(* Title: OAWN_Invariants.thy License: BSD 2-Clause. See LICENSE. Author: Timothy Bourke *) section "Generic open invariants on sequential AWN processes" theory OAWN_Invariants imports Invariants OInvariants AWN_Cterms AWN_Labels AWN_Invariants OAWN_SOS begin subsection "Open invariants via labelled control terms" lemma oseqp_sos_subterms: assumes "wellformed \" and "\pn. p \ subterms (\ pn)" and "((\, p), a, (\', p')) \ oseqp_sos \ i" shows "\pn. p' \ subterms (\ pn)" using assms proof (induct p) fix p1 p2 assume IH1: "\pn. p1 \ subterms (\ pn) \ ((\, p1), a, (\', p')) \ oseqp_sos \ i \ \pn. p' \ subterms (\ pn)" and IH2: "\pn. p2 \ subterms (\ pn) \ ((\, p2), a, (\', p')) \ oseqp_sos \ i \ \pn. p' \ subterms (\ pn)" and "\pn. p1 \ p2 \ subterms (\ pn)" and "((\, p1 \ p2), a, (\', p')) \ oseqp_sos \ i" from \\pn. p1 \ p2 \ subterms (\ pn)\ obtain pn where "p1 \ subterms (\ pn)" and "p2 \ subterms (\ pn)" by auto from \((\, p1 \ p2), a, (\', p')) \ oseqp_sos \ i\ have "((\, p1), a, (\', p')) \ oseqp_sos \ i \ ((\, p2), a, (\', p')) \ oseqp_sos \ i" by auto thus "\pn. p' \ subterms (\ pn)" proof assume "((\, p1), a, (\', p')) \ oseqp_sos \ i" with \p1 \ subterms (\ pn)\ show ?thesis by (auto intro: IH1) next assume "((\, p2), a, (\', p')) \ oseqp_sos \ i" with \p2 \ subterms (\ pn)\ show ?thesis by (auto intro: IH2) qed qed auto lemma oreachable_subterms: assumes "wellformed \" and "control_within \ (init A)" and "trans A = oseqp_sos \ i" and "(\, p) \ oreachable A S U" shows "\pn. p \ subterms (\ pn)" using assms(4) proof (induct rule: oreachable_pair_induct) fix \ p assume "(\, p) \ init A" with \control_within \ (init A)\ show "\pn. p \ subterms (\ pn)" .. next fix \ p a \' p' assume "(\, p) \ oreachable A S U" and "\pn. p \ subterms (\ pn)" and 3: "((\, p), a, (\', p')) \ trans A" and "S \ \' a" moreover from 3 and \trans A = oseqp_sos \ i\ have "((\, p), a, (\', p')) \ oseqp_sos \ i" by simp ultimately show "\pn. p' \ subterms (\ pn)" using \wellformed \\ by (auto elim: oseqp_sos_subterms) qed lemma onl_oinvariantI [intro]: assumes init: "\\ p l. \ (\, p) \ init A; l \ labels \ p \ \ P (\, l)" and other: "\\ \' p l. \ (\, p) \ oreachable A S U; \l\labels \ p. P (\, l); U \ \' \ \ \l\labels \ p. P (\', l)" and step: "\\ p a \' p' l'. \ (\, p) \ oreachable A S U; \l\labels \ p. P (\, l); ((\, p), a, (\', p')) \ trans A; l' \ labels \ p'; S \ \' a \ \ P (\', l')" shows "A \ (S, U \) onl \ P" proof fix \ p assume "(\, p) \ init A" hence "\l\labels \ p. P (\, l)" using init by simp thus "onl \ P (\, p)" .. next fix \ p a \' p' assume rp: "(\, p) \ oreachable A S U" and "onl \ P (\, p)" and tr: "((\, p), a, (\', p')) \ trans A" and "S \ \' a" from \onl \ P (\, p)\ have "\l\labels \ p. P (\, l)" .. with rp tr \S \ \' a\ have "\l'\labels \ p'. P (\', l')" by (auto elim: step) thus "onl \ P (\', p')" .. next fix \ \' p assume "(\, p) \ oreachable A S U" and "onl \ P (\, p)" and "U \ \'" from \onl \ P (\, p)\ have "\l\labels \ p. P (\, l)" by auto with \(\, p) \ oreachable A S U\ have "\l\labels \ p. P (\', l)" using \U \ \'\ by (rule other) thus "onl \ P (\', p)" by auto qed lemma global_oinvariantI [intro]: assumes init: "\\ p. (\, p) \ init A \ P \" and other: "\\ \' p l. \ (\, p) \ oreachable A S U; P \; U \ \' \ \ P \'" and step: "\\ p a \' p'. \ (\, p) \ oreachable A S U; P \; ((\, p), a, (\', p')) \ trans A; S \ \' a \ \ P \'" shows "A \ (S, U \) (\(\, _). P \)" proof fix \ p assume "(\, p) \ init A" thus "(\(\, _). P \) (\, p)" by simp (erule init) next fix \ p a \' p' assume rp: "(\, p) \ oreachable A S U" and "(\(\, _). P \) (\, p)" and tr: "((\, p), a, (\', p')) \ trans A" and "S \ \' a" from \(\(\, _). P \) (\, p)\ have "P \" by simp with rp have "P \'" using tr \S \ \' a\ by (rule step) thus "(\(\, _). P \) (\', p')" by simp next fix \ \' p assume "(\, p) \ oreachable A S U" and "(\(\, _). P \) (\, p)" and "U \ \'" hence "P \'" by simp (erule other) thus "(\(\, _). P \) (\', p)" by simp qed lemma onl_oinvariantD [dest]: assumes "A \ (S, U \) onl \ P" and "(\, p) \ oreachable A S U" and "l \ labels \ p" shows "P (\, l)" using assms unfolding onl_def by auto lemma onl_oinvariant_weakenD [dest]: assumes "A \ (S', U' \) onl \ P" and "(\, p) \ oreachable A S U" and "l \ labels \ p" and weakenS: "\s s' a. S s s' a \ S' s s' a" and weakenU: "\s s'. U s s' \ U' s s'" shows "P (\, l)" proof - from \(\, p) \ oreachable A S U\ have "(\, p) \ oreachable A S' U'" by (rule oreachable_weakenE) (erule weakenS, erule weakenU) with \A \ (S', U' \) onl \ P\ show "P (\, l)" using \l \ labels \ p\ .. qed lemma onl_oinvariant_initD [dest]: assumes invP: "A \ (S, U \) onl \ P" and init: "(\, p) \ init A" and pnl: "l \ labels \ p" shows "P (\, l)" proof - from init have "(\, p) \ oreachable A S U" .. with invP show ?thesis using pnl .. qed lemma onl_oinvariant_sterms: assumes wf: "wellformed \" and il: "A \ (S, U \) onl \ P" and rp: "(\, p) \ oreachable A S U" and "p'\sterms \ p" and "l\labels \ p'" shows "P (\, l)" proof - from wf \p'\sterms \ p\ \l\labels \ p'\ have "l\labels \ p" by (rule labels_sterms_labels) with il rp show "P (\, l)" .. qed lemma onl_oinvariant_sterms_weaken: assumes wf: "wellformed \" and il: "A \ (S', U' \) onl \ P" and rp: "(\, p) \ oreachable A S U" and "p'\sterms \ p" and "l\labels \ p'" and weakenS: "\\ \' a. S \ \' a \ S' \ \' a" and weakenU: "\\ \'. U \ \' \ U' \ \'" shows "P (\, l)" proof - from \(\, p) \ oreachable A S U\ have "(\, p) \ oreachable A S' U'" by (rule oreachable_weakenE) (erule weakenS, erule weakenU) with assms(1-2) show ?thesis using assms(4-5) by (rule onl_oinvariant_sterms) qed lemma otrans_from_sterms: assumes "((\, p), a, (\', q)) \ oseqp_sos \ i" and "wellformed \" shows "\p'\sterms \ p. ((\, p'), a, (\', q)) \ oseqp_sos \ i" using assms by (induction p rule: sterms_pinduct [OF \wellformed \\]) auto lemma otrans_from_sterms': assumes "((\, p'), a, (\', q)) \ oseqp_sos \ i" and "wellformed \" and "p' \ sterms \ p" shows "((\, p), a, (\', q)) \ oseqp_sos \ i" using assms by (induction p rule: sterms_pinduct [OF \wellformed \\]) auto lemma otrans_to_dterms: assumes "((\, p), a, (\', q)) \ oseqp_sos \ i" and "wellformed \" shows "\r\sterms \ q. r \ dterms \ p" using assms by (induction q) auto theorem cterms_includes_sterms_of_oseq_reachable: assumes "wellformed \" and "control_within \ (init A)" and "trans A = oseqp_sos \ i" shows "\(sterms \ ` snd ` oreachable A S U) \ cterms \" proof fix qs assume "qs \ \(sterms \ ` snd ` oreachable A S U)" then obtain \ and q where *: "(\, q) \ oreachable A S U" and **: "qs \ sterms \ q" by auto from * have "\x. x \ sterms \ q \ x \ cterms \" proof (induction rule: oreachable_pair_induct) fix \ p q assume "(\, p) \ init A" and "q \ sterms \ p" from \control_within \ (init A)\ and \(\, p) \ init A\ obtain pn where "p \ subterms (\ pn)" by auto with \wellformed \\ show "q \ cterms \" using \q\sterms \ p\ by (rule subterms_sterms_in_cterms) next fix p \ a \' q x assume "(\, p) \ oreachable A S U" and IH: "\x. x \ sterms \ p \ x \ cterms \" and "((\, p), a, (\', q)) \ trans A" and "x \ sterms \ q" from this(3) and \trans A = oseqp_sos \ i\ have step: "((\, p), a, (\', q)) \ oseqp_sos \ i" by simp from step \wellformed \\ obtain ps where ps: "ps \ sterms \ p" and step': "((\, ps), a, (\', q)) \ oseqp_sos \ i" by (rule otrans_from_sterms [THEN bexE]) from ps have "ps \ cterms \" by (rule IH) moreover from step' \wellformed \\ \x \ sterms \ q\ have "x \ dterms \ ps" by (rule otrans_to_dterms [rule_format]) ultimately show "x \ cterms \" by (rule ctermsDI) qed thus "qs \ cterms \" using ** . qed corollary oseq_reachable_in_cterms: assumes "wellformed \" and "control_within \ (init A)" and "trans A = oseqp_sos \ i" and "(\, p) \ oreachable A S U" and "p' \ sterms \ p" shows "p' \ cterms \" using assms(1-3) proof (rule cterms_includes_sterms_of_oseq_reachable [THEN subsetD]) from assms(4-5) show "p' \ \(sterms \ ` snd ` oreachable A S U)" by (auto elim!: rev_bexI) qed lemma oseq_invariant_ctermI: assumes wf: "wellformed \" and cw: "control_within \ (init A)" and sl: "simple_labels \" and sp: "trans A = oseqp_sos \ i" and init: "\\ p l. \ (\, p) \ init A; l\labels \ p \ \ P (\, l)" and other: "\\ \' p l. \ (\, p) \ oreachable A S U; l\labels \ p; P (\, l); U \ \' \ \ P (\', l)" and local: "\p l \ a q l' \' pp. \ p\cterms \; l\labels \ p; P (\, l); ((\, p), a, (\', q)) \ oseqp_sos \ i; ((\, p), a, (\', q)) \ trans A; l'\labels \ q; (\, pp)\oreachable A S U; p\sterms \ pp; (\', q)\oreachable A S U; S \ \' a \ \ P (\', l')" shows "A \ (S, U \) onl \ P" proof fix \ p l assume "(\, p) \ init A" and *: "l \ labels \ p" with init show "P (\, l)" by auto next fix \ p a \' q l' assume sr: "(\, p) \ oreachable A S U" and pl: "\l\labels \ p. P (\, l)" and tr: "((\, p), a, (\', q)) \ trans A" and A6: "l' \ labels \ q" and "S \ \' a" thus "P (\', l')" proof - from sr and tr and \S \ \' a\ have A7: "(\', q) \ oreachable A S U" by - (rule oreachable_local') from tr and sp have tr': "((\, p), a, (\', q)) \ oseqp_sos \ i" by simp then obtain p' where "p' \ sterms \ p" and A4: "((\, p'), a, (\', q)) \ oseqp_sos \ i" by (blast dest: otrans_from_sterms [OF _ wf]) from wf cw sp sr this(1) have A1: "p'\cterms \" by (rule oseq_reachable_in_cterms) from labels_not_empty [OF wf] obtain ll where A2: "ll\labels \ p'" by blast with \p'\sterms \ p\ have "ll\labels \ p" by (rule labels_sterms_labels [OF wf]) with pl have A3: "P (\, ll)" by simp from sr \p'\sterms \ p\ obtain pp where A7: "(\, pp)\oreachable A S U" and A8: "p'\sterms \ pp" by auto from sr tr \S \ \' a\ have A9: "(\', q)\oreachable A S U" by - (rule oreachable_local') from sp and \((\, p'), a, (\', q)) \ oseqp_sos \ i\ have A5: "((\, p'), a, (\', q)) \ trans A" by simp from A1 A2 A3 A4 A5 A6 A7 A8 A9 \S \ \' a\ show ?thesis by (rule local) qed next fix \ \' p l assume sr: "(\, p) \ oreachable A S U" and "\l\labels \ p. P (\, l)" and "U \ \'" show "\l\labels \ p. P (\', l)" proof fix l assume "l\labels \ p" with \\l\labels \ p. P (\, l)\ have "P (\, l)" .. with sr and \l\labels \ p\ show "P (\', l)" using \U \ \'\ by (rule other) qed qed lemma oseq_invariant_ctermsI: assumes wf: "wellformed \" and cw: "control_within \ (init A)" and sl: "simple_labels \" and sp: "trans A = oseqp_sos \ i" and init: "\\ p l. \ (\, p) \ init A; l\labels \ p \ \ P (\, l)" and other: "\\ \' p l. \ wellformed \; (\, p) \ oreachable A S U; l\labels \ p; P (\, l); U \ \' \ \ P (\', l)" and local: "\p l \ a q l' \' pp pn. \ wellformed \; p\ctermsl (\ pn); not_call p; l\labels \ p; P (\, l); ((\, p), a, (\', q)) \ oseqp_sos \ i; ((\, p), a, (\', q)) \ trans A; l'\labels \ q; (\, pp)\oreachable A S U; p\sterms \ pp; (\', q)\oreachable A S U; S \ \' a \ \ P (\', l')" shows "A \ (S, U \) onl \ P" proof (rule oseq_invariant_ctermI [OF wf cw sl sp]) fix \ p l assume "(\, p) \ init A" and "l \ labels \ p" thus "P (\, l)" by (rule init) next fix \ \' p l assume "(\, p) \ oreachable A S U" and "l \ labels \ p" and "P (\, l)" and "U \ \'" with wf show "P (\', l)" by (rule other) next fix p l \ a q l' \' pp assume "p \ cterms \" and otherassms: "l \ labels \ p" "P (\, l)" "((\, p), a, (\', q)) \ oseqp_sos \ i" "((\, p), a, (\', q)) \ trans A" "l' \ labels \ q" "(\, pp) \ oreachable A S U" "p \ sterms \ pp" "(\', q) \ oreachable A S U" "S \ \' a" from this(1) obtain pn where "p \ ctermsl(\ pn)" and "not_call p" unfolding cterms_def' [OF wf] by auto with wf show "P (\', l')" using otherassms by (rule local) qed subsection "Open step invariants via labelled control terms" lemma onll_ostep_invariantI [intro]: assumes *: "\\ p l a \' p' l'. \ (\, p)\oreachable A S U; ((\, p), a, (\', p')) \ trans A; S \ \' a; l \labels \ p; l'\labels \ p' \ \ P ((\, l), a, (\', l'))" shows "A \\<^sub>A (S, U \) onll \ P" proof fix \ p \' p' a assume "(\, p) \ oreachable A S U" and "((\, p), a, (\', p')) \ trans A" and "S \ \' a" hence "\l\labels \ p. \l'\labels \ p'. P ((\, l), a, (\', l'))" by (auto elim!: *) thus "onll \ P ((\, p), a, (\', p'))" .. qed lemma onll_ostep_invariantE [elim]: assumes "A \\<^sub>A (S, U \) onll \ P" and "(\, p) \ oreachable A S U" and "((\, p), a, (\', p')) \ trans A" and "S \ \' a" and lp: "l \labels \ p" and lp': "l'\labels \ p'" shows "P ((\, l), a, (\', l'))" proof - from assms(1-4) have "onll \ P ((\, p), a, (\', p'))" .. with lp lp' show "P ((\, l), a, (\', l'))" by auto qed lemma onll_ostep_invariantD [dest]: assumes "A \\<^sub>A (S, U \) onll \ P" and "(\, p) \ oreachable A S U" and "((\, p), a, (\', p')) \ trans A" and "S \ \' a" shows "\l\labels \ p. \l'\labels \ p'. P ((\, l), a, (\', l'))" using assms by auto lemma onll_ostep_invariant_weakenD [dest]: assumes "A \\<^sub>A (S', U' \) onll \ P" and "(\, p) \ oreachable A S U" and "((\, p), a, (\', p')) \ trans A" and "S' \ \' a" and weakenS: "\s s' a. S s s' a \ S' s s' a" and weakenU: "\s s'. U s s' \ U' s s'" shows "\l\labels \ p. \l'\labels \ p'. P ((\, l), a, (\', l'))" proof - from \(\, p) \ oreachable A S U\ have "(\, p) \ oreachable A S' U'" by (rule oreachable_weakenE) (erule weakenS, erule weakenU) with \A \\<^sub>A (S', U' \) onll \ P\ show ?thesis using \((\, p), a, (\', p')) \ trans A\ and \S' \ \' a\ .. qed lemma onll_ostep_to_invariantI [intro]: assumes sinv: "A \\<^sub>A (S, U \) onll \ Q" and wf: "wellformed \" and init: "\\ l p. \ (\, p) \ init A; l\labels \ p \ \ P (\, l)" and other: "\\ \' p l. \ (\, p) \ oreachable A S U; l\labels \ p; P (\, l); U \ \' \ \ P (\', l)" and local: "\\ p l \' l' a. \ (\, p) \ oreachable A S U; l\labels \ p; P (\, l); Q ((\, l), a, (\', l')); S \ \' a\ \ P (\', l')" shows "A \ (S, U \) onl \ P" proof fix \ p l assume "(\, p) \ init A" and "l\labels \ p" thus "P (\, l)" by (rule init) next fix \ p a \' p' l' assume sr: "(\, p) \ oreachable A S U" and lp: "\l\labels \ p. P (\, l)" and tr: "((\, p), a, (\', p')) \ trans A" and "S \ \' a" and lp': "l' \ labels \ p'" show "P (\', l')" proof - from lp obtain l where "l\labels \ p" and "P (\, l)" using labels_not_empty [OF wf] by auto from sinv sr tr \S \ \' a\ this(1) lp' have "Q ((\, l), a, (\', l'))" .. with sr \l\labels \ p\ \P (\, l)\ show "P (\', l')" using \S \ \' a\ by (rule local) qed next fix \ \' p l assume "(\, p) \ oreachable A S U" and "\l\labels \ p. P (\, l)" and "U \ \'" show "\l\labels \ p. P (\', l)" proof fix l assume "l\labels \ p" with \\l\labels \ p. P (\, l)\ have "P (\, l)" .. with \(\, p) \ oreachable A S U\ and \l\labels \ p\ show "P (\', l)" using \U \ \'\ by (rule other) qed qed lemma onll_ostep_invariant_sterms: assumes wf: "wellformed \" and si: "A \\<^sub>A (S, U \) onll \ P" and sr: "(\, p) \ oreachable A S U" and sos: "((\, p), a, (\', q)) \ trans A" and "S \ \' a" and "l'\labels \ q" and "p'\sterms \ p" and "l\labels \ p'" shows "P ((\, l), a, (\', l'))" proof - from wf \p'\sterms \ p\ \l\labels \ p'\ have "l\labels \ p" by (rule labels_sterms_labels) with si sr sos \S \ \' a\ show "P ((\, l), a, (\', l'))" using \l'\labels \ q\ .. qed lemma oseq_step_invariant_sterms: assumes inv: "A \\<^sub>A (S, U \) onll \ P" and wf: "wellformed \" and sp: "trans A = oseqp_sos \ i" and "l'\labels \ q" and sr: "(\, p) \ oreachable A S U" and tr: "((\, p'), a, (\', q)) \ trans A" and "S \ \' a" and "p'\sterms \ p" shows "\l\labels \ p'. P ((\, l), a, (\', l'))" proof from assms(3, 6) have "((\, p'), a, (\', q)) \ oseqp_sos \ i" by simp hence "((\, p), a, (\', q)) \ oseqp_sos \ i" using wf \p'\sterms \ p\ by (rule otrans_from_sterms') with assms(3) have trp: "((\, p), a, (\', q)) \ trans A" by simp fix l assume "l \ labels \ p'" with wf inv sr trp \S \ \' a\ \l'\labels \ q\ \p'\sterms \ p\ show "P ((\, l), a, (\', l'))" by - (erule(7) onll_ostep_invariant_sterms) qed lemma oseq_step_invariant_sterms_weaken: assumes inv: "A \\<^sub>A (S, U \) onll \ P" and wf: "wellformed \" and sp: "trans A = oseqp_sos \ i" and "l'\labels \ q" and sr: "(\, p) \ oreachable A S' U'" and tr: "((\, p'), a, (\', q)) \ trans A" and "S' \ \' a" and "p'\sterms \ p" and weakenS: "\\ \' a. S' \ \' a \ S \ \' a" and weakenU: "\\ \'. U' \ \' \ U \ \'" shows "\l\labels \ p'. P ((\, l), a, (\', l'))" proof - from \S' \ \' a\ have "S \ \' a" by (rule weakenS) from \(\, p) \ oreachable A S' U'\ have Ir: "(\, p) \ oreachable A S U" by (rule oreachable_weakenE) (erule weakenS, erule weakenU) with assms(1-4) show ?thesis using tr \S \ \' a\ \p'\sterms \ p\ by (rule oseq_step_invariant_sterms) qed lemma onll_ostep_invariant_any_sterms: assumes wf: "wellformed \" and si: "A \\<^sub>A (S, U \) onll \ P" and sr: "(\, p) \ oreachable A S U" and sos: "((\, p), a, (\', q)) \ trans A" and "S \ \' a" and "l'\labels \ q" shows "\p'\sterms \ p. \l\labels \ p'. P ((\, l), a, (\', l'))" by (intro ballI) (rule onll_ostep_invariant_sterms [OF assms]) lemma oseq_step_invariant_ctermI [intro]: assumes wf: "wellformed \" and cw: "control_within \ (init A)" and sl: "simple_labels \" and sp: "trans A = oseqp_sos \ i" and local: "\p l \ a q l' \' pp. \ p\cterms \; l\labels \ p; ((\, p), a, (\', q)) \ oseqp_sos \ i; ((\, p), a, (\', q)) \ trans A; l'\labels \ q; (\, pp) \ oreachable A S U; p\sterms \ pp; (\', q) \ oreachable A S U; S \ \' a \ \ P ((\, l), a, (\', l'))" shows "A \\<^sub>A (S, U \) onll \ P" proof fix \ p l a \' q l' assume sr: "(\, p) \ oreachable A S U" and tr: "((\, p), a, (\', q)) \ trans A" and "S \ \' a" and pl: "l \ labels \ p" and A5: "l' \ labels \ q" from this(2) and sp have "((\, p), a, (\', q)) \ oseqp_sos \ i" by simp then obtain p' where "p' \ sterms \ p" and A3: "((\, p'), a, (\', q)) \ oseqp_sos \ i" by (blast dest: otrans_from_sterms [OF _ wf]) from this(2) and sp have A4: "((\, p'), a, (\', q)) \ trans A" by simp from wf cw sp sr \p'\sterms \ p\ have A1: "p'\cterms \" by (rule oseq_reachable_in_cterms) from sr \p'\sterms \ p\ obtain pp where A6: "(\, pp)\oreachable A S U" and A7: "p'\sterms \ pp" by auto from sr tr \S \ \' a\ have A8: "(\', q)\oreachable A S U" by - (erule(2) oreachable_local') from wf cw sp sr have "\pn. p \ subterms (\ pn)" by (rule oreachable_subterms) with sl wf have "\p'\sterms \ p. l \ labels \ p'" using pl by (rule simple_labels_in_sterms) with \p' \ sterms \ p\ have "l \ labels \ p'" by simp with A1 show "P ((\, l), a, (\', l'))" using A3 A4 A5 A6 A7 A8 \S \ \' a\ by (rule local) qed lemma oseq_step_invariant_ctermsI [intro]: assumes wf: "wellformed \" and "control_within \ (init A)" and "simple_labels \" and "trans A = oseqp_sos \ i" and local: "\p l \ a q l' \' pp pn. \ wellformed \; p\ctermsl (\ pn); not_call p; l\labels \ p; ((\, p), a, (\', q)) \ oseqp_sos \ i; ((\, p), a, (\', q)) \ trans A; l'\labels \ q; (\, pp) \ oreachable A S U; p\sterms \ pp; (\', q) \ oreachable A S U; S \ \' a \ \ P ((\, l), a, (\', l'))" shows "A \\<^sub>A (S, U \) onll \ P" using assms(1-4) proof (rule oseq_step_invariant_ctermI) fix p l \ a q l' \' pp assume "p \ cterms \" and otherassms: "l \ labels \ p" "((\, p), a, (\', q)) \ oseqp_sos \ i" "((\, p), a, (\', q)) \ trans A" "l' \ labels \ q" "(\, pp) \ oreachable A S U" "p \ sterms \ pp" "(\', q) \ oreachable A S U" "S \ \' a" from this(1) obtain pn where "p \ ctermsl(\ pn)" and "not_call p" unfolding cterms_def' [OF wf] by auto with wf show "P ((\, l), a, (\', l'))" using otherassms by (rule local) qed lemma open_seqp_action [elim]: assumes "wellformed \" and "((\ i, p), a, (\' i, p')) \ seqp_sos \" shows "((\, p), a, (\', p')) \ oseqp_sos \ i" proof - from assms obtain ps where "ps\sterms \ p" and "((\ i, ps), a, (\' i, p')) \ seqp_sos \" by - (drule trans_from_sterms, auto) thus ?thesis proof (induction p) fix p1 p2 assume "\ ps \ sterms \ p1; ((\ i, ps), a, \' i, p') \ seqp_sos \ \ \ ((\, p1), a, (\', p')) \ oseqp_sos \ i" and "\ ps \ sterms \ p2; ((\ i, ps), a, \' i, p') \ seqp_sos \ \ \ ((\, p2), a, (\', p')) \ oseqp_sos \ i" and "ps \ sterms \ (p1 \ p2)" and "((\ i, ps), a, (\' i, p')) \ seqp_sos \" with assms(1) show "((\, p1 \ p2), a, (\', p')) \ oseqp_sos \ i" by simp (metis oseqp_sos.ochoiceT1 oseqp_sos.ochoiceT2) next fix l fip fmsg p1 p2 assume IH1: "\ ps \ sterms \ p1; ((\ i, ps), a, \' i, p') \ seqp_sos \ \ \ ((\, p1), a, (\', p')) \ oseqp_sos \ i" and IH2: "\ ps \ sterms \ p2; ((\ i, ps), a, \' i, p') \ seqp_sos \ \ \ ((\, p2), a, (\', p')) \ oseqp_sos \ i" and "ps \ sterms \ ({l}unicast(fip, fmsg). p1 \ p2)" and "((\ i, ps), a, (\' i, p')) \ seqp_sos \" from this(3-4) have "((\ i, {l}unicast(fip, fmsg). p1 \ p2), a, (\' i, p')) \ seqp_sos \" by simp thus "((\, {l}unicast(fip, fmsg). p1 \ p2), a, (\', p')) \ oseqp_sos \ i" proof (rule seqp_unicastTE) assume "a = unicast (fip (\ i)) (fmsg (\ i))" and "\' i = \ i" and "p' = p1" thus ?thesis by auto next assume "a = \unicast (fip (\ i))" and "\' i = \ i" and "p' = p2" thus ?thesis by auto qed next fix p assume "ps \ sterms \ (call(p))" and "((\ i, ps), a, (\' i, p')) \ seqp_sos \" with assms(1) have "((\, ps), a, (\', p')) \ oseqp_sos \ i" by (cases ps) auto with assms(1) \ps \ sterms \ (call(p))\ have "((\, \ p), a, (\', p')) \ oseqp_sos \ i" by - (rule otrans_from_sterms', simp_all) thus "((\, call(p)), a, (\', p')) \ oseqp_sos \ i" by auto qed auto qed end