(* Author: René Thiemann Akihisa Yamada License: BSD *) subsection \Resultant\ text \This theory contains facts about resultants which are required for addition and multiplication of algebraic numbers. The results are taken from the textbook \cite[pages 227ff and 235ff]{AlgNumbers}. \ theory Resultant imports "HOL-Computational_Algebra.Fundamental_Theorem_Algebra" (* for lmpoly_base_conv *) Subresultants.Resultant_Prelim Berlekamp_Zassenhaus.Unique_Factorization_Poly Bivariate_Polynomials begin subsubsection \Sylvester matrices and vector representation of polynomials\ definition vec_of_poly_rev_shifted where "vec_of_poly_rev_shifted p n j \ vec n (\i. if i \ j \ j \ degree p + i then coeff p (degree p + i - j) else 0)" lemma vec_of_poly_rev_shifted_dim[simp]: "dim_vec (vec_of_poly_rev_shifted p n j) = n" unfolding vec_of_poly_rev_shifted_def by auto lemma col_sylvester: fixes p q defines "m \ degree p" and "n \ degree q" assumes j: "j < m+n" shows "col (sylvester_mat p q) j = vec_of_poly_rev_shifted p n j @\<^sub>v vec_of_poly_rev_shifted q m j" (is "?l = ?r") proof note [simp] = m_def[symmetric] n_def[symmetric] show "dim_vec ?l = dim_vec ?r" by simp fix i assume "i < dim_vec ?r" hence i: "i < m+n" by auto show "?l $ i = ?r $ i" unfolding vec_of_poly_rev_shifted_def apply (subst index_col) using i apply simp using j apply simp apply (subst sylvester_index_mat) using i apply simp using j apply simp apply (cases "i < n") apply force using i by simp qed lemma inj_on_diff_nat2: "inj_on (\i. (n::nat) - i) {..n}" by (rule inj_onI, auto) lemma image_diff_atMost: "(\i. (n::nat) - i) ` {..n} = {..n}" (is "?l = ?r") unfolding set_eq_iff proof (intro allI iffI) fix x assume x: "x \ ?r" thus "x \ ?l" unfolding image_def mem_Collect_eq by(intro bexI[of _ "n-x"],auto) qed auto lemma sylvester_sum_mat_upper: fixes p q :: "'a :: comm_semiring_1 poly" defines "m \ degree p" and "n \ degree q" assumes i: "i < n" shows "(\j 1" using i by auto define ni1 where "ni1 = n-Suc i" hence ni1: "n-i = Suc ni1" using i by auto define l where "l = m+n-1" hence l: "Suc l = m+n" using n1 by auto let ?g = "\j. monom (coeff (monom 1 (n-Suc i) * p) j) j" let ?p = "\j. l-j" have "sum ?f {..l" have "?f j = ((\j. monom (coeff (monom 1 (n-i) * p) (Suc j)) j) \ ?p) j" apply(subst sylvester_index_mat2) using i j unfolding l_def m_def[symmetric] n_def[symmetric] by (auto simp add: Suc_diff_Suc) also have "... = (?g \ ?p) j" unfolding ni1 unfolding coeff_monom_Suc unfolding ni1_def using i by auto finally have "?f j = (?g \ ?p) j". } hence "(\j\l. ?f j) = (\j\l. (?g\?p) j)" using l by auto also have "... = (\j\l. ?g j)" unfolding l_def using sum.reindex[OF inj_on_diff_nat2,symmetric,unfolded image_diff_atMost]. also have "degree ?r \ l" using degree_mult_le[of "monom 1 (n-Suc i)" p] unfolding l_def m_def unfolding degree_monom_eq[OF one_neq_zero] using i by auto from poly_as_sum_of_monoms'[OF this] have "(\j\l. ?g j) = ?r". finally show ?thesis. qed lemma sylvester_sum_mat_lower: fixes p q :: "'a :: comm_semiring_1 poly" defines "m \ degree p" and "n \ degree q" assumes ni: "n \ i" and imn: "i < m+n" shows "(\jl" have "?f j = ((\j. monom (coeff (monom 1 (m+n-i) * q) (Suc j)) j) \ ?p) j" apply(subst sylvester_index_mat2) using ni imn j unfolding l_def m_def[symmetric] n_def[symmetric] by (auto simp add: Suc_diff_Suc) also have "... = (?g \ ?p) j" unfolding mni1 unfolding coeff_monom_Suc unfolding mni1_def.. finally have "?f j = ...". } hence "(\j\l. ?f j) = (\j\l. (?g\?p) j)" by auto also have "... = (\j\l. ?g j)" using sum.reindex[OF inj_on_diff_nat2,symmetric,unfolded image_diff_atMost]. also have "degree ?r \ l" using degree_mult_le[of "monom 1 (m+n-1-i)" q] unfolding l_def n_def[symmetric] unfolding degree_monom_eq[OF one_neq_zero] using ni imn by auto from poly_as_sum_of_monoms'[OF this] have "(\j\l. ?g j) = ?r". finally show ?thesis. qed definition "vec_of_poly p \ let m = degree p in vec (Suc m) (\i. coeff p (m-i))" definition "poly_of_vec v \ let d = dim_vec v in \iv n) = 0" unfolding poly_of_vec_def Let_def by auto lemma poly_of_vec_0_iff[simp]: fixes v :: "'a :: comm_monoid_add vec" shows "poly_of_vec v = 0 \ v = 0\<^sub>v (dim_vec v)" (is "?v = _ \ _ = ?z") proof assume "?v = 0" hence "\i\{..i. i < dim_vec v \ v $ (dim_vec v - Suc i) = 0" by auto { fix i assume "i < dim_vec v" hence "v $ i = 0" using a[of "dim_vec v - Suc i"] by auto } thus "v = ?z" by auto next assume r: "v = ?z" show "?v = 0" apply (subst r) by auto qed (* TODO: move, copied from no longer existing Cayley-Hamilton/Polynomial_extension *) lemma degree_sum_smaller: assumes "n > 0" "finite A" shows "(\ x. x \A \ degree (f x) < n) \ degree (\x\A. f x) < n" using \finite A\ by(induct rule: finite_induct) (simp_all add: degree_add_less assms) lemma degree_poly_of_vec_less: fixes v :: "'a :: comm_monoid_add vec" assumes dim: "dim_vec v > 0" shows "degree (poly_of_vec v) < dim_vec v" unfolding poly_of_vec_def Let_def apply(rule degree_sum_smaller) using dim apply force apply force unfolding lessThan_iff by (metis degree_0 degree_monom_eq dim monom_eq_0_iff) lemma coeff_poly_of_vec: "coeff (poly_of_vec v) i = (if i < dim_vec v then v $ (dim_vec v - Suc i) else 0)" (is "?l = ?r") proof - have "?l = (\x = ?r" proof (cases "i < dim_vec v") case False show ?thesis by (subst sum.neutral, insert False, auto) next case True show ?thesis by (subst sum.remove[of _ i], force, force simp: True, subst sum.neutral, insert True, auto) qed finally show ?thesis . qed lemma vec_of_poly_rev_shifted_scalar_prod: fixes p v defines "q \ poly_of_vec v" assumes m[simp]: "degree p = m" and n: "dim_vec v = n" assumes j: "j < m+n" shows "vec_of_poly_rev_shifted p n (n+m-Suc j) \ v = coeff (p * q) j" (is "?l = ?r") proof - have id1: "\ i. m + i - (n + m - Suc j) = i + Suc j - n" using j by auto let ?g = "\ i. if i \ n + m - Suc j \ n - Suc j \ i then coeff p (i + Suc j - n) * v $ i else 0" have "?thesis = ((\i = 0..i\j. coeff p i * (if j - i < n then v $ (n - Suc (j - i)) else 0)))" (is "_ = (?l = ?r)") unfolding vec_of_poly_rev_shifted_def coeff_mult m scalar_prod_def n q_def coeff_poly_of_vec by (subst sum.cong, insert id1, auto) also have "..." proof - have "?r = (\i\j. (if j - i < n then coeff p i * v $ (n - Suc (j - i)) else 0))" (is "_ = sum ?f _") by (rule sum.cong, auto) also have "sum ?f {..j} = sum ?f ({i. i \ j \ j - i < n} \ {i. i \ j \ \ j - i < n})" (is "_ = sum _ (?R1 \ ?R2)") by (rule sum.cong, auto) also have "\ = sum ?f ?R1 + sum ?f ?R2" by (subst sum.union_disjoint, auto) also have "sum ?f ?R2 = 0" by (rule sum.neutral, auto) also have "sum ?f ?R1 + 0 = sum (\ i. coeff p i * v $ (i + n - Suc j)) ?R1" (is "_ = sum ?F _") by (subst sum.cong, auto simp: ac_simps) also have "\ = sum ?F ((?R1 \ {..m}) \ (?R1 - {..m}))" (is "_ = sum _ (?R \ ?R')") by (rule sum.cong, auto) also have "\ = sum ?F ?R + sum ?F ?R'" by (subst sum.union_disjoint, auto) also have "sum ?F ?R' = 0" proof - { fix x assume "x > m" from coeff_eq_0[OF this[folded m]] have "?F x = 0" by simp } thus ?thesis by (subst sum.neutral, auto) qed finally have r: "?r = sum ?F ?R" by simp have "?l = sum ?g ({i. i < n \ i \ n + m - Suc j \ n - Suc j \ i} \ {i. i < n \ \ (i \ n + m - Suc j \ n - Suc j \ i)})" (is "_ = sum _ (?L1 \ ?L2)") by (rule sum.cong, auto) also have "\ = sum ?g ?L1 + sum ?g ?L2" by (subst sum.union_disjoint, auto) also have "sum ?g ?L2 = 0" by (rule sum.neutral, auto) also have "sum ?g ?L1 + 0 = sum (\ i. coeff p (i + Suc j - n) * v $ i) ?L1" (is "_ = sum ?G _") by (subst sum.cong, auto) also have "\ = sum ?G (?L1 \ {i. i + Suc j - n \ m} \ (?L1 - {i. i + Suc j - n \ m}))" (is "_ = sum _ (?L \ ?L')") by (subst sum.cong, auto) also have "\ = sum ?G ?L + sum ?G ?L'" by (subst sum.union_disjoint, auto) also have "sum ?G ?L' = 0" proof - { fix x assume "x + Suc j - n > m" from coeff_eq_0[OF this[folded m]] have "?G x = 0" by simp } thus ?thesis by (subst sum.neutral, auto) qed finally have l: "?l = sum ?G ?L" by simp let ?bij = "\ i. i + n - Suc j" { fix x assume x: "j < m + n" "Suc (x + j) - n \ m" "x < n" "n - Suc j \ x" define y where "y = x + Suc j - n" from x have "x + Suc j \ n" by auto with x have xy: "x = ?bij y" unfolding y_def by auto from x have y: "y \ ?R" unfolding y_def by auto have "x \ ?bij ` ?R" unfolding xy using y by blast } note tedious = this show ?thesis unfolding l r by (rule sum.reindex_cong[of ?bij], insert j, auto simp: inj_on_def tedious) qed finally show ?thesis by simp qed lemma sylvester_vec_poly: fixes p q :: "'a :: comm_semiring_0 poly" defines "m \ degree p" and "n \ degree q" assumes v: "v \ carrier_vec (m+n)" shows "poly_of_vec (transpose_mat (sylvester_mat p q) *\<^sub>v v) = poly_of_vec (vec_first v n) * p + poly_of_vec (vec_last v m) * q" (is "?l = ?r") proof (rule poly_eqI) fix i note mn[simp] = m_def[symmetric] n_def[symmetric] let ?Tv = "transpose_mat (sylvester_mat p q) *\<^sub>v v" have dim: "dim_vec (vec_first v n) = n" "dim_vec (vec_last v m) = m" "dim_vec ?Tv = n + m" using v by auto have if_distrib: "\ x y z. (if x then y else (0 :: 'a)) * z = (if x then y * z else 0)" by auto show "coeff ?l i = coeff ?r i" proof (cases "i < m+n") case False hence i_mn: "i \ m+n" and i_n: "\x. x \ i \ x < n \ x < n" and i_m: "\x. x \ i \ x < m \ x < m" by auto have "coeff ?r i = (\ x < n. vec_first v n $ (n - Suc x) * coeff p (i - x)) + (\ x < m. vec_last v m $ (m - Suc x) * coeff q (i - x))" (is "_ = sum ?f _ + sum ?g _") unfolding coeff_add coeff_mult Let_def unfolding coeff_poly_of_vec dim if_distrib unfolding atMost_def apply(subst sum.inter_filter[symmetric],simp) apply(subst sum.inter_filter[symmetric],simp) unfolding mem_Collect_eq unfolding i_n i_m unfolding lessThan_def by simp also { fix x assume x: "x < n" have "coeff p (i-x) = 0" apply(rule coeff_eq_0) using i_mn x unfolding m_def by auto hence "?f x = 0" by auto } hence "sum ?f {..v v) $ (n + m - Suc i)" unfolding coeff_poly_of_vec dim sum.distrib[symmetric] by auto also have "... = coeff (p * poly_of_vec (vec_first v n) + q * poly_of_vec (vec_last v m)) i" apply(subst index_mult_mat_vec) using True apply simp apply(subst row_transpose) using True apply simp apply(subst col_sylvester) unfolding mn using True apply simp apply(subst vec_first_last_append[of v n m,symmetric]) using v apply(simp add: add.commute) apply(subst scalar_prod_append) apply (rule carrier_vecI,simp)+ apply (subst vec_of_poly_rev_shifted_scalar_prod,simp,simp) using True apply simp apply (subst add.commute[of n m]) apply (subst vec_of_poly_rev_shifted_scalar_prod,simp,simp) using True apply simp by simp also have "... = (\x\i. (if x < n then vec_first v n $ (n - Suc x) else 0) * coeff p (i - x)) + (\x\i. (if x < m then vec_last v m $ (m - Suc x) else 0) * coeff q (i - x))" unfolding coeff_poly_of_vec[of "vec_first v n",unfolded dim_vec_first,symmetric] unfolding coeff_poly_of_vec[of "vec_last v m",unfolded dim_vec_last,symmetric] unfolding coeff_mult[symmetric] by (simp add: mult.commute) also have "... = coeff ?r i" unfolding coeff_add coeff_mult Let_def unfolding coeff_poly_of_vec dim.. finally show ?thesis. qed qed subsubsection \Homomorphism and Resultant\ text \Here we prove Lemma~7.3.1 of the textbook.\ lemma(in comm_ring_hom) resultant_sub_map_poly: fixes p q :: "'a poly" shows "hom (resultant_sub m n p q) = resultant_sub m n (map_poly hom p) (map_poly hom q)" (is "?l = ?r'") proof - let ?mh = "map_poly hom" have "?l = det (sylvester_mat_sub m n (?mh p) (?mh q))" unfolding resultant_sub_def apply(subst sylvester_mat_sub_map[symmetric]) by auto thus ?thesis unfolding resultant_sub_def. qed (* lemma (in comm_ring_hom) resultant_map_poly: fixes p q :: "'a poly" defines "p' \ map_poly hom p" defines "q' \ map_poly hom q" defines "m \ degree p" defines "n \ degree q" defines "m' \ degree p'" defines "n' \ degree q'" defines "r \ resultant p q" defines "r' \ resultant p' q'" shows "m' = m \ n' = n \ hom r = r'" and "m' = m \ hom r = hom (coeff p m')^(n-n') * r'" and "m' \ m \ n' = n \ hom r = (if even n then 1 else (-1)^(m-m')) * hom (coeff q n)^(m-m') * r'" (is "_ \ _ \ ?goal") and "m' \ m \ n' \ n \ hom r = 0" proof - have m'm: "m' \ m" unfolding m_def m'_def p'_def using degree_map_poly_le by auto have n'n: "n' \ n" unfolding n_def n'_def q'_def using degree_map_poly_le by auto have coeffp'[simp]: "\i. coeff p' i = hom (coeff p i)" unfolding p'_def by auto have coeffq'[simp]: "\i. coeff q' i = hom (coeff q i)" unfolding q'_def by auto let ?f = "\i. (if even n then 1 else (-1)^i) * hom (coeff q n)^i" have "hom r = resultant_sub m n p' q'" unfolding r_def resultant_sub unfolding m_def n_def p'_def q'_def by(rule resultant_sub_map_poly) also have "... = ?f (m-m') * resultant_sub m' n p' q'" using resultant_sub_trim_upper[of p' "m-m'" n q',folded m'_def] m'm by (auto simp: power_minus[symmetric]) also have "... = ?f (m-m') * hom (coeff p m')^(n-n') * r'" using resultant_sub_trim_lower[of m' q' "n-n'" p'] n'n unfolding r'_def resultant_sub m'_def n'_def by auto finally have main: "hom r = ?f (m-m') * hom (coeff p m')^(n-n') * r'" by auto { assume "m' = m" thus "hom r = hom (coeff p m')^(n-n') * r'" using main by auto thus "n' = n \ hom r = r'" by auto } assume "m' \ m" hence m'm: "m' < m" using m'm by auto thus "n' = n \ ?goal" using main by simp assume "n' \ n" hence "n' < n" using n'n by auto hence "hom (coeff q n) = 0" unfolding coeffq'[symmetric] unfolding n'_def by(rule coeff_eq_0) hence "hom (coeff q n) ^ (m-m') = 0" using m'm by (simp add: power_0_left) from main[unfolded this] show "hom r = 0" using power_0_Suc by auto qed *) subsubsection\Resultant as Polynomial Expression\ context begin text \This context provides notions for proving Lemma 7.2.1 of the textbook.\ private fun mk_poly_sub where "mk_poly_sub A l 0 = A" | "mk_poly_sub A l (Suc j) = mat_addcol (monom 1 (Suc j)) l (l-Suc j) (mk_poly_sub A l j)" definition "mk_poly A = mk_poly_sub (map_mat coeff_lift A) (dim_col A - 1) (dim_col A - 1)" private lemma mk_poly_sub_dim[simp]: "dim_row (mk_poly_sub A l j) = dim_row A" "dim_col (mk_poly_sub A l j) = dim_col A" by (induct j,auto) private lemma mk_poly_sub_carrier: assumes "A \ carrier_mat nr nc" shows "mk_poly_sub A l j \ carrier_mat nr nc" apply (rule carrier_matI) using assms by auto private lemma mk_poly_dim[simp]: "dim_col (mk_poly A) = dim_col A" "dim_row (mk_poly A) = dim_row A" unfolding mk_poly_def by auto private lemma mk_poly_sub_others[simp]: assumes "l \ j'" and "i < dim_row A" and "j' < dim_col A" shows "mk_poly_sub A l j $$ (i,j') = A $$ (i,j')" using assms by (induct j; simp) private lemma mk_poly_others[simp]: assumes i: "i < dim_row A" and j: "j < dim_col A - 1" shows "mk_poly A $$ (i,j) = [: A $$ (i,j) :]" unfolding mk_poly_def apply(subst mk_poly_sub_others) using i j by auto private lemma mk_poly_delete[simp]: assumes i: "i < dim_row A" shows "mat_delete (mk_poly A) i (dim_col A - 1) = map_mat coeff_lift (mat_delete A i (dim_col A - 1))" apply(rule eq_matI) unfolding mat_delete_def by auto private lemma col_mk_poly_sub[simp]: assumes "l \ j'" and "j' < dim_col A" shows "col (mk_poly_sub A l j) j' = col A j'" by(rule eq_vecI; insert assms; simp) private lemma det_mk_poly_sub: assumes A: "(A :: 'a :: comm_ring_1 poly mat) \ carrier_mat n n" and i: "i < n" shows "det (mk_poly_sub A (n-1) i) = det A" using i proof (induct i) case (Suc i) show ?case unfolding mk_poly_sub.simps apply(subst det_addcol[of _ n]) using Suc apply simp using Suc apply simp apply (rule mk_poly_sub_carrier[OF A]) using Suc by auto qed simp private lemma det_mk_poly: fixes A :: "'a :: comm_ring_1 mat" shows "det (mk_poly A) = [: det A :]" proof (cases "dim_row A = dim_col A") case True define n where "n = dim_col A" have "map_mat coeff_lift A \ carrier_mat (dim_row A) (dim_col A)" by simp hence sq: "map_mat coeff_lift A \ carrier_mat (dim_col A) (dim_col A)" unfolding True. show ?thesis proof(cases "dim_col A = 0") case True thus ?thesis unfolding det_def by simp next case False thus ?thesis unfolding mk_poly_def by (subst det_mk_poly_sub[OF sq]; simp) qed next case False hence f2: "dim_row A = dim_col A \ False" by simp hence f3: "dim_row (mk_poly A) = dim_col (mk_poly A) \ False" unfolding mk_poly_dim by auto show ?thesis unfolding det_def unfolding f2 f3 if_False by simp qed private fun mk_poly2_row where "mk_poly2_row A d j pv 0 = pv" | "mk_poly2_row A d j pv (Suc n) = mk_poly2_row A d j pv n |\<^sub>v n \ pv $ n + monom (A$$(n,j)) d" private fun mk_poly2_col where "mk_poly2_col A pv 0 = pv" | "mk_poly2_col A pv (Suc m) = mk_poly2_row A m (dim_col A - Suc m) (mk_poly2_col A pv m) (dim_row A)" private definition "mk_poly2 A \ mk_poly2_col A (0\<^sub>v (dim_row A)) (dim_col A)" private lemma mk_poly2_row_dim[simp]: "dim_vec (mk_poly2_row A d j pv i) = dim_vec pv" by(induct i arbitrary: pv, auto) private lemma mk_poly2_col_dim[simp]: "dim_vec (mk_poly2_col A pv j) = dim_vec pv" by (induct j arbitrary: pv, auto) private lemma mk_poly2_row: assumes n: "n \ dim_vec pv" shows "mk_poly2_row A d j pv n $ i = (if i < n then pv $ i + monom (A $$ (i,j)) d else pv $ i)" using n proof (induct n arbitrary: pv) case (Suc n) thus ?case unfolding mk_poly2_row.simps by (cases rule: linorder_cases[of "i" "n"],auto) qed simp private lemma mk_poly2_row_col: assumes dim[simp]: "dim_vec pv = n" "dim_row A = n" and j: "j < dim_col A" shows "mk_poly2_row A d j pv n = pv + map_vec (\a. monom a d) (col A j)" apply rule using mk_poly2_row[of _ pv] j by auto private lemma mk_poly2_col: fixes pv :: "'a :: comm_semiring_1 poly vec" and A :: "'a mat" assumes i: "i < dim_row A" and dim: "dim_row A = dim_vec pv" shows "mk_poly2_col A pv j $ i = pv $ i + (\j'j' 0" shows "mk_poly2 A $ i = (\j' ?g) ?S" unfolding l_def mk_poly2_pre[OF i] by auto also have "... = sum ?f ?S" unfolding dim unfolding lessThan_Suc_atMost using sum.reindex[OF inj_on_diff_nat2,symmetric,unfolded image_diff_atMost]. finally show ?thesis. qed private lemma mk_poly2_sylvester_upper: fixes p q :: "'a :: comm_semiring_1 poly" assumes i: "i < degree q" shows "mk_poly2 (sylvester_mat p q) $ i = monom 1 (degree q - Suc i) * p" apply (subst mk_poly2) using i apply simp using i apply simp apply (subst sylvester_sum_mat_upper[OF i,symmetric]) apply (rule sum.cong) unfolding sylvester_mat_dim lessThan_Suc_atMost apply simp by auto private lemma mk_poly2_sylvester_lower: fixes p q :: "'a :: comm_semiring_1 poly" assumes mi: "i \ degree q" and imn: "i < degree p + degree q" shows "mk_poly2 (sylvester_mat p q) $ i = monom 1 (degree p + degree q - Suc i) * q" apply (subst mk_poly2) using imn apply simp using mi imn apply simp unfolding sylvester_mat_dim using sylvester_sum_mat_lower[OF mi imn] apply (subst sylvester_sum_mat_lower) using mi imn by auto private lemma foo: fixes v :: "'a :: comm_semiring_1 vec" shows "monom 1 d \\<^sub>v map_vec coeff_lift v = map_vec (\a. monom a d) v" apply (rule eq_vecI) unfolding index_map_vec index_col by (auto simp add: Polynomial.smult_monom) private lemma mk_poly_sub_corresp: assumes dimA[simp]: "dim_col A = Suc l" and dimpv[simp]: "dim_vec pv = dim_row A" and j: "j < dim_col A" shows "pv + col (mk_poly_sub (map_mat coeff_lift A) l j) l = mk_poly2_col A pv (Suc j)" proof(insert j, induct j) have le: "dim_row A \ dim_vec pv" using dimpv by simp have l: "l < dim_col A" using dimA by simp { case 0 show ?case apply (rule eq_vecI) using mk_poly2_row[OF le] by (auto simp add: monom_0) } { case (Suc j) hence j: "j < dim_col A" by simp show ?case unfolding mk_poly_sub.simps apply(subst col_addcol) apply simp apply simp apply(subst(2) comm_add_vec) apply(rule carrier_vecI, simp) apply(rule carrier_vecI, simp) apply(subst assoc_add_vec[symmetric]) apply(rule carrier_vecI, rule refl) apply(rule carrier_vecI, simp) apply(rule carrier_vecI, simp) unfolding Suc(1)[OF j] apply(subst(2) mk_poly2_col.simps) apply(subst mk_poly2_row_col) apply simp apply simp using Suc apply simp apply(subst col_mk_poly_sub) using Suc apply simp using Suc apply simp apply(subst col_map_mat) using dimA apply simp unfolding foo dimA by simp } qed private lemma col_mk_poly_mk_poly2: fixes A :: "'a :: comm_semiring_1 mat" assumes dim: "dim_col A > 0" shows "col (mk_poly A) (dim_col A - 1) = mk_poly2 A" proof - define l where "l = dim_col A - 1" have dim: "dim_col A = Suc l" unfolding l_def using dim by auto show ?thesis unfolding mk_poly_def mk_poly2_def dim apply(subst mk_poly_sub_corresp[symmetric]) apply(rule dim) apply simp using dim apply simp apply(subst left_zero_vec) apply(rule carrier_vecI) using dim apply simp apply simp done qed private lemma mk_poly_mk_poly2: fixes A :: "'a :: comm_semiring_1 mat" assumes dim: "dim_col A > 0" and i: "i < dim_row A" shows "mk_poly A $$ (i,dim_col A - 1) = mk_poly2 A $ i" proof - have "mk_poly A $$ (i,dim_col A - 1) = col (mk_poly A) (dim_col A - 1) $ i" apply (subst index_col(1)) using dim i by auto also note col_mk_poly_mk_poly2[OF dim] finally show ?thesis. qed lemma mk_poly_sylvester_upper: fixes p q :: "'a :: comm_ring_1 poly" defines "m \ degree p" and "n \ degree q" assumes i: "i < n" shows "mk_poly (sylvester_mat p q) $$ (i, m + n - 1) = monom 1 (n - Suc i) * p" (is "?l = ?r") proof - let ?S = "sylvester_mat p q" have c: "m+n = dim_col ?S" and r: "m+n = dim_row ?S" unfolding m_def n_def by auto hence "dim_col ?S > 0" "i < dim_row ?S" using i by auto from mk_poly_mk_poly2[OF this] have "?l = mk_poly2 (sylvester_mat p q) $ i" unfolding m_def n_def by auto also have "... = ?r" apply(subst mk_poly2_sylvester_upper) using i unfolding n_def m_def by auto finally show ?thesis. qed lemma mk_poly_sylvester_lower: fixes p q :: "'a :: comm_ring_1 poly" defines "m \ degree p" and "n \ degree q" assumes ni: "n \ i" and imn: "i < m+n" shows "mk_poly (sylvester_mat p q) $$ (i, m + n - 1) = monom 1 (m + n - Suc i) * q" (is "?l = ?r") proof - let ?S = "sylvester_mat p q" have c: "m+n = dim_col ?S" and r: "m+n = dim_row ?S" unfolding m_def n_def by auto hence "dim_col ?S > 0" "i < dim_row ?S" using imn by auto from mk_poly_mk_poly2[OF this] have "?l = mk_poly2 (sylvester_mat p q) $ i" unfolding m_def n_def by auto also have "... = ?r" apply(subst mk_poly2_sylvester_lower) using ni imn unfolding n_def m_def by auto finally show ?thesis. qed text \The next lemma corresponds to Lemma 7.2.1.\ lemma resultant_as_poly: fixes p q :: "'a :: comm_ring_1 poly" assumes degp: "degree p > 0" and degq: "degree q > 0" shows "\p' q'. degree p' < degree q \ degree q' < degree p \ [: resultant p q :] = p' * p + q' * q" proof (intro exI conjI) define m where "m = degree p" define n where "n = degree q" define d where "d = dim_row (mk_poly (sylvester_mat p q))" define c where "c = (\i. coeff_lift (cofactor (sylvester_mat p q) i (m+n-1)))" define p' where "p' = (\iii. degree (c i) = 0" unfolding c_def by auto have dmn: "d = m+n" and mnd: "m + n = d" unfolding d_def m_def n_def by auto have "[: resultant p q :] = (\ii {n .. {n..i=n..i. i+n) ` {0.. (\i. i+n)) {0.. {.. {..Resultant as Nonzero Polynomial Expression\ lemma resultant_zero: fixes p q :: "'a :: comm_ring_1 poly" assumes deg: "degree p > 0 \ degree q > 0" and xp: "poly p x = 0" and xq: "poly q x = 0" shows "resultant p q = 0" proof - { assume degp: "degree p > 0" and degq: "degree q > 0" obtain p' q' where "[: resultant p q :] = p' * p + q' * q" using resultant_as_poly[OF degp degq] by force hence "resultant p q = poly (p' * p + q' * q) x" using mpoly_base_conv(2)[of "resultant p q"] by auto also have "... = poly p x * poly p' x + poly q x * poly q' x" unfolding poly2_def by simp finally have ?thesis using xp xq by simp } moreover { assume degp: "degree p = 0" have p: "p = [:0:]" using xp degree_0_id[OF degp,symmetric] by (metis mpoly_base_conv(2)) have ?thesis unfolding p using degp deg by simp } moreover { assume degq: "degree q = 0" have q: "q = [:0:]" using xq degree_0_id[OF degq,symmetric] by (metis mpoly_base_conv(2)) have ?thesis unfolding q using degq deg by simp } ultimately show ?thesis by auto qed lemma poly_resultant_zero: fixes p q :: "'a :: comm_ring_1 poly poly" assumes deg: "degree p > 0 \ degree q > 0" assumes p0: "poly2 p x y = 0" and q0: "poly2 q x y = 0" shows "poly (resultant p q) x = 0" proof - { assume "degree p > 0" "degree q > 0" from resultant_as_poly[OF this] obtain p' q' where "[: resultant p q :] = p' * p + q' * q" by force hence "resultant p q = poly (p' * p + q' * q) [:y:]" using mpoly_base_conv(2)[of "resultant p q"] by auto also have "poly ... x = poly2 p x y * poly2 p' x y + poly2 q x y * poly2 q' x y" unfolding poly2_def by simp finally have ?thesis unfolding p0 q0 by simp } moreover { assume degp: "degree p = 0" hence p: "p = [: coeff p 0 :]" by(subst degree_0_id[OF degp,symmetric],simp) hence "resultant p q = coeff p 0 ^ degree q" using resultant_const(1) by metis also have "poly ... x = poly (coeff p 0) x ^ degree q" by auto also have "... = poly2 p x y ^ degree q" unfolding poly2_def by(subst p, auto) finally have ?thesis unfolding p0 using deg degp zero_power by auto } moreover { assume degq: "degree q = 0" hence q: "q = [: coeff q 0 :]" by(subst degree_0_id[OF degq,symmetric],simp) hence "resultant p q = coeff q 0 ^ degree p" using resultant_const(2) by metis also have "poly ... x = poly (coeff q 0) x ^ degree p" by auto also have "... = poly2 q x y ^ degree p" unfolding poly2_def by(subst q, auto) finally have ?thesis unfolding q0 using deg degq zero_power by auto } ultimately show ?thesis by auto qed lemma resultant_as_nonzero_poly_weak: fixes p q :: "'a :: idom poly" assumes degp: "degree p > 0" and degq: "degree q > 0" and r0: "resultant p q \ 0" shows "\p' q'. degree p' < degree q \ degree q' < degree p \ [: resultant p q :] = p' * p + q' * q \ p' \ 0 \ q' \ 0" proof - obtain p' q' where deg: "degree p' < degree q" "degree q' < degree p" and main: "[: resultant p q :] = p' * p + q' * q" using resultant_as_poly[OF degp degq] by auto have p0: "p \ 0" using degp by auto have q0: "q \ 0" using degq by auto show ?thesis proof (intro exI conjI notI) assume "p' = 0" hence "[: resultant p q :] = q' * q" using main by auto also hence d0: "0 = degree (q' * q)" by (metis degree_pCons_0) { assume "q' \ 0" hence "degree (q' * q) = degree q' + degree q" apply(rule degree_mult_eq) using q0 by auto hence False using d0 degq by auto } hence "q' = 0" by auto finally show False using r0 by auto next assume "q' = 0" hence "[: resultant p q :] = p' * p" using main by auto also hence d0: "0 = degree (p' * p)" by (metis degree_pCons_0) { assume "p' \ 0" hence "degree (p' * p) = degree p' + degree p" apply(rule degree_mult_eq) using p0 by auto hence False using d0 degp by auto } hence "p' = 0" by auto finally show False using r0 by auto qed fact+ qed text \ Next lemma corresponds to Lemma 7.2.2 of the textbook \ lemma resultant_as_nonzero_poly: fixes p q :: "'a :: idom poly" defines "m \ degree p" and "n \ degree q" assumes degp: "m > 0" and degq: "n > 0" shows "\p' q'. degree p' < n \ degree q' < m \ [: resultant p q :] = p' * p + q' * q \ p' \ 0 \ q' \ 0" proof (cases "resultant p q = 0") case False thus ?thesis using resultant_as_nonzero_poly_weak degp degq unfolding m_def n_def by auto next case True define S where "S = transpose_mat (sylvester_mat p q)" have S: "S \ carrier_mat (m+n) (m+n)" unfolding S_def m_def n_def by auto have "det S = 0" using True unfolding resultant_def S_def apply (subst det_transpose) by auto then obtain v where v: "v \ carrier_vec (m+n)" and v0: "v \ 0\<^sub>v (m+n)" and "S *\<^sub>v v = 0\<^sub>v (m+n)" using det_0_iff_vec_prod_zero[OF S] by auto hence "poly_of_vec (S *\<^sub>v v) = 0" by auto hence main: "poly_of_vec (vec_first v n) * p + poly_of_vec (vec_last v m) * q = 0" (is "?p * _ + ?q * _ = _") using sylvester_vec_poly[OF v[unfolded m_def n_def], folded m_def n_def S_def] by auto have split: "vec_first v n @\<^sub>v vec_last v m = v" using vec_first_last_append[simplified add.commute] v by auto show ?thesis proof(intro exI conjI) show "[: resultant p q :] = ?p * p + ?q * q" unfolding True using main by auto show "?p \ 0" proof assume p'0: "?p = 0" hence "?q * q = 0" using main by auto hence "?q = 0" using degq n_def by auto hence "vec_last v m = 0\<^sub>v m" unfolding poly_of_vec_0_iff by auto also have "vec_first v n @\<^sub>v ... = 0\<^sub>v (m+n)" using p'0 unfolding poly_of_vec_0_iff by auto finally have "v = 0\<^sub>v (m+n)" using split by auto thus False using v0 by auto qed show "?q \ 0" proof assume q'0: "?q = 0" hence "?p * p = 0" using main by auto hence "?p = 0" using degp m_def by auto hence "vec_first v n = 0\<^sub>v n" unfolding poly_of_vec_0_iff by auto also have "... @\<^sub>v vec_last v m = 0\<^sub>v (m+n)" using q'0 unfolding poly_of_vec_0_iff by auto finally have "v = 0\<^sub>v (m+n)" using split by auto thus False using v0 by auto qed show "degree ?p < n" using degree_poly_of_vec_less[of "vec_first v n"] using degq by auto show "degree ?q < m" using degree_poly_of_vec_less[of "vec_last v m"] using degp by auto qed qed text\Corresponds to Lemma 7.2.3 of the textbook\ lemma resultant_zero_imp_common_factor: fixes p q :: "'a :: ufd poly" assumes deg: "degree p > 0 \ degree q > 0" and r0: "resultant p q = 0" shows "\ coprime p q" unfolding neq0_conv[symmetric] proof - { assume degp: "degree p > 0" and degq: "degree q > 0" assume cop: "coprime p q" obtain p' q' where "p' * p + q' * q = 0" and p': "degree p' < degree q" and q': "degree q' < degree p" and p'0: "p' \ 0" and q'0: "q' \ 0" using resultant_as_nonzero_poly[OF degp degq] r0 by auto hence "p' * p = - q' * q" by (simp add: eq_neg_iff_add_eq_0) from some_gcd.coprime_mult_cross_dvd[OF cop this] have "p dvd q'" by auto from dvd_imp_degree_le[OF this q'0] have "degree p \ degree q'" by auto hence False using q' by auto } moreover { assume degp: "degree p = 0" then obtain x where "p = [:x:]" by (elim degree_eq_zeroE) moreover hence "resultant p q = x ^ degree q" using resultant_const by auto hence "x = 0" using r0 by auto ultimately have "p = 0" by auto hence ?thesis unfolding not_coprime_iff_common_factor by (metis deg degp dvd_0_right dvd_refl less_numeral_extra(3) poly_dvd_1) } moreover { assume degq: "degree q = 0" then obtain x where "q = [:x:]" by (elim degree_eq_zeroE) moreover hence "resultant p q = x ^ degree p" using resultant_const by auto hence "x = 0" using r0 by auto ultimately have "q = 0" by auto hence ?thesis unfolding not_coprime_iff_common_factor by (metis deg degq dvd_0_right dvd_refl less_numeral_extra(3) poly_dvd_1) } ultimately show ?thesis by auto qed lemma resultant_non_zero_imp_coprime: assumes nz: "resultant (f :: 'a :: field poly) g \ 0" and nz': "f \ 0 \ g \ 0" shows "coprime f g" proof (cases "degree f = 0 \ degree g = 0") case False define r where "r = [:resultant f g:]" from nz have r: "r \ 0" unfolding r_def by auto from False have "degree f > 0" "degree g > 0" by auto from resultant_as_nonzero_poly_weak[OF this nz] obtain p q where "degree p < degree g" "degree q < degree f" and id: "r = p * f + q * g" and "p \ 0" "q \ 0" unfolding r_def by auto define h where "h = some_gcd f g" have "h dvd f" "h dvd g" unfolding h_def by auto then obtain j k where f: "f = h * j" and g: "g = h * k" unfolding dvd_def by auto from id[unfolded f g] have id: "h * (p * j + q * k) = r" by (auto simp: field_simps) from arg_cong[OF id, of degree] have "degree (h * (p * j + q * k)) = 0" unfolding r_def by auto also have "degree (h * (p * j + q * k)) = degree h + degree (p * j + q * k)" by (subst degree_mult_eq, insert id r, auto) finally have h: "degree h = 0" "h \ 0" using r id by auto thus ?thesis unfolding h_def using is_unit_iff_degree some_gcd.gcd_dvd_1 by blast next case True thus ?thesis proof assume deg_g: "degree g = 0" show ?thesis proof (cases "g = 0") case False then show ?thesis using divides_degree[of _ g, unfolded deg_g] by (simp add: is_unit_right_imp_coprime) next case g: True then have "g = [:0:]" by auto from nz[unfolded this resultant_const] have "degree f = 0" by auto with nz' show ?thesis unfolding g by auto qed next assume deg_f: "degree f = 0" show ?thesis proof (cases "f = 0") case False then show ?thesis using divides_degree[of _ f, unfolded deg_f] by (simp add: is_unit_left_imp_coprime) next case f: True then have "f = [:0:]" by auto from nz[unfolded this resultant_const] have "degree g = 0" by auto with nz' show ?thesis unfolding f by auto qed qed qed end