(* ========================================================================= *) (* Decision procedure for the provability logic GL. *) (* *) (* (c) Copyright, Marco Maggesi, Cosimo Perini Brogi 2020-2022. *) (* ========================================================================= *) (* ------------------------------------------------------------------------- *) (* Lemmata. *) (* ------------------------------------------------------------------------- *) let HOLDS_NNFC_UNFOLD = prove (`(!V w:W. ~holds (W,R) V False w) /\ (!V w. holds (W,R) V True w) /\ (!V s w. holds (W,R) V (Atom s) w <=> V s w) /\ (!V p w. holds (W,R) V (Not p) w <=> ~holds (W,R) V p w) /\ (!p V q w. holds (W,R) V (p && q) w <=> holds (W,R) V p w /\ holds (W,R) V q w) /\ (!p V q w. holds (W,R) V (p || q) w <=> holds (W,R) V p w \/ holds (W,R) V q w) /\ (!p V q w. holds (W,R) V (p --> q) w <=> ~holds (W,R) V p w \/ holds (W,R) V q w) /\ (!p V q w. holds (W,R) V (p <-> q) w <=> (holds (W,R) V p w \/ ~holds (W,R) V q w) /\ (~holds (W,R) V p w \/ holds (W,R) V q w))`, REWRITE_TAC[holds] THEN MESON_TAC[]);; let COMPLETENESS_NUM = let COMPLETENESS_THEOREM_NUM = REWRITE_RULE[num_INFINITE] (INST_TYPE [`:num`,`:A`] COMPLETENESS_THEOREM_GEN) in let HOLDS_BOX_EQ = prove (`!W R p w:A. ITF (W,R) /\ w IN W ==> (holds (W,R) V (Box p) w <=> (!y. y IN W /\ R w y ==> holds (W,R) V (Box p --> p) y))`, INTRO_TAC "!W R p w; WR w" THEN REWRITE_TAC[holds] THEN EQ_TAC THENL [MESON_TAC[]; ALL_TAC] THEN CLAIM_TAC "tnt" `TRANSNT(W:A->bool,R)` THENL [MATCH_MP_TAC ITF_NT THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC (REWRITE_RULE [holds_in; holds; RIGHT_IMP_FORALL_THM; IMP_IMP] TRANSNT_IMP_LOB) THEN EXISTS_TAC `w:A` THEN HYP_TAC "tnt" (REWRITE_RULE[TRANSNT]) THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[]) in prove (`!p. (!W R V w:num. (!x y z:num. R y z ==> R x y ==> R x z) /\ (!p w. w IN W /\ (!y. y IN W /\ R w y /\ holds (W,R) V (Box p) y ==> holds (W,R) V p y) ==> holds (W,R) V (Box p) w) /\ (!Q p w. w IN W /\ (!y. y IN W /\ R w y /\ holds (W,R) V (Box p) y ==> holds (W,R) V p y \/ Q) ==> holds (W,R) V (Box p) w \/ Q) /\ (!w w'. R w w' ==> !p. holds (W,R) V (Box p) w ==> holds (W,R) V p w') /\ (!p w. holds (W,R) V (Box p) w ==> !w'. R w w' ==> holds (W,R) V p w') /\ w IN W ==> holds (W,R) V p w) ==> |-- p`, GEN_TAC THEN REWRITE_TAC[IMP_IMP] THEN DISCH_TAC THEN MATCH_MP_TAC COMPLETENESS_THEOREM_NUM THEN REWRITE_TAC[valid; FORALL_PAIR_THM; holds_in] THEN REPEAT GEN_TAC THEN INTRO_TAC "itf" THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THENL [ASM_MESON_TAC[ITF]; ALL_TAC] THEN MATCH_MP_TAC (MESON [] `P /\ (P ==> Q) ==> P /\ Q`) THEN CONJ_TAC THENL [REPEAT STRIP_TAC THEN ASM_SIMP_TAC[HOLDS_BOX_EQ] THEN ONCE_REWRITE_TAC[holds] THEN ASM_MESON_TAC[]; ALL_TAC] THEN DISCH_TAC THEN CONJ_TAC THENL [POP_ASSUM MP_TAC THEN MESON_TAC[]; ALL_TAC] THEN ONCE_REWRITE_TAC[holds] THEN ASM_MESON_TAC[ITF]);; (* ------------------------------------------------------------------------- *) (* The work horse of the tactic. *) (* ------------------------------------------------------------------------- *) module Rule_gl = struct (* Some additional theorem-tactics. *) let DISCARD_TAC : thm_tactic = let truth_tm = concl TRUTH in fun th -> let tm = concl th in if tm = truth_tm then ALL_TAC else fun (asl,w as g) -> if exists (fun a -> aconv tm (concl(snd a))) asl then ALL_TAC g else failwith "DISCARD_TAC: not already present" let NEG_RIGHT_TAC (k:thm_tactic) : tactic = let pth = MESON [] `((~P \/ Q) <=> (P ==> Q)) /\ (~P <=> (P ==> F))` in GEN_REWRITE_TAC I [pth] THEN DISCH_THEN k let NEG_CONTR_TAC : thm_tactic = let pth = MESON [] `~P ==> P ==> Q` in fun th -> MATCH_MP_TAC (MATCH_MP pth th) THEN FIRST_X_ASSUM MATCH_ACCEPT_TAC let NEG_LEFT_TAC : thm_tactic = let pth = MESON [] `~P ==> (P \/ Q) ==> Q` in MATCH_MP_TAC o MATCH_MP pth (* Non-recursive building block tactics. *) let GEN_BOX_RIGHT_TAC (kacc:thm_tactic) (kholds:thm_tactic): tactic = let ptac = CONJ_TAC THENL [FIRST_ASSUM MATCH_ACCEPT_TAC; GEN_TAC THEN DISCH_THEN (CONJUNCTS_THEN2 ASSUME_TAC (CONJUNCTS_THEN2 kacc kholds))] in let ttac th = (MATCH_MP_TAC th THEN ptac) in USE_THEN "boxr1" ttac ORELSE USE_THEN "boxr2" ttac let HOLDS_NNFC_UNFOLD_CONV : conv = GEN_REWRITE_CONV TOP_DEPTH_CONV [HOLDS_NNFC_UNFOLD; OR_CLAUSES; AND_CLAUSES] THENC NNFC_CONV let STRIP_HOLDS_TCL:thm_tactical = let strip_tcl:thm_tactical = FIRST_TCL [CONJUNCTS_THEN; DISJ_CASES_THEN] in let rule = CONV_RULE HOLDS_NNFC_UNFOLD_CONV in fun ttac -> REPEAT_TCL strip_tcl ttac o rule let ASSUME_HOLDS_LITERAL_TAC:thm_tactic = let rewr_tac th = let pth = MESON[] `(T \/ p <=> T) /\ (p \/ T <=> T) /\ (F \/ p <=> p) /\ (p \/ F <=> p)` in GEN_REWRITE_TAC DEPTH_CONV [th; pth] in let lbl_tac th = rewr_tac th THEN CONTR_TAC th ORELSE DISCARD_TAC th ORELSE LABEL_TAC "holds" th in fun th -> rewr_tac th THEN FIRST (mapfilter (fun ttac -> ttac th) [NEG_CONTR_TAC; NEG_LEFT_TAC; lbl_tac]) (* Non-recursive building box theorem-tacticals. *) let STEP_BOXL1_TCL : thm_tactical = fun k acc -> USE_THEN "boxl1" (fun boxl1 -> try let f = MATCH_MP (MATCH_MP boxl1 acc) in ASSUM_LIST (MAP_EVERY (STRIP_HOLDS_TCL k) o mapfilter f) with Failure _ -> ALL_TAC) let STEP_BOXL2_TCL : thm_tactical = fun k hth -> USE_THEN "boxl2" (fun boxl2 -> try let f = MATCH_MP (MATCH_MP boxl2 hth) in ASSUM_LIST (MAP_EVERY (STRIP_HOLDS_TCL k) o mapfilter f) with Failure _ -> ALL_TAC) let ACC_TCL:thm_tactical = fun k acc -> USE_THEN "trans" (fun trans -> let f = MATCH_MP (MATCH_MP trans acc) in ASSUM_LIST (MAP_EVERY k o mapfilter f)) (* Recursive theorem-tacticals. *) let rec HOLDS_TAC:thm_tactic = fun th -> ASSUME_HOLDS_LITERAL_TAC th THEN TRY (STEP_BOXL2_TCL HOLDS_TAC th) let rec SATURATE_ACC_TCL:thm_tactical = fun ttac th -> LABEL_TAC "acc" th THEN STEP_BOXL1_TCL ttac th THEN ACC_TCL (SATURATE_ACC_TCL ttac) th let SATURATE_ACC_TAC:thm_tactic = fun th g -> (STEP_BOXL1_TCL HOLDS_TAC th THEN SATURATE_ACC_TCL HOLDS_TAC th) g let BOX_RIGHT_TAC = GEN_BOX_RIGHT_TAC SATURATE_ACC_TAC HOLDS_TAC (* Sort atoms in disjunctions. *) let dest_holds = function Comb(Comb(Comb(Comb(Const("holds",_),_),_),tm),_) -> tm | _ -> failwith "dest_holds" (* let is_holds = can dest_holds *) let dest_box = function Comb(Const("Box",_),tm) -> tm | _ -> failwith "dest_box" let is_box = can dest_box let rank tm = try 0,dest_holds(dest_neg tm) with Failure _ -> try let x = dest_holds tm in try 1,dest_box x with Failure _ -> 2,x with Failure _ -> 3,tm (* This case should never occur in practice. *) (* Must be a total order, otherwise we may have loops in the main tactic. *) let lt tm1 tm2 = let c1 = Pervasives.compare tm1 tm2 in if c1 = 0 then false else let r1,x1 = rank tm1 and r2,x2 = rank tm2 in if r1 <> r2 then r1 < r2 else let c2 = Pervasives.compare x1 x2 in if c2 = 0 then c1 > 0 else if free_in x1 x2 then true else if free_in x2 x1 then false else c2 > 0 let SORT_BOX_CONV : conv = let f = list_mk_disj o uniq o mergesort lt o striplist dest_disj in fun tm -> DISJ_ACI_RULE (mk_eq(tm,f tm)) let SORT_BOX_TAC : tactic = CONV_TAC SORT_BOX_CONV (* Main tactic. *) let GL_RIGHT_TAC : tactic = CONV_TAC (HOLDS_NNFC_UNFOLD_CONV) THEN PURE_ASM_REWRITE_TAC[AND_CLAUSES; OR_CLAUSES; NOT_CLAUSES] THEN CONV_TAC CNF_CONV THEN REPEAT CONJ_TAC THEN TRY (NEG_RIGHT_TAC HOLDS_TAC) let GL_STEP_TAC : tactic = (FIRST o map CHANGED_TAC) [GL_RIGHT_TAC; SORT_BOX_TAC THEN BOX_RIGHT_TAC] let INNER_GL_TAC : tactic = REPEAT GL_STEP_TAC end;; (* ------------------------------------------------------------------------- *) (* Generate a countermodel. *) (* ------------------------------------------------------------------------- *) let the_gl_countermodel : term ref = ref `F`;; let GL_BUILD_COUNTERMODEL : tactic = let drop_labels = ["trans"; "boxr1"; "boxr2"; "boxl1"; "boxl2"] in let drop_assumption s = mem s drop_labels in let filter_asl = mapfilter (fun s,t -> if drop_assumption s then fail() else concl t ) in fun asl,w -> let l = filter_asl asl in the_gl_countermodel := end_itlist (curry mk_conj) (l @ map mk_neg (striplist dest_disj w)); failwith "Contermodel stored in reference the_gl_countermodel.";; (* ------------------------------------------------------------------------- *) (* Top-level invocation. *) (* ------------------------------------------------------------------------- *) let GL_TAC : tactic = REPEAT GEN_TAC THEN REPEAT (CONV_TAC let_CONV) THEN REPEAT GEN_TAC THEN REWRITE_TAC[diam_DEF; dotbox_DEF] THEN MATCH_MP_TAC COMPLETENESS_NUM THEN REPEAT GEN_TAC THEN INTRO_TAC "trans boxr1 boxr2 boxl1 boxl2 w" THEN REPEAT GEN_TAC THEN Rule_gl.INNER_GL_TAC THEN GL_BUILD_COUNTERMODEL;; let GL_RULE (tm:term) : thm = prove(tm,GL_TAC);; (* ------------------------------------------------------------------------- *) (* Some arithmetical principles investigated via provability in GL *) (* *) (* Modal formulas can be realised as sentences (i.e. closed formulas) of *) (* Peano Arithmetic (PA). The Box is thus interpreted as the predicate of *) (* formal provability in PA, Bew(x). *) (* *) (* Under this interpretation, we will read modal formulas as follows: *) (* - Box p = p is provable in PA; *) (* - Not (Box (Not p)) = p is consistent with PA *) (* - Not (Box p) = p is unprovable in PA *) (* - Box (Not p) = p is refutable in PA *) (* - (Box p) || (Box (Not p)) = p is decidable in PA *) (* - Not (Box p) && Not (Box (Not p)) = p is undecidable in PA *) (* - Box (p <-> q) = p and q are equivalent over PA *) (* - Box (False) = PA is inconsistent *) (* - Not (Box False) = Diam True = PA is consistent *) (* ------------------------------------------------------------------------- *) (*---------------------------------------------------------------------------*) (* Formalised Second Incompleteness Theorem: *) (* In PA, the following is provable: If PA is consistent, it cannot prove *) (* its own consistency *) (*---------------------------------------------------------------------------*) let GL_second_incompleteness_theorem = time GL_RULE `|-- (Not (Box False) --> Not (Box (Diam True)))`;; (*---------------------------------------------------------------------------*) (* PA ignores unprovability statements *) (*---------------------------------------------------------------------------*) let GL_PA_ignorance = time GL_RULE `!p. |-- ((Box False) <-> Box (Diam p))`;; (* ------------------------------------------------------------------------- *) (* If PA does not prove its inconsistency, then its consistency is *) (* undecidable. *) (* ------------------------------------------------------------------------- *) let GL_PA_undecidability_of_consistency = time GL_RULE `|-- ( Not (Box (Box False)) --> Not (Box (Not (Box False))) && Not (Box (Not (Not (Box False)))) )`;; (* ------------------------------------------------------------------------- *) (* If a sentence is equivalent to its own unprovability, and if PA does not *) (* prove its inconsistency, then that sentence is undecidable. *) (* ------------------------------------------------------------------------- *) let GL_undecidability_of_Godels_formula = time GL_RULE `!p. |-- ( Box (p <-> Not (Box p)) && Not (Box (Box False)) --> Not (Box p) && Not (Box (Not p)) )`;; (* ------------------------------------------------------------------------- *) (* If a reflection principle implies the second iterated consistency *) (* assertion, then the converse implication holds too. *) (* ------------------------------------------------------------------------- *) let GL_reflection_and_iterated_consistency = time GL_RULE `!p. |-- ( Box ((Box p --> p) --> Diam (Diam True)) --> (Diam (Diam True) --> (Box p --> p)) )`;; (* ------------------------------------------------------------------------- *) (* A Godel sentence is equiconsistent with a consistency statement *) (* ------------------------------------------------------------------------- *) let GL_Godel_sentence_equiconsistent_consistency = time GL_RULE `!p. |-- ( Box (p <-> Not (Box p)) <-> Box (p <-> Not (Box False)) )`;; (* ------------------------------------------------------------------------- *) (* For any arithmetical senteces p q, p is equivalent to unprovability *) (* of q --> p iff p is equivalent to consistency of q *) (* ------------------------------------------------------------------------- *) let GL_arithmetical_fixpoint = time GL_RULE `!p q. |-- ( Dotbox (p <-> Not (Box (q --> p))) <-> Dotbox (p <-> Diam q) )`;;