(* Title: Refinement KAT Author: Victor Gomes, Georg Struth Maintainer: Victor Gomes Georg Struth *) subsection \Refinement Component\ theory RKAT imports "AVC_KAT/VC_KAT" begin subsubsection\RKAT: Definition and Basic Properties\ text \A refinement KAT is a KAT expanded by Morgan's specification statement.\ class rkat = kat + fixes R :: "'a \ 'a \ 'a" assumes spec_def: "x \ R p q \ H p x q" begin lemma R1: "H p (R p q) q" using spec_def by blast lemma R2: "H p x q \ x \ R p q" by (simp add: spec_def) subsubsection\Propositional Refinement Calculus\ lemma R_skip: "1 \ R p p" proof - have "H p 1 p" by (simp add: H_skip) thus ?thesis by (rule R2) qed lemma R_cons: "t p \ t p' \ t q' \ t q \ R p' q' \ R p q" proof - assume h1: "t p \ t p'" and h2: "t q' \ t q" have "H p' (R p' q') q'" by (simp add: R1) hence "H p (R p' q') q" using h1 h2 H_cons_1 H_cons_2 by blast thus ?thesis by (rule R2) qed lemma R_seq: "(R p r) \ (R r q) \ R p q" proof - have "H p (R p r) r" and "H r (R r q) q" by (simp add: R1)+ hence "H p ((R p r) \ (R r q)) q" by (rule H_seq_swap) thus ?thesis by (rule R2) qed lemma R_cond: "if v then (R (t v \ t p) q) else (R (n v \ t p) q) fi \ R p q" proof - have "H (t v \ t p) (R (t v \ t p) q) q" and "H (n v \ t p) (R (n v \ t p) q) q" by (simp add: R1)+ hence "H p (if v then (R (t v \ t p) q) else (R (n v \ t p) q) fi) q" by (simp add: H_cond n_mult_comm) thus ?thesis by (rule R2) qed lemma R_loop: "while q do (R (t p \ t q) p) od \ R p (t p \ n q)" proof - have "H (t p \ t q) (R (t p \ t q) p) p" by (simp_all add: R1) hence "H p (while q do (R (t p \ t q) p) od) (t p \ n q)" by (simp add: H_loop) thus ?thesis by (rule R2) qed lemma R_zero_one: "x \ R 0 1" proof - have "H 0 x 1" by (simp add: H_def) thus ?thesis by (rule R2) qed lemma R_one_zero: "R 1 0 = 0" proof - have "H 1 (R 1 0) 0" by (simp add: R1) thus ?thesis by (simp add: H_def join.le_bot) qed end end