(* Title: Lib.thy License: BSD 2-Clause. See LICENSE. Author: Timothy Bourke *) section "Generic functions and lemmas" theory Lib imports Main begin definition TT :: "'a \ bool" where "TT = (\_. True)" lemma TT_True [intro, simp]: "TT a" unfolding TT_def by simp lemma in_set_tl: "x \ set (tl xs) \ x \ set xs" by (metis Nil_tl insert_iff list.collapse set_simps(2)) lemma nat_le_eq_or_lt [elim]: fixes x :: nat assumes "x \ y" and eq: "x = y \ P x y" and lt: "x < y \ P x y" shows "P x y" using assms unfolding nat_less_le by auto lemma disjoint_commute: "(A \ B = {}) \ (B \ A = {})" by auto definition default :: "('i \ 's) \ ('i \ 's option) \ ('i \ 's)" where "default df f = (\i. case f i of None \ df i | Some s \ s)" end