale vertical arrows we have $\mathcal{P}(h) \Leftrightarrow \mathcal{P}(f)$, and \item[(SP)] $\mathcal{P}$ is \'etale local on the source-and-target. \end{enumerate} In this section we have seen that (SP) $\Rightarrow$ (DM) $\Rightarrow$ (ST). The Examples \ref{example-silly-one} and \ref{example-silly-two} show that neither implication can be reversed. Finally, Lemma \ref{lemma-etale-local-source-target} shows that the difference disappears when looking at properties of morphisms which are stable under postcomposing with open immersions, which in practice will always be the case. \end{remark} \begin{lemma} \label{lemma-etale-etale-local-source-target} Let $\mathcal{P}$ be a property of morphisms of schemes which is \'etale local on the source-and-target. Given a commutative diagram of schemes $$ \vcenter{ \xymatrix{ X' \ar[d]_{g'} \ar[r]_{f'} & Y' \ar[d]^g \\ X \ar[r]^f & Y } } \quad\text{with points}\quad \vcenter{ \xymatrix{ x' \ar[d] \ar[r] & y' \ar[d] \\ x \ar[r] & y } } $$ such that $g'$ is \'etale at $x'$ and $g$ is \'etale at $y'$, then $x \in W(f) \Leftrightarrow x' \in W(f')$ where $W(-)$ is as in Lemma \ref{lemma-largest-open-of-the-source}. \end{lemma} \begin{proof} Lemma \ref{lemma-largest-open-of-the-source} applies since $\mathcal{P}$ is \'etale local on the source by Lemma \ref{lemma-local-source-target-implies}. \medskip\noindent Assume $x \in W(f)$. Let $U' \subset X'$ and $V' \subset Y'$ be open neighbourhoods of $x'$ and $y'$ such that $f'(U') \subset V'$, $g'(U') \subset W(f)$ and $g'|_{U'}$ and $g|_{V'}$ are \'etale. Then $f \circ g'|_{U'} = g \circ f'|_{U'}$ has $\mathcal{P}$ by property (1) of Definition \ref{definition-local-source-target}. Then $f'|_{U'} : U' \to V'$ has property $\mathcal{P}$ by (4) of Lemma \ref{lemma-local-source-target-implies}. Then by (3) of Lemma \ref{lemma-local-source-target-implies} we conclude that $f'_{U'} : U' \to Y'$ has $\mathcal{P}$. Hence $U' \subset W(f')$ by definition. Hence $x' \in W(f')$. \medskip\noindent Assume $x' \in W(f')$. Let $U' \subset X'$ and $V' \subset Y'$ be open neighbourhoods of $x'$ and $y'$ such that $f'(U') \subset V'$, $U' \subset W(f')$ and $g'|_{U'}$ and $g|_{V'}$ are \'etale. Then $U' \to Y'$ has $\mathcal{P}$ by definition of $W(f')$. Then $U' \to V'$ has $\mathcal{P}$ by (4) of Lemma \ref{lemma-local-source-target-implies}. Then $U' \to Y$ has $\mathcal{P}$ by (3) of Lemma \ref{lemma-local-source-target-implies}. Let $U \subset X$ be the image of the \'etale (hence open) morphism $g'|_U' : U' \to X$. Then $\{U' \to U\}$ is an \'etale covering and we conclude that $U \to Y$ has $\mathcal{P}$ by (1) of Lemma \ref{lemma-local-source-target-implies}. Thus $U \subset W(f)$ by definition. Hence $x \in W(f)$. \end{proof} \begin{lemma} \label{lemma-orbits} Let $k$ be a field. Let $n \geq 2$. For $1 \leq i, j \leq n$ with $i \not = j$ and $d \geq 0$ denote $T_{i, j, d}$ the automorphism of $\mathbf{A}^n_k$ given in coordinates by $$ (x_1, \ldots, x_n) \longmapsto (x_1, \ldots, x_{i - 1}, x_i + x_j^d, x_{i + 1}, \ldots, x_n) $$ Let $W \subset \mathbf{A}^n_k$ be a nonempty open subscheme such that $T_{i, j, d}(W) = W$ for all $i, j, d$ as above. Then either $W = \mathbf{A}^n_k$ or the characteristic of $k$ is $p > 0$ and $\mathbf{A}^n_k \setminus W$ is a finite set of closed points whose coordinates are algebraic over $\mathbf{F}_p$. \end{lemma} \begin{proof} We may replace $k$ by any extension field in order to prove this. Let $Z$ be an irreducible component of $\mathbf{A}^n_k \setminus W$. Assume $\dim(Z) \geq 1$, to get a contradiction. Then there exists an extension field $k'/k$ and a $k'$-valued point $\xi = (\xi_1, \ldots, \xi_n) \in (k')^n$ of $Z_{k'} \subset \mathbf{A}^n_{k'}$ such that at least one of $x_1, \ldots, x_n$ is transcendental over the prime field. Claim: the orbit of $\xi$ under the group generated by the transformations $T_{i, j, d}$ is Zariski dense in $\mathbf{A}^n_{k'}$. The claim will give the desired contradiction. \medskip\noindent If the characteristic of $k'$ is zero, then already the operators $T_{i, j, 0}$ will be enough since these transform $\xi$ into the points $$ (\xi_1 + a_1, \ldots, \xi_n + a_n) $$ for arbitrary $(a_1, \ldots, a_n) \in \mathbf{Z}_{\geq 0}^n$. If the characteristic is $p > 0$, we may assume after renumbering that $\xi_n$ is transcendental over $\mathbf{F}_p$. By successively applying the operators $T_{i, n, d}$ for $i < n$ we see the orbit of $\xi$ contains the elements $$ (\xi_1 + P_1(\xi_n), \ldots, \xi_{n - 1} + P_{n - 1}(\xi_n), \xi_n) $$ for arbitrary $(P_1, \ldots, P_{n - 1}) \in \mathbf{F}_p[t]$. Thus the Zariski closure of the orbit contains the coordinate hyperplane $x_n = \xi_n$. Repeating the argument with a different coordinate, we conclude that the Zariski closure contains $x_i = \xi_i + P(\xi_n)$ for any $P \in \mathbf{F}_p[t]$ such that $\xi_i + P(\xi_n)$ is transcendental over $\mathbf{F}_p$. Since there are infinitely many such $P$ the claim follows. \medskip\noindent Of course the argument in the preceding paragraph also applies if $Z = \{z\}$ has dimension $0$ and the coordinates of $z$ in $\kappa(z)$ are not algebraic over $\mathbf{F}_p$. The lemma follows. \end{proof} \begin{lemma} \label{lemma-etale-tau-local-source-target} Let $\mathcal{P}$ be a property of morphisms of schemes. Assume \begin{enumerate} \item $\mathcal{P}$ is \'etale local on the source, \item $\mathcal{P}$ is smooth local on the target, \item $\mathcal{P}$ is stable under postcomposing with open immersions: if $f : X \to Y$ has $\mathcal{P}$ and $Y \subset Z$ is an open subscheme then $X \to Z$ has $\mathcal{P}$. \end{enumerate} Given a commutative diagram of schemes $$ \vcenter{ \xymatrix{ X' \ar[d]_{g'} \ar[r]_{f'} & Y' \ar[d]^g \\ X \ar[r]^f & Y } } \quad\text{with points}\quad \vcenter{ \xymatrix{ x' \ar[d] \ar[r] & y' \ar[d] \\ x \ar[r] & y } } $$ such that $g$ is smooth $y'$ and $X' \to X \times_Y Y'$ is \'etale at $x'$, then $x \in W(f) \Leftrightarrow x' \in W(f')$ where $W(-)$ is as in Lemma \ref{lemma-largest-open-of-the-source}. \end{lemma} \begin{proof} Since $\mathcal{P}$ is \'etale local on the source we see that $x \in W(f)$ if and only if the image of $x$ in $X \times_Y Y'$ is in $W(X \times_Y Y' \to Y')$. Hence we may assume the diagram in the lemma is cartesian. \medskip\noindent Assume $x \in W(f)$. Since $\mathcal{P}$ is smooth local on the target we see that $(g')^{-1}W(f) = W(f) \times_Y Y' \to Y'$ has $\mathcal{P}$. Hence $(g')^{-1}W(f) \subset W(f')$. We conclude $x' \in W(f')$. \medskip\noindent Assume $x' \in W(f')$. For any open neighbourhood $V' \subset Y'$ of $y'$ we may replace $Y'$ by $V'$ and $X'$ by $U' = (f')^{-1}V'$ because $V' \to Y'$ is smooth and hence the base change $W(f') \cap U' \to V'$ of $W(f') \to Y'$ has property $\mathcal{P}$. Thus we may assume there exists an \'etale morphism $Y' \to \mathbf{A}^n_Y$ over $Y$, see Morphisms, Lemma \ref{morphisms-lemma-smooth-etale-over-affine-space}. Picture $$ \xymatrix{ X' \ar[r] \ar[d] & Y' \ar[d] \\ \mathbf{A}^n_X \ar[r]_{f_n} \ar[d] & \mathbf{A}^n_Y \ar[d] \\ X \ar[r]^f & Y } $$ By Lemma \ref{lemma-etale-local-source-target} (and because \'etale coverings are smooth coverings) we see that $\mathcal{P}$ is \'etale local on the source-and-target. By Lemma \ref{lemma-etale-etale-local-source-target} we see that $W(f')$ is the inverse image of the open $W(f_n) \subset \mathbf{A}^n_X$. In particular $W(f_n)$ contains a point lying over $x$. After replacing $X$ by the image of $W(f_n)$ (which is open) we may assume $W(f_n) \to X$ is surjective. Claim: $W(f_n) = \mathbf{A}^n_X$. The claim implies $f$ has $\mathcal{P}$ as $\mathcal{P}$ is local in the smooth topology and $\{\mathbf{A}^n_Y \to Y\}$ is a smooth covering. \medskip\noindent Essentially, the claim follows as $W(f_n) \subset \mathbf{A}^n_X$ is a ``translation invariant'' open which meets every fibre of $\mathbf{A}^n_X \to X$. However, to produce an argument along these lines one has to do \'etale localization on $Y$ to produce enough translations and it becomes a bit annoying. Instead we use the automorphisms of Lemma \ref{lemma-orbits} and \'etale morphisms of affine spaces. We may assume $n \geq 2$. Namely, if $n = 0$, then we are done. If $n = 1$, then we consider the diagram $$ \xymatrix{ \mathbf{A}^2_X \ar[r]_{f_2} \ar[d]_p & \mathbf{A}^2_Y \ar[d] \\ \mathbf{A}^1_X \ar[r]^{f_1} & \mathbf{A}^1_Y } $$ We have $p^{-1}(W(f_1)) \subset W(f_2)$ (see first paragraph of the proof). Thus $W(f_2) \to X$ is still surjective and we may work with $f_2$. Assume $n \geq 2$. \medskip\noindent For any $1 \leq i, j \leq n$ with $i \not = j$ and $d \geq 0$ denote $T_{i, j, d}$ the automorphism of $\mathbf{A}^n$ defined in Lemma \ref{lemma-orbits}. Then we get a commutative diagram $$ \xymatrix{ \mathbf{A}^n_X \ar[r]_{f_n} \ar[d]_{T_{i, j, d}} & \mathbf{A}^n_Y \ar[d]^{T_{i, j, d}} \\ \mathbf{A}^n_X \ar[r]^{f_n} & \mathbf{A}^n_Y } $$ whose vertical arrows are isomorphisms. We conclude that $T_{i, j, d}(W(f_n)) = W(f_n)$. Applying Lemma \ref{lemma-orbits} we conclude for any $x \in X$ the fibre $W(f_n)_x \subset \mathbf{A}^n_x$ is either $\mathbf{A}^n_x$ (this is what we want) or $\kappa(x)$ has characteristic $p > 0$ and $W(f_n)_x$ is the complement of a finite set $Z_x \subset \mathbf{A}^n_x$ of closed points. The second possibility cannot occur. Namely, consider the morphism $T_p : \mathbf{A}^n \to \mathbf{A}^n$ given by $$ (x_1, \ldots, x_n) \mapsto (x_1 - x_1^p, \ldots, x_n - x_n^p) $$ As above we get a commutative diagram $$ \xymatrix{ \mathbf{A}^n_X \ar[r]_{f_n} \ar[d]_{T_p} & \mathbf{A}^n_Y \ar[d]^{T_p} \\ \mathbf{A}^n_X \ar[r]^{f_n} & \mathbf{A}^n_Y } $$ The morphism $T_p : \mathbf{A}^n_X \to \mathbf{A}^n_X$ is \'etale at every point lying over $x$ and the morphism $T_p : \mathbf{A}^n_Y \to \mathbf{A}^n_Y$ is \'etale at every point lying over the image of $x$ in $Y$. (Details omitted; hint: compute the derivatives.) We conclude that $$ T_p^{-1}(W) \cap \mathbf{A}^n_x = W \cap \mathbf{A}^n_x $$ by Lemma \ref{lemma-etale-etale-local-source-target} (we've already seen $\mathcal{P}$ is \'etale local on the source-and-target). Since $T_p : \mathbf{A}^n_x \to \mathbf{A}^n_x$ is finite \'etale of degree $p^n > 1$ we see that if $Z_x$ is not empty then it contains $T_p^{-1}(Z_x)$ which is bigger. This contradiction finishes the proof. \end{proof} \section{Properties of morphisms of germs local on source-and-target} \label{section-local-source-target-at-point} \noindent In this section we discuss the analogue of the material in Section \ref{section-properties-etale-local-source-target} for morphisms of germs of schemes. \begin{definition} \label{definition-local-source-target-at-point} Let $\mathcal{Q}$ be a property of morphisms of germs of schemes. We say $\mathcal{Q}$ is {\it \'etale local on the source-and-target} if for any commutative diagram $$ \xymatrix{ (U', u') \ar[d]_a \ar[r]_{h'} & (V', v') \ar[d]^b \\ (U, u) \ar[r]^h & (V, v) } $$ of germs with \'etale vertical arrows we have $\mathcal{Q}(h) \Leftrightarrow \mathcal{Q}(h')$. \end{definition} \begin{lemma} \label{lemma-local-source-target-global-implies-local} Let $\mathcal{P}$ be a property of morphisms of schemes which is \'etale local on the source-and-target. Consider the property $\mathcal{Q}$ of morphisms of germs defined by the rule $$ \mathcal{Q}((X, x) \to (S, s)) \Leftrightarrow \text{there exists a representative }U \to S \text{ which has }\mathcal{P} $$ Then $\mathcal{Q}$ is \'etale local on the source-and-target as in Definition \ref{definition-local-source-target-at-point}. \end{lemma} \begin{proof} If a morphism of germs $(X, x) \to (S, s)$ has $\mathcal{Q}$, then there are arbitrarily small neighbourhoods $U \subset X$ of $x$ and $V \subset S$ of $s$ such that a representative $U \to V$ of $(X, x) \to (S, s)$ has $\mathcal{P}$. This follows from Lemma \ref{lemma-local-source-target-implies}. Let $$ \xymatrix{ (U', u') \ar[r]_{h'} \ar[d]_a & (V', v') \ar[d]^b \\ (U, u) \ar[r]^h & (V, v) } $$ be as in Definition \ref{definition-local-source-target-at-point}. Choose $U_1 \subset U$ and a representative $h_1 : U_1 \to V$ of $h$. Choose $V'_1 \subset V'$ and an \'etale representative $b_1 : V'_1 \to V$ of $b$ (Definition \ref{definition-etale-morphism-germs}). Choose $U'_1 \subset U'$ and representatives $a_1 : U'_1 \to U_1$ and $h'_1 : U'_1 \to V'_1$ of $a$ and $h'$ with $a_1$ \'etale. After shrinking $U'_1$ we may assume $h_1 \circ a_1 = b_1 \circ h'_1$. By the initial remark of the proof, we are trying to show $u' \in W(h'_1) \Leftrightarrow u \in W(h_1)$ where $W(-)$ is as in Lemma \ref{lemma-largest-open-of-the-source}. Thus the lemma follows from Lemma \ref{lemma-etale-etale-local-source-target}. \end{proof} \begin{lemma} \label{lemma-local-source-target-local-implies-global} Let $\mathcal{P}$ be a property of morphisms of schemes which is \'etale local on source-and-target. Let $Q$ be the associated property of morphisms of germs, see Lemma \ref{lemma-local-source-target-global-implies-local}. Let $f : X \to Y$ be a morphism of schemes. The following are equivalent: \begin{enumerate} \item $f$ has property $\mathcal{P}$, and \item for every $x \in X$ the morphism of germs $(X, x) \to (Y, f(x))$ has property $\mathcal{Q}$. \end{enumerate} \end{lemma} \begin{proof} The implication (1) $\Rightarrow$ (2) is direct from the definitions. The implication (2) $\Rightarrow$ (1) also follows from part (3) of Definition \ref{definition-local-source-target}. \end{proof} \noindent A morphism of germs $(X, x) \to (S, s)$ determines a well defined map of local rings. Hence the following lemma makes sense. \begin{lemma} \label{lemma-flat-at-point} The property of morphisms of germs $$ \mathcal{P}((X, x) \to (S, s)) = \mathcal{O}_{S, s} \to \mathcal{O}_{X, x}\text{ is flat} $$ is \'etale local on the source-and-target. \end{lemma} \begin{proof} Given a diagram as in Definition \ref{definition-local-source-target-at-point} we obtain the following diagram of local homomorphisms of local rings $$ \xymatrix{ \mathcal{O}_{U', u'} & \mathcal{O}_{V', v'} \ar[l] \\ \mathcal{O}_{U, u} \ar[u] & \mathcal{O}_{V, v} \ar[l] \ar[u] } $$ Note that the vertical arrows are localizations of \'etale ring maps, in particular they are essentially of finite presentation, flat, and unramified (see Algebra, Section \ref{algebra-section-etale}). In particular the vertical maps are faithfully flat, see Algebra, Lemma \ref{algebra-lemma-local-flat-ff}. Now, if the upper horizontal arrow is flat, then the lower horizontal arrow is flat by an application of Algebra, Lemma \ref{algebra-lemma-flat-permanence} with $R = \mathcal{O}_{V, v}$, $S = \mathcal{O}_{U, u}$ and $M = \mathcal{O}_{U', u'}$. If the lower horizontal arrow is flat, then the ring map $$ \mathcal{O}_{V', v'} \otimes_{\mathcal{O}_{V, v}} \mathcal{O}_{U, u} \longleftarrow \mathcal{O}_{V', v'} $$ is flat by Algebra, Lemma \ref{algebra-lemma-flat-base-change}. And the ring map $$ \mathcal{O}_{U', u'} \longleftarrow \mathcal{O}_{V', v'} \otimes_{\mathcal{O}_{V, v}} \mathcal{O}_{U, u} $$ is a localization of a map between \'etale ring extensions of $\mathcal{O}_{U, u}$, hence flat by Algebra, Lemma \ref{algebra-lemma-map-between-etale}. \end{proof} \begin{lemma} \label{lemma-etale-on-fiber} Consider a commutative diagram of morphisms of schemes $$ \xymatrix{ U' \ar[r] \ar[d] & V' \ar[d] \\ U \ar[r] & V } $$ with \'etale vertical arrows and a point $v' \in V'$ mapping to $v \in V$. Then the morphism of fibres $U'_{v'} \to U_v$ is \'etale. \end{lemma} \begin{proof} Note that $U'_v \to U_v$ is \'etale as a base change of the \'etale morphism $U' \to U$. The scheme $U'_v$ is a scheme over $V'_v$. By Morphisms, Lemma \ref{morphisms-lemma-etale-over-field} the scheme $V'_v$ is a disjoint union of spectra of finite separable field extensions of $\kappa(v)$. One of these is $v' = \Spec(\kappa(v'))$. Hence $U'_{v'}$ is an open and closed subscheme of $U'_v$ and it follows that $U'_{v'} \to U'_v \to U_v$ is \'etale (as a composition of an open immersion and an \'etale morphism, see Morphisms, Section \ref{morphisms-section-etale}). \end{proof} \noindent Given a morphism of germs of schemes $(X, x) \to (S, s)$ we can define the {\it fibre} as the isomorphism class of germs $(U_s, x)$ where $U \to S$ is any representative. We will often abuse notation and just write $(X_s, x)$. \begin{lemma} \label{lemma-dimension-local-ring-fibre} Let $d \in \{0, 1, 2, \ldots, \infty\}$. The property of morphisms of germs $$ \mathcal{P}_d((X, x) \to (S, s)) = \text{the local ring } \mathcal{O}_{X_s, x} \text{ of the fibre has dimension }d $$ is \'etale local on the source-and-target. \end{lemma} \begin{proof} Given a diagram as in Definition \ref{definition-local-source-target-at-point} we obtain an \'etale morphism of fibres $U'_{v'} \to U_v$ mapping $u'$ to $u$, see Lemma \ref{lemma-etale-on-fiber}. Hence the result follows from Lemma \ref{lemma-dimension-local-ring-local}. \end{proof} \begin{lemma} \label{lemma-transcendence-degree-at-point} Let $r \in \{0, 1, 2, \ldots, \infty\}$. The property of morphisms of germs $$ \mathcal{P}_r((X, x) \to (S, s)) \Leftrightarrow \text{trdeg}_{\kappa(s)} \kappa(x) = r $$ is \'etale local on the source-and-target. \end{lemma} \begin{proof} Given a diagram as in Definition \ref{definition-local-source-target-at-point} we obtain the following diagram of local homomorphisms of local rings $$ \xymatrix{ \mathcal{O}_{U', u'} & \mathcal{O}_{V', v'} \ar[l] \\ \mathcal{O}_{U, u} \ar[u] & \mathcal{O}_{V, v} \ar[l] \ar[u] } $$ Note that the vertical arrows are localizations of \'etale ring maps, in particular they are unramified (see Algebra, Section \ref{algebra-section-etale}). Hence $\kappa(u')/\kappa(u)$ and $\kappa(v')/\kappa(v)$ are finite separable field extensions. Thus we have $\text{trdeg}_{\kappa(v)} \kappa(u) = \text{trdeg}_{\kappa(v')} \kappa(u)$ which proves the lemma. \end{proof} \noindent Let $(X, x)$ be a germ of a scheme. The dimension of $X$ at $x$ is the minimum of the dimensions of open neighbourhoods of $x$ in $X$, and any small enough open neighbourhood has this dimension. Hence this is an invariant of the isomorphism class of the germ. We denote this simply $\dim_x(X)$. \begin{lemma} \label{lemma-dimension-at-point} Let $d \in \{0, 1, 2, \ldots, \infty\}$. The property of morphisms of germs $$ \mathcal{P}_d((X, x) \to (S, s)) \Leftrightarrow \dim_x (X_s) = d $$ is \'etale local on the source-and-target. \end{lemma} \begin{proof} Given a diagram as in Definition \ref{definition-local-source-target-at-point} we obtain an \'etale morphism of fibres $U'_{v'} \to U_v$ mapping $u'$ to $u$, see Lemma \ref{lemma-etale-on-fiber}. Hence now the equality $\dim_u(U_v) = \dim_{u'}(U'_{v'})$ follows from Lemma \ref{lemma-dimension-at-point-local}. \end{proof} \section{Descent data for schemes over schemes} \label{section-descent-datum} \noindent Most of the arguments in this section are formal relying only on the definition of a descent datum. In Simplicial Spaces, Section \ref{spaces-simplicial-section-simplicial-descent} we will examine the relationship with simplicial schemes which will somewhat clarify the situation. \begin{definition} \label{definition-descent-datum} Let $f : X \to S$ be a morphism of schemes. \begin{enumerate} \item Let $V \to X$ be a scheme over $X$. A {\it descent datum for $V/X/S$} is an isomorphism $\varphi : V \times_S X \to X \times_S V$ of schemes over $X \times_S X$ satisfying the {\it cocycle condition} that the diagram $$ \xymatrix{ V \times_S X \times_S X \ar[rd]^{\varphi_{01}} \ar[rr]_{\varphi_{02}} & & X \times_S X \times_S V\\ & X \times_S V \times_S X \ar[ru]^{\varphi_{12}} } $$ commutes (with obvious notation). \item We also say that the pair $(V/X, \varphi)$ is a {\it descent datum relative to $X \to S$}. \item A {\it morphism $f : (V/X, \varphi) \to (V'/X, \varphi')$ of descent data relative to $X \to S$} is a morphism $f : V \to V'$ of schemes over $X$ such that the diagram $$ \xymatrix{ V \times_S X \ar[r]_{\varphi} \ar[d]_{f \times \text{id}_X} & X \times_S V \ar[d]^{\text{id}_X \times f} \\ V' \times_S X \ar[r]^{\varphi'} & X \times_S V' } $$ commutes. \end{enumerate} \end{definition} \noindent There are all kinds of ``miraculous'' identities which arise out of the definition above. For example the pullback of $\varphi$ via the diagonal morphism $\Delta : X \to X \times_S X$ can be seen as a morphism $\Delta^*\varphi : V \to V$. This because $X \times_{\Delta, X \times_S X} (V \times_S X) = V$ and also $X \times_{\Delta, X \times_S X} (X \times_S V) = V$. In fact, $\Delta^*\varphi$ is equal to the identity. This is a good exercise if you are unfamiliar with this material. \begin{remark} \label{remark-easier} Let $X \to S$ be a morphism of schemes. Let $(V/X, \varphi)$ be a descent datum relative to $X \to S$. We may think of the isomorphism $\varphi$ as an isomorphism $$ (X \times_S X) \times_{\text{pr}_0, X} V \longrightarrow (X \times_S X) \times_{\text{pr}_1, X} V $$ of schemes over $X \times_S X$. So loosely speaking one may think of $\varphi$ as a map $\varphi : \text{pr}_0^*V \to \text{pr}_1^*V$\footnote{Unfortunately, we have chosen the ``wrong'' direction for our arrow here. In Definitions \ref{definition-descent-datum} and \ref{definition-descent-datum-for-family-of-morphisms} we should have the opposite direction to what was done in Definition \ref{definition-descent-datum-quasi-coherent} by the general principle that ``functions'' and ``spaces'' are dual.}. The cocycle condition then says that $\text{pr}_{02}^*\varphi = \text{pr}_{12}^*\varphi \circ \text{pr}_{01}^*\varphi$. In this way it is very similar to the case of a descent datum on quasi-coherent sheaves. \end{remark} \noindent Here is the definition in case you have a family of morphisms with fixed target. \begin{definition} \label{definition-descent-datum-for-family-of-morphisms} Let $S$ be a scheme. Let $\{X_i \to S\}_{i \in I}$ be a family of morphisms with target $S$. \begin{enumerate} \item A {\it descent datum $(V_i, \varphi_{ij})$ relative to the family $\{X_i \to S\}$} is given by a scheme $V_i$ over $X_i$ for each $i \in I$, an isomorphism $\varphi_{ij} : V_i \times_S X_j \to X_i \times_S V_j$ of schemes over $X_i \times_S X_j$ for each pair $(i, j) \in I^2$ such that for every triple of indices $(i, j, k) \in I^3$ the diagram $$ \xymatrix{ V_i \times_S X_j \times_S X_k \ar[rd]^{\text{pr}_{01}^*\varphi_{ij}} \ar[rr]_{\text{pr}_{02}^*\varphi_{ik}} & & X_i \times_S X_j \times_S V_k\\ & X_i \times_S V_j \times_S X_k \ar[ru]^{\text{pr}_{12}^*\varphi_{jk}} } $$ of schemes over $X_i \times_S X_j \times_S X_k$ commutes (with obvious notation). \item A {\it morphism $\psi : (V_i, \varphi_{ij}) \to (V'_i, \varphi'_{ij})$ of descent data} is given by a family $\psi = (\psi_i)_{i \in I}$ of morphisms of $X_i$-schemes $\psi_i : V_i \to V'_i$ such that all the diagrams $$ \xymatrix{ V_i \times_S X_j \ar[r]_{\varphi_{ij}} \ar[d]_{\psi_i \times \text{id}} & X_i \times_S V_j \ar[d]^{\text{id} \times \psi_j} \\ V'_i \times_S X_j \ar[r]^{\varphi'_{ij}} & X_i \times_S V'_j } $$ commute. \end{enumerate} \end{definition} \noindent This is the notion that comes up naturally for example when the question arises whether the fibred category of relative curves is a stack in the fpqc topology (it isn't -- at least not if you stick to schemes). \begin{remark} \label{remark-easier-family} Let $S$ be a scheme. Let $\{X_i \to S\}_{i \in I}$ be a family of morphisms with target $S$. Let $(V_i, \varphi_{ij})$ be a descent datum relative to $\{X_i \to S\}$. We may think of the isomorphisms $\varphi_{ij}$ as isomorphisms $$ (X_i \times_S X_j) \times_{\text{pr}_0, X_i} V_i \longrightarrow (X_i \times_S X_j) \times_{\text{pr}_1, X_j} V_j $$ of schemes over $X_i \times_S X_j$. So loosely speaking one may think of $\varphi_{ij}$ as an isomorphism $\text{pr}_0^*V_i \to \text{pr}_1^*V_j$ over $X_i \times_S X_j$. The cocycle condition then says that $\text{pr}_{02}^*\varphi_{ik} = \text{pr}_{12}^*\varphi_{jk} \circ \text{pr}_{01}^*\varphi_{ij}$. In this way it is very similar to the case of a descent datum on quasi-coherent sheaves. \end{remark} \noindent The reason we will usually work with the version of a family consisting of a single morphism is the following lemma. \begin{lemma} \label{lemma-family-is-one} Let $S$ be a scheme. Let $\{X_i \to S\}_{i \in I}$ be a family of morphisms with target $S$. Set $X = \coprod_{i \in I} X_i$, and consider it as an $S$-scheme. There is a canonical equivalence of categories $$ \begin{matrix} \text{category of descent data } \\ \text{relative to the family } \{X_i \to S\}_{i \in I} \end{matrix} \longrightarrow \begin{matrix} \text{ category of descent data} \\ \text{ relative to } X/S \end{matrix} $$ which maps $(V_i, \varphi_{ij})$ to $(V, \varphi)$ with $V = \coprod_{i\in I} V_i$ and $\varphi = \coprod \varphi_{ij}$. \end{lemma} \begin{proof} Observe that $X \times_S X = \coprod_{ij} X_i \times_S X_j$ and similarly for higher fibre products. Giving a morphism $V \to X$ is exactly the same as giving a family $V_i \to X_i$. And giving a descent datum $\varphi$ is exactly the same as giving a family $\varphi_{ij}$. \end{proof} \begin{lemma} \label{lemma-pullback} Pullback of descent data for schemes over schemes. \begin{enumerate} \item Let $$ \xymatrix{ X' \ar[r]_f \ar[d]_{a'} & X \ar[d]^a \\ S' \ar[r]^h & S } $$ be a commutative diagram of morphisms of schemes. The construction $$ (V \to X, \varphi) \longmapsto f^*(V \to X, \varphi) = (V' \to X', \varphi') $$ where $V' = X' \times_X V$ and where $\varphi'$ is defined as the composition $$ \xymatrix{ V' \times_{S'} X' \ar@{=}[r] & (X' \times_X V) \times_{S'} X' \ar@{=}[r] & (X' \times_{S'} X') \times_{X \times_S X} (V \times_S X) \ar[d]^{\text{id} \times \varphi} \\ X' \times_{S'} V' \ar@{=}[r] & X' \times_{S'} (X' \times_X V) & (X' \times_{S'} X') \times_{X \times_S X} (X \times_S V) \ar@{=}[l] } $$ defines a functor from the category of descent data relative to $X \to S$ to the category of descent data relative to $X' \to S'$. \item Given two morphisms $f_i : X' \to X$, $i = 0, 1$ making the diagram commute the functors $f_0^*$ and $f_1^*$ are canonically isomorphic. \end{enumerate} \end{lemma} \begin{proof} We omit the proof of (1), but we remark that the morphism $\varphi'$ is the morphism $(f \times f)^*\varphi$ in the notation introduced in Remark \ref{remark-easier}. For (2) we indicate which morphism $f_0^*V \to f_1^*V$ gives the functorial isomorphism. Namely, since $f_0$ and $f_1$ both fit into the commutative diagram we see there is a unique morphism $r : X' \to X \times_S X$ with $f_i = \text{pr}_i \circ r$. Then we take \begin{eqnarray*} f_0^*V & = & X' \times_{f_0, X} V \\ & = & X' \times_{\text{pr}_0 \circ r, X} V \\ & = & X' \times_{r, X \times_S X} (X \times_S X) \times_{\text{pr}_0, X} V \\ & \xrightarrow{\varphi} & X' \times_{r, X \times_S X} (X \times_S X) \times_{\text{pr}_1, X} V \\ & = & X' \times_{\text{pr}_1 \circ r, X} V \\ & = & X' \times_{f_1, X} V \\ & = & f_1^*V \end{eqnarray*} We omit the verification that this works. \end{proof} \begin{definition} \label{definition-pullback-functor} With $S, S', X, X', f, a, a', h$ as in Lemma \ref{lemma-pullback} the functor $$ (V, \varphi) \longmapsto f^*(V, \varphi) $$ constructed in that lemma is called the {\it pullback functor} on descent data. \end{definition} \begin{lemma}[Pullback of descent data for schemes over families] \label{lemma-pullback-family} Let $\mathcal{U} = \{U_i \to S'\}_{i \in I}$ and $\mathcal{V} = \{V_j \to S\}_{j \in J}$ be families of morphisms with fixed target. Let $\alpha : I \to J$, $h : S' \to S$ and $g_i : U_i \to V_{\alpha(i)}$ be a morphism of families of maps with fixed target, see Sites, Definition \ref{sites-definition-morphism-coverings}. \begin{enumerate} \item Let $(Y_j, \varphi_{jj'})$ be a descent datum relative to the family $\{V_j \to S'\}$. The system $$ \left( g_i^*Y_{\alpha(i)}, (g_i \times g_{i'})^*\varphi_{\alpha(i)\alpha(i')} \right) $$ (with notation as in Remark \ref{remark-easier-family}) is a descent datum relative to $\mathcal{V}$. \item This construction defines a functor between descent data relative to $\mathcal{U}$ and descent data relative to $\mathcal{V}$. \item Given a second $\alpha' : I \to J$, $h' : S' \to S$ and $g'_i : U_i \to V_{\alpha'(i)}$ morphism of families of maps with fixed target, then if $h = h'$ the two resulting functors between descent data are canonically isomorphic. \item These functors agree, via Lemma \ref{lemma-family-is-one}, with the pullback functors constructed in Lemma \ref{lemma-pullback}. \end{enumerate} \end{lemma} \begin{proof} This follows from Lemma \ref{lemma-pullback} via the correspondence of Lemma \ref{lemma-family-is-one}. \end{proof} \begin{definition} \label{definition-pullback-functor-family} With $\mathcal{U} = \{U_i \to S'\}_{i \in I}$, $\mathcal{V} = \{V_j \to S\}_{j \in J}$, $\alpha : I \to J$, $h : S' \to S$, and $g_i : U_i \to V_{\alpha(i)}$ as in Lemma \ref{lemma-pullback-family} the functor $$ (Y_j, \varphi_{jj'}) \longmapsto (g_i^*Y_{\alpha(i)}, (g_i \times g_{i'})^*\varphi_{\alpha(i)\alpha(i')}) $$ constructed in that lemma is called the {\it pullback functor} on descent data. \end{definition} \noindent If $\mathcal{U}$ and $\mathcal{V}$ have the same target $S$, and if $\mathcal{U}$ refines $\mathcal{V}$ (see Sites, Definition \ref{sites-definition-morphism-coverings}) but no explicit pair $(\alpha, g_i)$ is given, then we can still talk about the pullback functor since we have seen in Lemma \ref{lemma-pullback-family} that the choice of the pair does not matter (up to a canonical isomorphism). \begin{definition} \label{definition-effective} Let $S$ be a scheme. Let $f : X \to S$ be a morphism of schemes. \begin{enumerate} \item Given a scheme $U$ over $S$ we have the {\it trivial descent datum} of $U$ relative to $\text{id} : S \to S$, namely the identity morphism on $U$. \item By Lemma \ref{lemma-pullback} we get a {\it canonical descent datum} on $X \times_S U$ relative to $X \to S$ by pulling back the trivial descent datum via $f$. We often denote $(X \times_S U, can)$ this descent datum. \item A descent datum $(V, \varphi)$ relative to $X/S$ is called {\it effective} if $(V, \varphi)$ is isomorphic to the canonical descent datum $(X \times_S U, can)$ for some scheme $U$ over $S$. \end{enumerate} \end{definition} \noindent Thus being effective means there exists a scheme $U$ over $S$ and an isomorphism $\psi : V \to X \times_S U$ of $X$-schemes such that $\varphi$ is equal to the composition $$ V \times_S X \xrightarrow{\psi \times \text{id}_X} X \times_S U \times_S X = X \times_S X \times_S U \xrightarrow{\text{id}_X \times \psi^{-1}} X \times_S V $$ \begin{definition} \label{definition-effective-family} Let $S$ be a scheme. Let $\{X_i \to S\}$ be a family of morphisms with target $S$. \begin{enumerate} \item Given a scheme $U$ over $S$ we have a {\it canonical descent datum} on the family of schemes $X_i \times_S U$ by pulling back the trivial descent datum for $U$ relative to $\{\text{id} : S \to S\}$. We denote this descent datum $(X_i \times_S U, can)$. \item A descent datum $(V_i, \varphi_{ij})$ relative to $\{X_i \to S\}$ is called {\it effective} if there exists a scheme $U$ over $S$ such that $(V_i, \varphi_{ij})$ is isomorphic to $(X_i \times_S U, can)$. \end{enumerate} \end{definition} \section{Fully faithfulness of the pullback functors} \label{section-fully-faithful} \noindent It turns out that the pullback functor between descent data for fpqc-coverings is fully faithful. In other words, morphisms of schemes satisfy fpqc descent. The goal of this section is to prove this. The reader is encouraged instead to prove this him/herself. The key is to use Lemma \ref{lemma-fpqc-universal-effective-epimorphisms}. \begin{lemma} \label{lemma-surjective-flat-epi} A surjective and flat morphism is an epimorphism in the category of schemes. \end{lemma} \begin{proof} Suppose we have $h : X' \to X$ surjective and flat and $a, b : X \to Y$ morphisms such that $a \circ h = b \circ h$. As $h$ is surjective we see that $a$ and $b$ agree on underlying topological spaces. Pick $x' \in X'$ and set $x = h(x')$ and $y = a(x) = b(x)$. Consider the local ring maps $$ a^\sharp_x, b^\sharp_x : \mathcal{O}_{Y, y} \to \mathcal{O}_{X, x} $$ These become equal when composed with the flat local homomorphism $h^\sharp_{x'} : \mathcal{O}_{X, x} \to \mathcal{O}_{X', x'}$. Since a flat local homomorphism is faithfully flat (Algebra, Lemma \ref{algebra-lemma-local-flat-ff}) we conclude that $h^\sharp_{x'}$ is injective. Hence $a^\sharp_x = b^\sharp_x$ which implies $a = b$ as desired. \end{proof} \begin{lemma} \label{lemma-ff-base-change-faithful} Let $h : S' \to S$ be a surjective, flat morphism of schemes. The base change functor $$ \Sch/S \longrightarrow \Sch/S', \quad X \longmapsto S' \times_S X $$ is faithful. \end{lemma} \begin{proof} Let $X_1$, $X_2$ be schemes over $S$. Let $\alpha, \beta : X_2 \to X_1$ be morphisms over $S$. If $\alpha$, $\beta$ base change to the same morphism then we get a commutative diagram as follows $$ \xymatrix{ X_2 \ar[d]^\alpha & S' \times_S X_2 \ar[l] \ar[d] \ar[r] & X_2 \ar[d]^\beta \\ X_1 & S' \times_S X_1 \ar[l] \ar[r] & X_1 } $$ Hence it suffices to show that $S' \times_S X_2 \to X_2$ is an epimorphism. As the base change of a surjective and flat morphism it is surjective and flat (see Morphisms, Lemmas \ref{morphisms-lemma-base-change-surjective} and \ref{morphisms-lemma-base-change-flat}). Hence the lemma follows from Lemma \ref{lemma-surjective-flat-epi}. \end{proof} \begin{lemma} \label{lemma-faithful} In the situation of Lemma \ref{lemma-pullback} assume that $f : X' \to X$ is surjective and flat. Then the pullback functor is faithful. \end{lemma} \begin{proof} Let $(V_i, \varphi_i)$, $i = 1, 2$ be descent data for $X \to S$. Let $\alpha, \beta : V_1 \to V_2$ be morphisms of descent data. Suppose that $f^*\alpha = f^*\beta$. Our task is to show that $\alpha = \beta$. Note that $\alpha$, $\beta$ are morphisms of schemes over $X$, and that $f^*\alpha$, $f^*\beta$ are simply the base changes of $\alpha$, $\beta$ to morphisms over $X'$. Hence the lemma follows from Lemma \ref{lemma-ff-base-change-faithful}. \end{proof} \noindent Here is the key lemma of this section. \begin{lemma} \label{lemma-fully-faithful} In the situation of Lemma \ref{lemma-pullback} assume \begin{enumerate} \item $\{f : X' \to X\}$ is an fpqc covering (for example if $f$ is surjective, flat, and quasi-compact), and \item $S = S'$. \end{enumerate} Then the pullback functor is fully faithful. \end{lemma} \begin{proof} Assumption (1) implies that $f$ is surjective and flat. Hence the pullback functor is faithful by Lemma \ref{lemma-faithful}. Let $(V, \varphi)$ and $(W, \psi)$ be two descent data relative to $X \to S$. Set $(V', \varphi') = f^*(V, \varphi)$ and $(W', \psi') = f^*(W, \psi)$. Let $\alpha' : V' \to W'$ be a morphism of descent data for $X'$ over $S$. We have to show there exists a morphism $\alpha : V \to W$ of descent data for $X$ over $S$ whose pullback is $\alpha'$. \medskip\noindent Recall that $V'$ is the base change of $V$ by $f$ and that $\varphi'$ is the base change of $\varphi$ by $f \times f$ (see Remark \ref{remark-easier}). By assumption the diagram $$ \xymatrix{ V' \times_S X' \ar[r]_{\varphi'} \ar[d]_{\alpha' \times \text{id}} & X' \times_S V' \ar[d]^{\text{id} \times \alpha'} \\ W' \times_S X' \ar[r]^{\psi'} & X' \times_S W' } $$ commutes. We claim the two compositions $$ \xymatrix{ V' \times_V V' \ar[r]^-{\text{pr}_i} & V' \ar[r]^{\alpha'} & W' \ar[r] & W } , \quad i = 0, 1 $$ are the same. The reader is advised to prove this themselves rather than read the rest of this paragraph. (Please email if you find a nice clean argument.) Let $v_0, v_1$ be points of $V'$ which map to the same point $v \in V$. Let $x_i \in X'$ be the image of $v_i$, and let $x$ be the point of $X$ which is the image of $v$ in $X$. In other words, $v_i = (x_i, v)$ in $V' = X' \times_X V$. Write $\varphi(v, x) = (x, v')$ for some point $v'$ of $V$. This is possible because $\varphi$ is a morphism over $X \times_S X$. Denote $v_i' = (x_i, v')$ which is a point of $V'$. Then a calculation (using the definition of $\varphi'$) shows that $\varphi'(v_i, x_j) = (x_i, v'_j)$. Denote $w_i = \alpha'(v_i)$ and $w'_i = \alpha'(v_i')$. Now we may write $w_i = (x_i, u_i)$ for some point $u_i$ of $W$, and $w_i' = (x_i, u'_i)$ for some point $u_i'$ of $W$. The claim is equivalent to the assertion: $u_0 = u_1$. A formal calculation using the definition of $\psi'$ (see Lemma \ref{lemma-pullback}) shows that the commutativity of the diagram displayed above says that $$ ((x_i, x_j), \psi(u_i, x)) = ((x_i, x_j), (x, u'_j)) $$ as points of $(X' \times_S X') \times_{X \times_S X} (X \times_S W)$ for all $i, j \in \{0, 1\}$. This shows that $\psi(u_0, x) = \psi(u_1, x)$ and hence $u_0 = u_1$ by taking $\psi^{-1}$. This proves the claim because the argument above was formal and we can take scheme points (in other words, we may take $(v_0, v_1) = \text{id}_{V' \times_V V'}$). \medskip\noindent At this point we can use Lemma \ref{lemma-fpqc-universal-effective-epimorphisms}. Namely, $\{V' \to V\}$ is a fpqc covering as the base change of the morphism $f : X' \to X$. Hence, by Lemma \ref{lemma-fpqc-universal-effective-epimorphisms} the morphism $\alpha' : V' \to W' \to W$ factors through a unique morphism $\alpha : V \to W$ whose base change is necessarily $\alpha'$. Finally, we see the diagram $$ \xymatrix{ V \times_S X \ar[r]_{\varphi} \ar[d]_{\alpha \times \text{id}} & X \times_S V \ar[d]^{\text{id} \times \alpha} \\ W \times_S X \ar[r]^{\psi} & X \times_S W } $$ commutes because its base change to $X' \times_S X'$ commutes and the morphism $X' \times_S X' \to X \times_S X$ is surjective and flat (use Lemma \ref{lemma-ff-base-change-faithful}). Hence $\alpha$ is a morphism of descent data $(V, \varphi) \to (W, \psi)$ as desired. \end{proof} \noindent The following two lemmas have been obsoleted by the improved exposition of the previous material. But they are still true! \begin{lemma} \label{lemma-pullback-selfmap} Let $X \to S$ be a morphism of schemes. Let $f : X \to X$ be a selfmap of $X$ over $S$. In this case pullback by $f$ is isomorphic to the identity functor on the category of descent data relative to $X \to S$. \end{lemma} \begin{proof} This is clear from Lemma \ref{lemma-pullback} since it tells us that $f^* \cong \text{id}^*$. \end{proof} \begin{lemma} \label{lemma-morphism-with-section-equivalence} Let $f : X' \to X$ be a morphism of schemes over a base scheme $S$. Assume there exists a morphism $g : X \to X'$ over $S$, for example if $f$ has a section. Then the pullback functor of Lemma \ref{lemma-pullback} defines an equivalence of categories between the category of descent data relative to $X/S$ and $X'/S$. \end{lemma} \begin{proof} Let $g : X \to X'$ be a morphism over $S$. Lemma \ref{lemma-pullback-selfmap} above shows that the functors $f^* \circ g^* = (g \circ f)^*$ and $g^* \circ f^* = (f \circ g)^*$ are isomorphic to the respective identity functors as desired. \end{proof} \begin{lemma} \label{lemma-morphism-source-faithfully-flat} Let $f : X \to X'$ be a morphism of schemes over a base scheme $S$. Assume $X \to S$ is surjective and flat. Then the pullback functor of Lemma \ref{lemma-pullback} is a faithful functor from the category of descent data relative to $X'/S$ to the category of descent data relative to $X/S$. \end{lemma} \begin{proof} We may factor $X \to X'$ as $X \to X \times_S X' \to X'$. The first morphism has a section, hence induces an equivalence of categories of descent data by Lemma \ref{lemma-morphism-with-section-equivalence}. The second morphism is surjective and flat, hence induces a faithful functor by Lemma \ref{lemma-faithful}. \end{proof} \begin{lemma} \label{lemma-morphism-source-fpqc-covering} Let $f : X \to X'$ be a morphism of schemes over a base scheme $S$. Assume $\{X \to S\}$ is an fpqc covering (for example if $f$ is surjective, flat and quasi-compact). Then the pullback functor of Lemma \ref{lemma-pullback} is a fully faithful functor from the category of descent data relative to $X'/S$ to the category of descent data relative to $X/S$. \end{lemma} \begin{proof} We may factor $X \to X'$ as $X \to X \times_S X' \to X'$. The first morphism has a section, hence induces an equivalence of categories of descent data by Lemma \ref{lemma-morphism-with-section-equivalence}. The second morphism is an fpqc covering hence induces a fully faithful functor by Lemma \ref{lemma-fully-faithful}. \end{proof} \begin{lemma} \label{lemma-fpqc-refinement-coverings-fully-faithful} Let $S$ be a scheme. Let $\mathcal{U} = \{U_i \to S\}_{i \in I}$, and $\mathcal{V} = \{V_j \to S\}_{j \in J}$, be families of morphisms with target $S$. Let $\alpha : I \to J$, $\text{id} : S \to S$ and $g_i : U_i \to V_{\alpha(i)}$ be a morphism of families of maps with fixed target, see Sites, Definition \ref{sites-definition-morphism-coverings}. Assume that for each $j \in J$ the family $\{g_i : U_i \to V_j\}_{\alpha(i) = j}$ is an fpqc covering of $V_j$. Then the pullback functor $$ \text{descent data relative to } \mathcal{V} \longrightarrow \text{descent data relative to } \mathcal{U} $$ of Lemma \ref{lemma-pullback-family} is fully faithful. \end{lemma} \begin{proof} Consider the morphism of schemes $$ g : X = \coprod\nolimits_{i \in I} U_i \longrightarrow Y = \coprod\nolimits_{j \in J} V_j $$ over $S$ which on the $i$th component maps into the $\alpha(i)$th component via the morphism $g_{\alpha(i)}$. We claim that $\{g : X \to Y\}$ is an fpqc covering of schemes. Namely, by Topologies, Lemma \ref{topologies-lemma-disjoint-union-is-fpqc-covering} for each $j$ the morphism $\{\coprod_{\alpha(i) = j} U_i \to V_j\}$ is an fpqc covering. Thus for every affine open $V \subset V_j$ (which we may think of as an affine open of $Y$) we can find finitely many affine opens $W_1, \ldots, W_n \subset \coprod_{\alpha(i) = j} U_i$ (which we may think of as affine opens of $X$) such that $V = \bigcup_{i = 1, \ldots, n} g(W_i)$. This provides enough affine opens of $Y$ which can be covered by finitely many affine opens of $X$ so that Topologies, Lemma \ref{topologies-lemma-recognize-fpqc-covering} part (3) applies, and the claim follows. Let us write $DD(X/S)$, resp.\ $DD(\mathcal{U})$ for the category of descent data with respect to $X/S$, resp.\ $\mathcal{U}$, and similarly for $Y/S$ and $\mathcal{V}$. Consider the diagram $$ \xymatrix{ DD(Y/S) \ar[r] & DD(X/S) \\ DD(\mathcal{V}) \ar[u]^{\text{Lemma }\ref{lemma-family-is-one}} \ar[r] & DD(\mathcal{U}) \ar[u]_{\text{Lemma }\ref{lemma-family-is-one}} } $$ This diagram is commutative, see the proof of Lemma \ref{lemma-pullback-family}. The vertical arrows are equivalences. Hence the lemma follows from Lemma \ref{lemma-fully-faithful} which shows the top horizontal arrow of the diagram is fully faithful. \end{proof} \noindent The next lemma shows that, in order to check effectiveness, we may always Zariski refine the given family of morphisms with target $S$. \begin{lemma} \label{lemma-Zariski-refinement-coverings-equivalence} Let $S$ be a scheme. Let $\mathcal{U} = \{U_i \to S\}_{i \in I}$, and $\mathcal{V} = \{V_j \to S\}_{j \in J}$, be families of morphisms with target $S$. Let $\alpha : I \to J$, $\text{id} : S \to S$ and $g_i : U_i \to V_{\alpha(i)}$ be a morphism of families of maps with fixed target, see Sites, Definition \ref{sites-definition-morphism-coverings}. Assume that for each $j \in J$ the family $\{g_i : U_i \to V_j\}_{\alpha(i) = j}$ is a Zariski covering (see Topologies, Definition \ref{topologies-definition-zariski-covering}) of $V_j$. Then the pullback functor $$ \text{descent data relative to } \mathcal{V} \longrightarrow \text{descent data relative to } \mathcal{U} $$ of Lemma \ref{lemma-pullback-family} is an equivalence of categories. In particular, the category of schemes over $S$ is equivalent to the category of descent data relative to any Zariski covering of $S$. \end{lemma} \begin{proof} The functor is faithful and fully faithful by Lemma \ref{lemma-fpqc-refinement-coverings-fully-faithful}. Let us indicate how to prove that it is essentially surjective. Let $(X_i, \varphi_{ii'})$ be a descent datum relative to $\mathcal{U}$. Fix $j \in J$ and set $I_j = \{i \in I \mid \alpha(i) = j\}$. For $i, i' \in I_j$ note that there is a canonical morphism $$ c_{ii'} : U_i \times_{g_i, V_j, g_{i'}} U_{i'} \to U_i \times_S U_{i'}. $$ Hence we can pullback $\varphi_{ii'}$ by this morphism and set $\psi_{ii'} = c_{ii'}^*\varphi_{ii'}$ for $i, i' \in I_j$. In this way we obtain a descent datum $(X_i, \psi_{ii'})$ relative to the Zariski covering $\{g_i : U_i \to V_j\}_{i \in I_j}$. Note that $\psi_{ii'}$ is an isomorphism from the open $X_{i, U_i \times_{V_j} U_{i'}}$ of $X_i$ to the corresponding open of $X_{i'}$. It follows from Schemes, Section \ref{schemes-section-glueing-schemes} that we may glue $(X_i, \psi_{ii'})$ into a scheme $Y_j$ over $V_j$. Moreover, the morphisms $\varphi_{ii'}$ for $i \in I_j$ and $i' \in I_{j'}$ glue to a morphism $\varphi_{jj'} : Y_j \times_S V_{j'} \to V_j \times_S Y_{j'}$ satisfying the cocycle condition (details omitted). Hence we obtain the desired descent datum $(Y_j, \varphi_{jj'})$ relative to $\mathcal{V}$. \end{proof} \begin{lemma} \label{lemma-refine-coverings-fully-faithful} Let $S$ be a scheme. Let $\mathcal{U} = \{U_i \to S\}_{i \in I}$, and $\mathcal{V} = \{V_j \to S\}_{j \in J}$, be fpqc-coverings of $S$. If $\mathcal{U}$ is a refinement of $\mathcal{V}$, then the pullback functor $$ \text{descent data relative to } \mathcal{V} \longrightarrow \text{descent data relative to } \mathcal{U} $$ is fully faithful. In particular, the category of schemes over $S$ is identified with a full subcategory of the category of descent data relative to any fpqc-covering of $S$. \end{lemma} \begin{proof} Consider the fpqc-covering $\mathcal{W} = \{U_i \times_S V_j \to S\}_{(i, j) \in I \times J}$ of $S$. It is a refinement of both $\mathcal{U}$ and $\mathcal{V}$. Hence we have a $2$-commutative diagram of functors and categories $$ \xymatrix{ DD(\mathcal{V}) \ar[rd] \ar[rr] & & DD(\mathcal{U}) \ar[ld] \\ & DD(\mathcal{W}) & } $$ Notation as in the proof of Lemma \ref{lemma-fpqc-refinement-coverings-fully-faithful} and commutativity by Lemma \ref{lemma-pullback-family} part (3). Hence clearly it suffices to prove the functors $DD(\mathcal{V}) \to DD(\mathcal{W})$ and $DD(\mathcal{U}) \to DD(\mathcal{W})$ are fully faithful. This follows from Lemma \ref{lemma-fpqc-refinement-coverings-fully-faithful} as desired. \end{proof} \begin{remark} \label{remark-morphisms-of-schemes-satisfy-fpqc-descent} Lemma \ref{lemma-refine-coverings-fully-faithful} says that morphisms of schemes satisfy fpqc descent. In other words, given a scheme $S$ and schemes $X$, $Y$ over $S$ the functor $$ (\Sch/S)^{opp} \longrightarrow \textit{Sets}, \quad T \longmapsto \Mor_T(X_T, Y_T) $$ satisfies the sheaf condition for the fpqc topology. The simplest case of this is the following. Suppose that $T \to S$ is a surjective flat morphism of affines. Let $\psi_0 : X_T \to Y_T$ be a morphism of schemes over $T$ which is compatible with the canonical descent data. Then there exists a unique morphism $\psi : X \to Y$ whose base change to $T$ is $\psi_0$. In fact this special case follows in a straightforward manner from Lemma \ref{lemma-fully-faithful}. And, in turn, that lemma is a formal consequence of the following two facts: (a) the base change functor by a faithfully flat morphism is faithful, see Lemma \ref{lemma-ff-base-change-faithful} and (b) a scheme satisfies the sheaf condition for the fpqc topology, see Lemma \ref{lemma-fpqc-universal-effective-epimorphisms}. \end{remark} \begin{lemma} \label{lemma-effective-for-fpqc-is-local-upstairs} Let $X \to S$ be a surjective, quasi-compact, flat morphism of schemes. Let $(V, \varphi)$ be a descent datum relative to $X/S$. Suppose that for all $v \in V$ there exists an open subscheme $v \in W \subset V$ such that $\varphi(W \times_S X) \subset X \times_S W$ and such that the descent datum $(W, \varphi|_{W \times_S X})$ is effective. Then $(V, \varphi)$ is effective. \end{lemma} \begin{proof} Let $V = \bigcup W_i$ be an open covering with $\varphi(W_i \times_S X) \subset X \times_S W_i$ and such that the descent datum $(W_i, \varphi|_{W_i \times_S X})$ is effective. Let $U_i \to S$ be a scheme and let $\alpha_i : (X \times_S U_i, can) \to (W_i, \varphi|_{W_i \times_S X})$ be an isomorphism of descent data. For each pair of indices $(i, j)$ consider the open $\alpha_i^{-1}(W_i \cap W_j) \subset X \times_S U_i$. Because everything is compatible with descent data and since $\{X \to S\}$ is an fpqc covering, we may apply Lemma \ref{lemma-open-fpqc-covering} to find an open $V_{ij} \subset V_j$ such that $\alpha_i^{-1}(W_i \cap W_j) = X \times_S V_{ij}$. Now the identity morphism on $W_i \cap W_j$ is compatible with descent data, hence comes from a unique morphism $\varphi_{ij} : U_{ij} \to U_{ji}$ over $S$ (see Remark \ref{remark-morphisms-of-schemes-satisfy-fpqc-descent}). Then $(U_i, U_{ij}, \varphi_{ij})$ is a glueing data as in Schemes, Section \ref{schemes-section-glueing-schemes} (proof omitted). Thus we may assume there is a scheme $U$ over $S$ such that $U_i \subset U$ is open, $U_{ij} = U_i \cap U_j$ and $\varphi_{ij} = \text{id}_{U_i \cap U_j}$, see Schemes, Lemma \ref{schemes-lemma-glue}. Pulling back to $X$ we can use the $\alpha_i$ to get the desired isomorphism $\alpha : X \times_S U \to V$. \end{proof} \section{Descending types of morphisms} \label{section-descending-types-morphisms} \noindent In the following we study the question as to whether descent data for schemes relative to a fpqc-covering are effective. The first remark to make is that this is not always the case. We will see this in Algebraic Spaces, Example \ref{spaces-example-non-representable-descent}. Even projective morphisms do not always satisfy descent for fpqc-coverings, by Examples, Lemma \ref{examples-lemma-non-effective-descent-projective}. \medskip\noindent On the other hand, if the schemes we are trying to descend are particularly simple, then it is sometime the case that for whole classes of schemes descent data are effective. We will introduce terminology here that describes this phenomenon abstractly, even though it may lead to confusion if not used correctly later on. \begin{definition} \label{definition-descending-types-morphisms} Let $\mathcal{P}$ be a property of morphisms of schemes over a base. Let $\tau \in \{Zariski, fpqc, fppf, \etale, smooth, syntomic\}$. We say {\it morphisms of type $\mathcal{P}$ satisfy descent for $\tau$-coverings} if for any $\tau$-covering $\mathcal{U} : \{U_i \to S\}_{i \in I}$ (see Topologies, Section \ref{topologies-section-procedure}), any descent datum $(X_i, \varphi_{ij})$ relative to $\mathcal{U}$ such that each morphism $X_i \to U_i$ has property $\mathcal{P}$ is effective. \end{definition} \noindent Note that in each of the cases we have already seen that the functor from schemes over $S$ to descent data over $\mathcal{U}$ is fully faithful (Lemma \ref{lemma-refine-coverings-fully-faithful} combined with the results in Topologies that any $\tau$-covering is also a fpqc-covering). We have also seen that descent data are always effective with respect to Zariski coverings (Lemma \ref{lemma-Zariski-refinement-coverings-equivalence}). It may be prudent to only study the notion just introduced when $\mathcal{P}$ is either stable under any base change or at least local on the base in the $\tau$-topology (see Definition \ref{definition-property-morphisms-local}) in order to avoid erroneous arguments (relying on $\mathcal{P}$ when descending halfway). \medskip\noindent Here is the obligatory lemma reducing this question to the case of a covering given by a single morphism of affines. \begin{lemma} \label{lemma-descending-types-morphisms} Let $\mathcal{P}$ be a property of morphisms of schemes over a base. Let $\tau \in \{fpqc, fppf, \etale, smooth, syntomic\}$. Suppose that \begin{enumerate} \item $\mathcal{P}$ is stable under any base change (see Schemes, Definition \ref{schemes-definition-preserved-by-base-change}), \item if $Y_j \to V_j$, $j = 1, \ldots, m$ have $\mathcal{P}$, then so does $\coprod Y_j \to \coprod V_j$, and \item for any surjective morphism of affines $X \to S$ which is flat, flat of finite presentation, \'etale, smooth or syntomic depending on whether $\tau$ is fpqc, fppf, \'etale, smooth, or syntomic, any descent datum $(V, \varphi)$ relative to $X$ over $S$ such that $\mathcal{P}$ holds for $V \to X$ is effective. \end{enumerate} Then morphisms of type $\mathcal{P}$ satisfy descent for $\tau$-coverings. \end{lemma} \begin{proof} Let $S$ be a scheme. Let $\mathcal{U} = \{\varphi_i : U_i \to S\}_{i \in I}$ be a $\tau$-covering of $S$. Let $(X_i, \varphi_{ii'})$ be a descent datum relative to $\mathcal{U}$ and assume that each morphism $X_i \to U_i$ has property $\mathcal{P}$. We have to show there exists a scheme $X \to S$ such that $(X_i, \varphi_{ii'}) \cong (U_i \times_S X, can)$. \medskip\noindent Before we start the proof proper we remark that for any family of morphisms $\mathcal{V} : \{V_j \to S\}$ and any morphism of families $\mathcal{V} \to \mathcal{U}$, if we pullback the descent datum $(X_i, \varphi_{ii'})$ to a descent datum $(Y_j, \varphi_{jj'})$ over $\mathcal{V}$, then each of the morphisms $Y_j \to V_j$ has property $\mathcal{P}$ also. This is true because of assumption (1) that $\mathcal{P}$ is stable under any base change and the definition of pullback (see Definition \ref{definition-pullback-functor-family}). We will use this without further mention. \medskip\noindent First, let us prove the lemma when $S$ is affine. By Topologies, Lemma \ref{topologies-lemma-fpqc-affine}, \ref{topologies-lemma-fppf-affine}, \ref{topologies-lemma-etale-affine}, \ref{topologies-lemma-smooth-affine}, or \ref{topologies-lemma-syntomic-affine} there exists a standard $\tau$-covering $\mathcal{V} : \{V_j \to S\}_{j = 1, \ldots, m}$ which refines $\mathcal{U}$. The pullback functor $DD(\mathcal{U}) \to DD(\mathcal{V})$ between categories of descent data is fully faithful by Lemma \ref{lemma-refine-coverings-fully-faithful}. Hence it suffices to prove that the descent datum over the standard $\tau$-covering $\mathcal{V}$ is effective. By assumption (2) we see that $\coprod Y_j \to \coprod V_j$ has property $\mathcal{P}$. By Lemma \ref{lemma-family-is-one} this reduces us to the covering $\{\coprod_{j = 1, \ldots, m} V_j \to S\}$ for which we have assumed the result in assumption (3) of the lemma. Hence the lemma holds when $S$ is affine. \medskip\noindent Assume $S$ is general. Let $V \subset S$ be an affine open. By the properties of site the family $\mathcal{U}_V = \{V \times_S U_i \to V\}_{i \in I}$ is a $\tau$-covering of $V$. Denote $(X_i, \varphi_{ii'})_V$ the restriction (or pullback) of the given descent datum to $\mathcal{U}_V$. Hence by what we just saw we obtain a scheme $X_V$ over $V$ whose canonical descent datum with respect to $\mathcal{U}_V$ is isomorphic to $(X_i, \varphi_{ii'})_V$. Suppose that $V' \subset V$ is an affine open of $V$. Then both $X_{V'}$ and $V' \times_V X_V$ have canonical descent data isomorphic to $(X_i, \varphi_{ii'})_{V'}$. Hence, by Lemma \ref{lemma-refine-coverings-fully-faithful} again we obtain a canonical morphism $\rho^V_{V'} : X_{V'} \to X_V$ over $S$ which identifies $X_{V'}$ with the inverse image of $V'$ in $X_V$. We omit the verification that given affine opens $V'' \subset V' \subset V$ of $S$ we have $\rho^V_{V''} = \rho^V_{V'} \circ \rho^{V'}_{V''}$. \medskip\noindent By Constructions, Lemma \ref{constructions-lemma-relative-glueing} the data $(X_V, \rho^V_{V'})$ glue to a scheme $X \to S$. Moreover, we are given isomorphisms $V \times_S X \to X_V$ which recover the maps $\rho^V_{V'}$. Unwinding the construction of the schemes $X_V$ we obtain isomorphisms $$ V \times_S U_i \times_S X \longrightarrow V \times_S X_i $$ compatible with the maps $\varphi_{ii'}$ and compatible with restricting to smaller affine opens in $X$. This implies that the canonical descent datum on $U_i \times_S X$ is isomorphic to the given descent datum and we win. \end{proof} \section{Descending affine morphisms} \label{section-affine} \noindent In this section we show that ``affine morphisms satisfy descent for fpqc-coverings''. Here is the formal statement. \begin{lemma} \label{lemma-affine} Let $S$ be a scheme. Let $\{X_i \to S\}_{i\in I}$ be an fpqc covering, see Topologies, Definition \ref{topologies-definition-fpqc-covering}. Let $(V_i/X_i, \varphi_{ij})$ be a descent datum relative to $\{X_i \to S\}$. If each morphism $V_i \to X_i$ is affine, then the descent datum is effective. \end{lemma} \begin{proof} Being affine is a property of morphisms of schemes which is local on the base and preserved under any base change, see Morphisms, Lemmas \ref{morphisms-lemma-characterize-affine} and \ref{morphisms-lemma-base-change-affine}. Hence Lemma \ref{lemma-descending-types-morphisms} applies and it suffices to prove the statement of the lemma in case the fpqc-covering is given by a single $\{X \to S\}$ flat surjective morphism of affines. Say $X = \Spec(A)$ and $S = \Spec(R)$ so that $R \to A$ is a faithfully flat ring map. Let $(V, \varphi)$ be a descent datum relative to $X$ over $S$ and assume that $V \to X$ is affine. Then $V \to X$ being affine implies that $V = \Spec(B)$ for some $A$-algebra $B$ (see Morphisms, Definition \ref{morphisms-definition-affine}). The isomorphism $\varphi$ corresponds to an isomorphism of rings $$ \varphi^\sharp : B \otimes_R A \longleftarrow A \otimes_R B $$ as $A \otimes_R A$-algebras. The cocycle condition on $\varphi$ says that $$ \xymatrix{ B \otimes_R A \otimes_R A & & A \otimes_R A \otimes_R B \ar[ll] \ar[ld]\\ & A \otimes_R B \otimes_R A \ar[lu] & } $$ is commutative. Inverting these arrows we see that we have a descent datum for modules with respect to $R \to A$ as in Definition \ref{definition-descent-datum-modules}. Hence we may apply Proposition \ref{proposition-descent-module} to obtain an $R$-module $C = \Ker(B \to A \otimes_R B)$ and an isomorphism $A \otimes_R C \cong B$ respecting descent data. Given any pair $c, c' \in C$ the product $cc'$ in $B$ lies in $C$ since the map $\varphi$ is an algebra homomorphism. Hence $C$ is an $R$-algebra whose base change to $A$ is isomorphic to $B$ compatibly with descent data. Applying $\Spec$ we obtain a scheme $U$ over $S$ such that $(V, \varphi) \cong (X \times_S U, can)$ as desired. \end{proof} \begin{lemma} \label{lemma-closed-immersion} Let $S$ be a scheme. Let $\{X_i \to S\}_{i\in I}$ be an fpqc covering, see Topologies, Definition \ref{topologies-definition-fpqc-covering}. Let $(V_i/X_i, \varphi_{ij})$ be a descent datum relative to $\{X_i \to S\}$. If each morphism $V_i \to X_i$ is a closed immersion, then the descent datum is effective. \end{lemma} \begin{proof} This is true because a closed immersion is an affine morphism (Morphisms, Lemma \ref{morphisms-lemma-closed-immersion-affine}), and hence Lemma \ref{lemma-affine} applies. \end{proof} \section{Descending quasi-affine morphisms} \label{section-quasi-affine} \noindent In this section we show that ``quasi-affine morphisms satisfy descent for fpqc-coverings''. Here is the formal statement. \begin{lemma} \label{lemma-quasi-affine} Let $S$ be a scheme. Let $\{X_i \to S\}_{i\in I}$ be an fpqc covering, see Topologies, Definition \ref{topologies-definition-fpqc-covering}. Let $(V_i/X_i, \varphi_{ij})$ be a descent datum relative to $\{X_i \to S\}$. If each morphism $V_i \to X_i$ is quasi-affine, then the descent datum is effective. \end{lemma} \begin{proof} Being quasi-affine is a property of morphisms of schemes which is preserved under any base change, see Morphisms, Lemmas \ref{morphisms-lemma-characterize-quasi-affine} and \ref{morphisms-lemma-base-change-quasi-affine}. Hence Lemma \ref{lemma-descending-types-morphisms} applies and it suffices to prove the statement of the lemma in case the fpqc-covering is given by a single $\{X \to S\}$ flat surjective morphism of affines. Say $X = \Spec(A)$ and $S = \Spec(R)$ so that $R \to A$ is a faithfully flat ring map. Let $(V, \varphi)$ be a descent datum relative to $X$ over $S$ and assume that $\pi : V \to X$ is quasi-affine. \medskip\noindent According to Morphisms, Lemma \ref{morphisms-lemma-characterize-quasi-affine} this means that $$ V \longrightarrow \underline{\Spec}_X(\pi_*\mathcal{O}_V) = W $$ is a quasi-compact open immersion of schemes over $X$. The projections $\text{pr}_i : X \times_S X \to X$ are flat and hence we have $$ \text{pr}_0^*\pi_*\mathcal{O}_V = (\pi \times \text{id}_X)_*\mathcal{O}_{V \times_S X}, \quad \text{pr}_1^*\pi_*\mathcal{O}_V = (\text{id}_X \times \pi)_*\mathcal{O}_{X \times_S V} $$ by flat base change (Cohomology of Schemes, Lemma \ref{coherent-lemma-flat-base-change-cohomology}). Thus the isomorphism $\varphi : V \times_S X \to X \times_S V$ (which is an isomorphism over $X \times_S X$) induces an isomorphism of quasi-coherent sheaves of algebras $$ \varphi^\sharp : \text{pr}_0^*\pi_*\mathcal{O}_V \longrightarrow \text{pr}_1^*\pi_*\mathcal{O}_V $$ on $X \times_S X$. The cocycle condition for $\varphi$ implies the cocycle condition for $\varphi^\sharp$. Another way to say this is that it produces a descent datum $\varphi'$ on the affine scheme $W$ relative to $X$ over $S$, which moreover has the property that the morphism $V \to W$ is a morphism of descent data. Hence by Lemma \ref{lemma-affine} (or by effectivity of descent for quasi-coherent algebras) we obtain a scheme $U' \to S$ with an isomorphism $(W, \varphi') \cong (X \times_S U', can)$ of descent data. We note in passing that $U'$ is affine by Lemma \ref{lemma-descending-property-affine}. \medskip\noindent And now we can think of $V$ as a (quasi-compact) open $V \subset X \times_S U'$ with the property that it is stable under the descent datum $$ can : X \times_S U' \times_S X \to X \times_S X \times_S U', (x_0, u', x_1) \mapsto (x_0, x_1, u'). $$ In other words $(x_0, u') \in V \Rightarrow (x_1, u') \in V$ for any $x_0, x_1, u'$ mapping to the same point of $S$. Because $X \to S$ is surjective we immediately find that $V$ is the inverse image of a subset $U \subset U'$ under the morphism $X \times_S U' \to U'$. Because $X \to S$ is quasi-compact, flat and surjective also $X \times_S U' \to U'$ is quasi-compact flat and surjective. Hence by Morphisms, Lemma \ref{morphisms-lemma-fpqc-quotient-topology} this subset $U \subset U'$ is open and we win. \end{proof} \section{Descent data in terms of sheaves} \label{section-descent-data-sheaves} \noindent Here is another way to think about descent data in case of a covering on a site. \begin{lemma} \label{lemma-descent-data-sheaves} Let $\tau \in \{Zariski, fppf, \etale, smooth, syntomic\}$\footnote{The fact that fpqc is missing is not a typo. See discussion in Topologies, Section \ref{topologies-section-fpqc}.}. Let $\Sch_\tau$ be a big $\tau$-site. Let $S \in \Ob(\Sch_\tau)$. Let $\{S_i \to S\}_{i \in I}$ be a covering in the site $(\Sch/S)_\tau$. There is an equivalence of categories $$ \left\{ \begin{matrix} \text{descent data }(X_i, \varphi_{ii'})\text{ such that}\\ \text{each }X_i \in \Ob((\Sch/S)_\tau) \end{matrix} \right\} \leftrightarrow \left\{ \begin{matrix} \text{sheaves }F\text{ on }(\Sch/S)_\tau\text{ such that}\\ \text{each }h_{S_i} \times F\text{ is representable} \end{matrix} \right\}. $$ Moreover, \begin{enumerate} \item the objects representing $h_{S_i} \times F$ on the right hand side correspond to the schemes $X_i$ on the left hand side, and \item the sheaf $F$ is representable if and only if the corresponding descent datum $(X_i, \varphi_{ii'})$ is effective. \end{enumerate} \end{lemma} \begin{proof} We have seen in Section \ref{section-fpqc-universal-effective-epimorphisms} that representable presheaves are sheaves on the site $(\Sch/S)_\tau$. Moreover, the Yoneda lemma (Categories, Lemma \ref{categories-lemma-yoneda}) guarantees that maps between representable sheaves correspond one to one with maps between the representing objects. We will use these remarks without further mention during the proof. \medskip\noindent Let us construct the functor from right to left. Let $F$ be a sheaf on $(\Sch/S)_\tau$ such that each $h_{S_i} \times F$ is representable. In this case let $X_i$ be a representing object in $(\Sch/S)_\tau$. It comes equipped with a morphism $X_i \to S_i$. Then both $X_i \times_S S_{i'}$ and $S_i \times_S X_{i'}$ represent the sheaf $h_{S_i} \times F \times h_{S_{i'}}$ and hence we obtain an isomorphism $$ \varphi_{ii'} : X_i \times_S S_{i'} \to S_i \times_S X_{i'} $$ It is straightforward to see that the maps $\varphi_{ii'}$ are morphisms over $S_i \times_S S_{i'}$ and satisfy the cocycle condition. The functor from right to left is given by this construction $F \mapsto (X_i, \varphi_{ii'})$. \medskip\noindent Let us construct a functor from left to right. For each $i$ denote $F_i$ the sheaf $h_{X_i}$. The isomorphisms $\varphi_{ii'}$ give isomorphisms $$ \varphi_{ii'} : F_i \times h_{S_{i'}} \longrightarrow h_{S_i} \times F_{i'} $$ over $h_{S_i} \times h_{S_{i'}}$. Set $F$ equal to the coequalizer in the following diagram $$ \xymatrix{ \coprod_{i, i'} F_i \times h_{S_{i'}} \ar@<1ex>[rr]^-{\text{pr}_0} \ar@<-1ex>[rr]_-{\text{pr}_1 \circ \varphi_{ii'}} & & \coprod_i F_i \ar[r] & F } $$ The cocycle condition guarantees that $h_{S_i} \times F$ is isomorphic to $F_i$ and hence representable. The functor from left to right is given by this construction $(X_i, \varphi_{ii'}) \mapsto F$. \medskip\noindent We omit the verification that these constructions are mutually quasi-inverse functors. The final statements (1) and (2) follow from the constructions. \end{proof} \begin{remark} \label{remark-what-product-means} In the statement of Lemma \ref{lemma-descent-data-sheaves} the condition that $h_{S_i} \times F$ is representable is equivalent to the condition that the restriction of $F$ to $(\Sch/S_i)_\tau$ is representable. \end{remark} \input{chapters} \bibliography{my} \bibliographystyle{amsalpha} \end{document}