(* ========================================================================= *) (* Axiomatic of the modal provability logic GL. *) (* *) (* (c) Copyright, Marco Maggesi, Cosimo Perini Brogi 2020-2022. *) (* *) (* The initial part of this code has been adapted from the proof of the *) (* Godel incompleteness theorems formalized by John Harrison, distributed *) (* with HOL Light in the subdirectory Arithmetic. *) (* ========================================================================= *) let GLaxiom_RULES,GLaxiom_INDUCT,GLaxiom_CASES = new_inductive_definition `(!p q. GLaxiom (p --> (q --> p))) /\ (!p q r. GLaxiom ((p --> q --> r) --> (p --> q) --> (p --> r))) /\ (!p. GLaxiom (((p --> False) --> False) --> p)) /\ (!p q. GLaxiom ((p <-> q) --> p --> q)) /\ (!p q. GLaxiom ((p <-> q) --> q --> p)) /\ (!p q. GLaxiom ((p --> q) --> (q --> p) --> (p <-> q))) /\ GLaxiom (True <-> False --> False) /\ (!p. GLaxiom (Not p <-> p --> False)) /\ (!p q. GLaxiom (p && q <-> (p --> q --> False) --> False)) /\ (!p q. GLaxiom (p || q <-> Not(Not p && Not q))) /\ (!p q. GLaxiom (Box (p --> q) --> Box p --> Box q)) /\ (!p. GLaxiom (Box (Box p --> p) --> Box p))`;; (* ------------------------------------------------------------------------- *) (* Rules. *) (* ------------------------------------------------------------------------- *) let GLproves_RULES,GLproves_INDUCT,GLproves_CASES = new_inductive_definition `(!p. GLaxiom p ==> |-- p) /\ (!p q. |-- (p --> q) /\ |-- p ==> |-- q) /\ (!p. |-- p ==> |-- (Box p))`;; (* ------------------------------------------------------------------------- *) (* The primitive basis, separated into its named components. *) (* ------------------------------------------------------------------------- *) let GL_axiom_addimp = prove (`!p q. |-- (p --> (q --> p))`, MESON_TAC[GLproves_RULES; GLaxiom_RULES]);; let GL_axiom_distribimp = prove (`!p q r. |-- ((p --> q --> r) --> (p --> q) --> (p --> r))`, MESON_TAC[GLproves_RULES; GLaxiom_RULES]);; let GL_axiom_doubleneg = prove (`!p. |-- (((p --> False) --> False) --> p)`, MESON_TAC[GLproves_RULES; GLaxiom_RULES]);; let GL_axiom_iffimp1 = prove (`!p q. |-- ((p <-> q) --> p --> q)`, MESON_TAC[GLproves_RULES; GLaxiom_RULES]);; let GL_axiom_iffimp2 = prove (`!p q. |-- ((p <-> q) --> q --> p)`, MESON_TAC[GLproves_RULES; GLaxiom_RULES]);; let GL_axiom_impiff = prove (`!p q. |-- ((p --> q) --> (q --> p) --> (p <-> q))`, MESON_TAC[GLproves_RULES; GLaxiom_RULES]);; let GL_axiom_true = prove (`|-- (True <-> (False --> False))`, MESON_TAC[GLproves_RULES; GLaxiom_RULES]);; let GL_axiom_not = prove (`!p. |-- (Not p <-> (p --> False))`, MESON_TAC[GLproves_RULES; GLaxiom_RULES]);; let GL_axiom_and = prove (`!p q. |-- ((p && q) <-> (p --> q --> False) --> False)`, MESON_TAC[GLproves_RULES; GLaxiom_RULES]);; let GL_axiom_or = prove (`!p q. |-- ((p || q) <-> Not(Not p && Not q))`, MESON_TAC[GLproves_RULES; GLaxiom_RULES]);; let GL_axiom_boximp = prove (`!p q. |-- (Box (p --> q) --> Box p --> Box q)`, MESON_TAC[GLproves_RULES; GLaxiom_RULES]);; let GL_axiom_lob = prove (`!p. |-- (Box (Box p --> p) --> Box p)`, MESON_TAC[GLproves_RULES; GLaxiom_RULES]);; let GL_modusponens = prove (`!p. |-- (p --> q) /\ |-- p ==> |-- q`, MESON_TAC[GLproves_RULES]);; let GL_necessitation = prove (`!p. |-- p ==> |-- (Box p)`, MESON_TAC[GLproves_RULES]);; (* ------------------------------------------------------------------------- *) (* Proof of soundness w.r.t. transitive noetherian frames. *) (* ------------------------------------------------------------------------- *) let LOB_IMP_TRANSNT = prove (`!W R. (!x y:W. R x y ==> x IN W /\ y IN W) /\ (!p. holds_in (W,R) (Box(Box p --> p) --> Box p)) ==> (!x y z. x IN W /\ y IN W /\ z IN W /\ R x y /\ R y z ==> R x z) /\ WF (\x y. R y x)`, MODAL_SCHEMA_TAC THEN STRIP_TAC THEN CONJ_TAC THENL [X_GEN_TAC `w:W` THEN FIRST_X_ASSUM(MP_TAC o SPECL [`\v:W. v IN W /\ R w v /\ !w''. w'' IN W /\ R v w'' ==> R w w''`; `w:W`]) THEN MESON_TAC[]; REWRITE_TAC[WF_IND] THEN X_GEN_TAC `P:W->bool` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `\x:W. !w:W. x IN W /\ R w x ==> P x`) THEN MATCH_MP_TAC MONO_FORALL THEN ASM_MESON_TAC[]]);; let TRANSNT_IMP_LOB = prove (`!W R. (!x y:W. R x y ==> x IN W /\ y IN W) /\ (!x y z. x IN W /\ y IN W /\ z IN W /\ R x y /\ R y z ==> R x z) /\ WF (\x y. R y x) ==> (!p. holds_in (W,R) (Box(Box p --> p) --> Box p))`, MODAL_SCHEMA_TAC THEN REWRITE_TAC[WF_IND] THEN STRIP_TAC THEN REPEAT GEN_TAC THEN REPEAT DISCH_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_MESON_TAC[]);; let TRANSNT_EQ_LOB = prove (`!W R. (!x y:W. R x y ==> x IN W /\ y IN W) ==> ((!x y z. x IN W /\ y IN W /\ z IN W /\ R x y /\ R y z ==> R x z) /\ WF (\x y. R y x) <=> (!p. holds_in (W,R) (Box(Box p --> p) --> Box p)))`, REPEAT STRIP_TAC THEN EQ_TAC THEN STRIP_TAC THENL [MATCH_MP_TAC TRANSNT_IMP_LOB THEN ASM_REWRITE_TAC[]; MATCH_MP_TAC LOB_IMP_TRANSNT THEN ASM_REWRITE_TAC[]]);; let GLAXIOMS_TRANSNT_VALID = prove (`!p. GLaxiom p ==> TRANSNT:(W->bool)#(W->W->bool)->bool |= p`, MATCH_MP_TAC GLaxiom_INDUCT THEN REWRITE_TAC[valid] THEN FIX_TAC "f" THEN REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN SPEC_TAC (`f:(W->bool)#(W->W->bool)`,`f:(W->bool)#(W->W->bool)`) THEN MATCH_MP_TAC (MESON[PAIR_SURJECTIVE] `(!W:W->bool R:W->W->bool. P (W,R)) ==> (!f. P f)`) THEN REWRITE_TAC[TRANSNT] THEN REPEAT GEN_TAC THEN REPEAT CONJ_TAC THEN TRY (STRIP_TAC THEN MATCH_MP_TAC TRANSNT_IMP_LOB THEN ASM_REWRITE_TAC[] THEN NO_TAC) THEN MODAL_TAC);; let GL_TRANSNT_VALID = prove (`!p. (|-- p) ==> TRANSNT:(W->bool)#(W->W->bool)->bool |= p`, MATCH_MP_TAC GLproves_INDUCT THEN REWRITE_TAC[GLAXIOMS_TRANSNT_VALID] THEN MODAL_TAC);; (* ------------------------------------------------------------------------- *) (* Proof of soundness w.r.t. ITF *) (* ------------------------------------------------------------------------- *) let ITF = new_definition `ITF (W:W->bool,R:W->W->bool) <=> ~(W = {}) /\ (!x y:W. R x y ==> x IN W /\ y IN W) /\ FINITE W /\ (!x. x IN W ==> ~R x x) /\ (!x y z. x IN W /\ y IN W /\ z IN W /\ R x y /\ R y z ==> R x z)`;; let ITF_NT = prove (`!W R:W->W->bool. ITF(W,R) ==> TRANSNT(W,R)`, REPEAT GEN_TAC THEN REWRITE_TAC[ITF] THEN STRIP_TAC THEN ASM_REWRITE_TAC[TRANSNT] THEN MATCH_MP_TAC WF_FINITE THEN CONJ_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN CONJ_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN GEN_TAC THEN MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `W:W->bool` THEN ASM_REWRITE_TAC[] THEN ASM SET_TAC[]);; let GL_ITF_VALID = prove (`!p. |-- p ==> ITF:(W->bool)#(W->W->bool)->bool |= p`, GEN_TAC THEN STRIP_TAC THEN SUBGOAL_THEN `TRANSNT:(W->bool)#(W->W->bool)->bool |= p` MP_TAC THENL [ASM_SIMP_TAC[GL_TRANSNT_VALID]; REWRITE_TAC[valid; FORALL_PAIR_THM] THEN MESON_TAC[ITF_NT]]);; let GL_consistent = prove (`~ |-- False`, REFUTE_THEN (MP_TAC o MATCH_MP (INST_TYPE [`:num`,`:W`] GL_ITF_VALID)) THEN REWRITE_TAC[valid; holds; holds_in; FORALL_PAIR_THM; ITF; NOT_FORALL_THM] THEN MAP_EVERY EXISTS_TAC [`{0}`; `\x:num y:num. F`] THEN REWRITE_TAC[NOT_INSERT_EMPTY; FINITE_SING; IN_SING] THEN MESON_TAC[]);; (* ------------------------------------------------------------------------- *) (* Some purely propositional schemas and derived rules. *) (* ------------------------------------------------------------------------- *) let GL_iff_imp1 = prove (`!p q. |-- (p <-> q) ==> |-- (p --> q)`, MESON_TAC[GL_modusponens; GL_axiom_iffimp1]);; let GL_iff_imp2 = prove (`!p q. |-- (p <-> q) ==> |-- (q --> p)`, MESON_TAC[GL_modusponens; GL_axiom_iffimp2]);; let GL_imp_antisym = prove (`!p q. |-- (p --> q) /\ |-- (q --> p) ==> |-- (p <-> q)`, MESON_TAC[GL_modusponens; GL_axiom_impiff]);; let GL_add_assum = prove (`!p q. |-- q ==> |-- (p --> q)`, MESON_TAC[GL_modusponens; GL_axiom_addimp]);; let GL_imp_refl_th = prove (`!p. |-- (p --> p)`, MESON_TAC[GL_modusponens; GL_axiom_distribimp; GL_axiom_addimp]);; let GL_imp_add_assum = prove (`!p q r. |-- (q --> r) ==> |-- ((p --> q) --> (p --> r))`, MESON_TAC[GL_modusponens; GL_axiom_distribimp; GL_add_assum]);; let GL_imp_unduplicate = prove (`!p q. |-- (p --> p --> q) ==> |-- (p --> q)`, MESON_TAC[GL_modusponens; GL_axiom_distribimp; GL_imp_refl_th]);; let GL_imp_trans = prove (`!p q. |-- (p --> q) /\ |-- (q --> r) ==> |-- (p --> r)`, MESON_TAC[GL_modusponens; GL_imp_add_assum]);; let GL_imp_swap = prove (`!p q r. |-- (p --> q --> r) ==> |-- (q --> p --> r)`, MESON_TAC[GL_imp_trans; GL_axiom_addimp; GL_modusponens; GL_axiom_distribimp]);; let GL_imp_trans_chain_2 = prove (`!p q1 q2 r. |-- (p --> q1) /\ |-- (p --> q2) /\ |-- (q1 --> q2 --> r) ==> |-- (p --> r)`, ASM_MESON_TAC[GL_imp_trans; GL_imp_swap; GL_imp_unduplicate]);; let GL_imp_trans_th = prove (`!p q r. |-- ((q --> r) --> (p --> q) --> (p --> r))`, MESON_TAC[GL_imp_trans; GL_axiom_addimp; GL_axiom_distribimp]);; let GLimp_add_concl = prove (`!p q r. |-- (p --> q) ==> |-- ((q --> r) --> (p --> r))`, MESON_TAC[GL_modusponens; GL_imp_swap; GL_imp_trans_th]);; let GL_imp_trans2 = prove (`!p q r s. |-- (p --> q --> r) /\ |-- (r --> s) ==> |-- (p --> q --> s)`, MESON_TAC[GL_imp_add_assum; GL_modusponens; GL_imp_trans_th]);; let GL_imp_swap_th = prove (`!p q r. |-- ((p --> q --> r) --> (q --> p --> r))`, MESON_TAC[GL_imp_trans; GL_axiom_distribimp; GLimp_add_concl; GL_axiom_addimp]);; let GL_contrapos = prove (`!p q. |-- (p --> q) ==> |-- (Not q --> Not p)`, MESON_TAC[GL_imp_trans; GL_iff_imp1; GL_axiom_not; GLimp_add_concl; GL_iff_imp2]);; let GL_imp_truefalse_th = prove (`!p q. |-- ((q --> False) --> p --> (p --> q) --> False)`, MESON_TAC[GL_imp_trans; GL_imp_trans_th; GL_imp_swap_th]);; let GL_imp_insert = prove (`!p q r. |-- (p --> r) ==> |-- (p --> q --> r)`, MESON_TAC[GL_imp_trans; GL_axiom_addimp]);; let GL_imp_mono_th = prove (`|-- ((p' --> p) --> (q --> q') --> (p --> q) --> (p' --> q'))`, MESON_TAC[GL_imp_trans; GL_imp_swap; GL_imp_trans_th]);; let GL_ex_falso_th = prove (`!p. |-- (False --> p)`, MESON_TAC[GL_imp_trans; GL_axiom_addimp; GL_axiom_doubleneg]);; let GL_ex_falso = prove (`!p. |-- False ==> |-- p`, MESON_TAC[GL_ex_falso_th; GL_modusponens]);; let GL_imp_contr_th = prove (`!p q. |-- ((p --> False) --> (p --> q))`, MESON_TAC[GL_imp_add_assum; GL_ex_falso_th]);; let GL_contrad = prove (`!p. |-- ((p --> False) --> p) ==> |-- p`, MESON_TAC[GL_modusponens; GL_axiom_distribimp; GL_imp_refl_th; GL_axiom_doubleneg]);; let GL_bool_cases = prove (`!p q. |-- (p --> q) /\ |-- ((p --> False) --> q) ==> |-- q`, MESON_TAC[GL_contrad; GL_imp_trans; GLimp_add_concl]);; let GL_imp_false_rule = prove (`!p q r. |-- ((q --> False) --> p --> r) ==> |-- (((p --> q) --> False) --> r)`, MESON_TAC[GLimp_add_concl; GL_imp_add_assum; GL_ex_falso_th; GL_axiom_addimp; GL_imp_swap; GL_imp_trans; GL_axiom_doubleneg; GL_imp_unduplicate]);; let GL_imp_true_rule = prove (`!p q r. |-- ((p --> False) --> r) /\ |-- (q --> r) ==> |-- ((p --> q) --> r)`, MESON_TAC[GL_imp_insert; GL_imp_swap; GL_modusponens; GL_imp_trans_th; GL_bool_cases]);; let GL_truth_th = prove (`|-- True`, MESON_TAC[GL_modusponens; GL_axiom_true; GL_imp_refl_th; GL_iff_imp2]);; let GL_and_left_th = prove (`!p q. |-- (p && q --> p)`, MESON_TAC[GL_imp_add_assum; GL_axiom_addimp; GL_imp_trans; GLimp_add_concl; GL_axiom_doubleneg; GL_imp_trans; GL_iff_imp1; GL_axiom_and]);; let GL_and_right_th = prove (`!p q. |-- (p && q --> q)`, MESON_TAC[GL_axiom_addimp; GL_imp_trans; GLimp_add_concl; GL_axiom_doubleneg; GL_iff_imp1; GL_axiom_and]);; let GL_and_pair_th = prove (`!p q. |-- (p --> q --> p && q)`, MESON_TAC[GL_iff_imp2; GL_axiom_and; GL_imp_swap_th; GL_imp_add_assum; GL_imp_trans2; GL_modusponens; GL_imp_swap; GL_imp_refl_th]);; let GL_and = prove (`!p q. |-- (p && q) <=> |-- p /\ |-- q`, MESON_TAC[GL_and_left_th; GL_and_right_th; GL_and_pair_th; GL_modusponens]);; let GL_and_elim = prove (`!p q r. |-- (r --> p && q) ==> |-- (r --> q) /\ |-- (r --> p)`, MESON_TAC[GL_and_left_th; GL_and_right_th; GL_imp_trans]);; let GL_shunt = prove (`!p q r. |-- (p && q --> r) ==> |-- (p --> q --> r)`, MESON_TAC[GL_modusponens; GL_imp_add_assum; GL_and_pair_th]);; let GL_ante_conj = prove (`!p q r. |-- (p --> q --> r) ==> |-- (p && q --> r)`, MESON_TAC[GL_imp_trans_chain_2; GL_and_left_th; GL_and_right_th]);; let GL_modusponens_th = prove (`!p q. |-- ((p --> q) && p --> q)`, MESON_TAC[GL_imp_refl_th; GL_ante_conj]);; let GL_not_not_false_th = prove (`!p. |-- ((p --> False) --> False <-> p)`, MESON_TAC[GL_imp_antisym; GL_axiom_doubleneg; GL_imp_swap; GL_imp_refl_th]);; let GL_iff_sym = prove (`!p q. |-- (p <-> q) <=> |-- (q <-> p)`, MESON_TAC[GL_iff_imp1; GL_iff_imp2; GL_imp_antisym]);; let GL_iff_trans = prove (`!p q r. |-- (p <-> q) /\ |-- (q <-> r) ==> |-- (p <-> r)`, MESON_TAC[GL_iff_imp1; GL_iff_imp2; GL_imp_trans; GL_imp_antisym]);; let GL_not_not_th = prove (`!p. |-- (Not (Not p) <-> p)`, MESON_TAC[GL_iff_trans; GL_not_not_false_th; GL_axiom_not; GL_imp_antisym; GLimp_add_concl; GL_iff_imp1; GL_iff_imp2]);; let GL_contrapos_eq = prove (`!p q. |-- (Not p --> Not q) <=> |-- (q --> p)`, MESON_TAC[GL_contrapos; GL_not_not_th; GL_iff_imp1; GL_iff_imp2; GL_imp_trans]);; let GL_or_left_th = prove (`!p q. |-- (q --> p || q)`, MESON_TAC[GL_imp_trans; GL_not_not_th; GL_iff_imp2; GL_and_right_th; GL_contrapos; GL_axiom_or]);; let GL_or_right_th = prove (`!p q. |-- (p --> p || q)`, MESON_TAC[GL_imp_trans; GL_not_not_th; GL_iff_imp2; GL_and_left_th; GL_contrapos; GL_axiom_or]);; let GL_ante_disj = prove (`!p q r. |-- (p --> r) /\ |-- (q --> r) ==> |-- (p || q --> r)`, REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[GSYM GL_contrapos_eq] THEN MESON_TAC[GL_imp_trans; GL_imp_trans_chain_2; GL_and_pair_th; GL_contrapos_eq; GL_not_not_th; GL_axiom_or; GL_iff_imp1; GL_iff_imp2; GL_imp_trans]);; let GL_iff_def_th = prove (`!p q. |-- ((p <-> q) <-> (p --> q) && (q --> p))`, MESON_TAC[GL_imp_antisym; GL_imp_trans_chain_2; GL_axiom_iffimp1; GL_axiom_iffimp2; GL_and_pair_th; GL_axiom_impiff; GL_imp_trans_chain_2; GL_and_left_th; GL_and_right_th]);; let GL_iff_refl_th = prove (`!p. |-- (p <-> p)`, MESON_TAC[GL_imp_antisym; GL_imp_refl_th]);; let GL_imp_box = prove (`!p q. |-- (p --> q) ==> |-- (Box p --> Box q)`, MESON_TAC[GL_modusponens; GL_necessitation; GL_axiom_boximp]);; let GL_box_moduspones = prove (`!p q. |-- (p --> q) /\ |-- (Box p) ==> |-- (Box q)`, MESON_TAC[GL_imp_box; GL_modusponens]);; let GL_box_and = prove (`!p q. |-- (Box(p && q)) ==> |-- (Box p && Box q)`, MESON_TAC[GL_and_left_th; GL_and_right_th; GL_imp_box; GL_box_moduspones; GL_and]);; let GL_box_and_inv = prove (`!p q. |-- (Box p && Box q) ==> |-- (Box (p && q))`, MESON_TAC[GL_and_pair_th; GL_imp_box; GL_axiom_boximp; GL_imp_trans; GL_ante_conj; GL_modusponens]);; let GL_and_comm = prove (`!p q . |-- (p && q) <=> |-- (q && p)`, MESON_TAC[GL_and]);; let GL_and_assoc = prove (`!p q r. |-- ((p && q) && r) <=> |-- (p && (q && r))`, MESON_TAC[GL_and]);; let GL_disj_imp = prove (`!p q r. |-- (p || q --> r) <=> |-- (p --> r) /\ |-- (q --> r)`, MESON_TAC[GL_ante_disj; GL_or_right_th; GL_or_left_th; GL_imp_trans]);; let GL_or_elim = prove (`!p q r. |-- (p || q) /\ |-- (p --> r) /\ |-- (q --> r) ==> |-- r`, MESON_TAC[GL_disj_imp; GL_modusponens]);; let GL_or_comm = prove (`!p q . |-- (p || q) <=> |-- (q || p)`, MESON_TAC[GL_or_right_th; GL_or_left_th; GL_modusponens; GL_disj_imp]);; let GL_or_assoc = prove (`!p q r. |-- ((p || q) || r) <=> |-- (p || (q || r))`, MESON_TAC[GL_or_right_th; GL_or_left_th; GL_modusponens; GL_disj_imp]);; let GL_or_intror = prove (`!p q. |-- q ==> |-- (p || q)`, MESON_TAC[GL_or_left_th; GL_modusponens]);; let GL_or_introl = prove (`!p q. |-- p ==> |-- (p || q)`, MESON_TAC[GL_or_right_th; GL_modusponens]);; let GL_or_transl = prove (`!p q r. |-- (p --> q) ==> |-- (p --> q || r)`, MESON_TAC[GL_or_right_th; GL_imp_trans]);; let GL_or_transr = prove (`!p q r. |-- (p --> r) ==> |-- (p --> q || r)`, MESON_TAC[GL_or_left_th; GL_imp_trans]);; let GL_frege = prove (`!p q r. |-- (p --> q --> r) /\ |-- (p --> q) ==> |-- (p --> r)`, MESON_TAC[GL_axiom_distribimp; GL_modusponens; GL_shunt; GL_ante_conj]);; let GL_and_intro = prove (`!p q r. |-- (p --> q) /\ |-- (p --> r) ==> |-- (p --> q && r)`, MESON_TAC[GL_and_pair_th; GL_imp_trans_chain_2]);; let GL_not_def = prove (`!p. |-- (Not p) <=> |-- (p --> False)`, MESON_TAC[GL_axiom_not; GL_modusponens; GL_iff_imp1; GL_iff_imp2]);; let GL_NC = prove (`!p. |-- (p && Not p) <=> |-- False`, MESON_TAC[GL_not_def; GL_modusponens; GL_and; GL_ex_falso]);; let GL_nc_th = prove (`!p. |-- (p && Not p --> False)`, MESON_TAC[GL_ante_conj; GL_imp_swap; GL_axiom_not; GL_axiom_iffimp1; GL_modusponens]);; let GL_imp_clauses = prove (`(!p. |-- (p --> True)) /\ (!p. |-- (p --> False) <=> |-- (Not p)) /\ (!p. |-- (True --> p) <=> |-- p) /\ (!p. |-- (False --> p))`, SIMP_TAC[GL_truth_th; GL_add_assum; GL_not_def; GL_ex_falso_th] THEN GEN_TAC THEN EQ_TAC THENL [MESON_TAC[GL_modusponens; GL_truth_th]; MESON_TAC[GL_add_assum]]);; let GL_and_left_true_th = prove (`!p. |-- (True && p <-> p)`, GEN_TAC THEN MATCH_MP_TAC GL_imp_antisym THEN CONJ_TAC THENL [MATCH_ACCEPT_TAC GL_and_right_th; ALL_TAC] THEN MATCH_MP_TAC GL_and_intro THEN REWRITE_TAC[GL_imp_refl_th; GL_imp_clauses]);; let GL_or_and_distr = prove (`!p q r. |-- ((p || q) && r) ==> |-- ((p && r) || (q && r))`, REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[GL_and] THEN STRIP_TAC THEN MATCH_MP_TAC GL_or_elim THEN EXISTS_TAC `p:form` THEN EXISTS_TAC `q :form` THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THENL [MATCH_MP_TAC GL_or_transl THEN MATCH_MP_TAC GL_and_intro THEN REWRITE_TAC[GL_imp_refl_th] THEN ASM_SIMP_TAC[GL_add_assum]; MATCH_MP_TAC GL_or_transr THEN MATCH_MP_TAC GL_and_intro THEN REWRITE_TAC[GL_imp_refl_th] THEN ASM_SIMP_TAC[GL_add_assum]]);; let GL_and_or_distr = prove (`!p q r. |-- ((p && q) || r) ==> |-- ((p || r) && (q || r))`, REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[GL_and] THEN DISCH_TAC THEN CONJ_TAC THEN MATCH_MP_TAC GL_or_elim THEN MAP_EVERY EXISTS_TAC [`p && q`; `r:form`] THEN ASM_REWRITE_TAC[GL_or_left_th] THEN MATCH_MP_TAC GL_or_transl THEN ASM_REWRITE_TAC[GL_and_left_th; GL_and_right_th]);; let GL_or_and_distr_inv = prove (`!p q r. |-- ((p && r) || (q && r)) ==> |-- ((p || q) && r)`, REPEAT GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC GL_or_elim THEN MAP_EVERY EXISTS_TAC [`p && r`; `q && r`] THEN ASM_REWRITE_TAC[] THEN POP_ASSUM (K ALL_TAC) THEN CONJ_TAC THEN MATCH_MP_TAC GL_and_intro THEN CONJ_TAC THEN REWRITE_TAC[GL_and_left_th; GL_and_right_th] THENL [MATCH_MP_TAC GL_or_transl THEN MATCH_ACCEPT_TAC GL_and_left_th; MATCH_MP_TAC GL_or_transr THEN MATCH_ACCEPT_TAC GL_and_left_th]);; let GL_or_and_distr_equiv = prove (`!p q r. |-- ((p || q) && r) <=> |-- ((p && r) || (q && r))`, MESON_TAC[GL_or_and_distr; GL_or_and_distr_inv]);; let GL_and_or_distr_inv_prelim = prove (`!p q r. |-- ((p || r) && (q || r)) ==> |-- (q --> (p && q) || r)`, REPEAT GEN_TAC THEN REWRITE_TAC[GL_and] THEN INTRO_TAC "pr qr" THEN MATCH_MP_TAC (SPECL [`p:form`; `r:form`] GL_or_elim) THEN ASM_REWRITE_TAC[] THEN REMOVE_THEN "pr" (K ALL_TAC) THEN CONJ_TAC THENL [MATCH_MP_TAC GL_shunt THEN MATCH_ACCEPT_TAC GL_or_right_th; ALL_TAC] THEN MATCH_MP_TAC GL_imp_insert THEN MATCH_ACCEPT_TAC GL_or_left_th);; let GL_and_or_distr_inv = prove (`!p q r. |-- ((p || r) && (q || r)) ==> |-- ((p && q) || r)`, REPEAT GEN_TAC THEN REWRITE_TAC[GL_and] THEN INTRO_TAC "pr qr" THEN MATCH_MP_TAC (SPECL [`p:form`; `r:form`] GL_or_elim) THEN ASM_REWRITE_TAC[] THEN REMOVE_THEN "pr" (K ALL_TAC) THEN REWRITE_TAC[GL_or_left_th] THEN MATCH_MP_TAC (SPECL [`q:form`; `r:form`] GL_or_elim) THEN ASM_REWRITE_TAC[] THEN REMOVE_THEN "qr" (K ALL_TAC) THEN CONJ_TAC THENL [MATCH_MP_TAC GL_imp_swap THEN MATCH_MP_TAC GL_shunt THEN MATCH_ACCEPT_TAC GL_or_right_th; MATCH_MP_TAC GL_imp_insert THEN MATCH_ACCEPT_TAC GL_or_left_th]);; let GL_and_or_distr_equiv = prove (`!p q r. |-- ((p && q) || r) <=> |-- ((p || r) && (q || r))`, MESON_TAC[GL_and_or_distr; GL_and_or_distr_inv]);; let GL_DOUBLENEG_CL = prove (`!p. |-- (Not(Not p)) ==> |-- p`, MESON_TAC[GL_not_not_th; GL_modusponens; GL_iff_imp1; GL_iff_imp2]);; let GL_DOUBLENEG = prove (`!p. |-- p ==> |-- (Not(Not p))`, MESON_TAC[GL_not_not_th; GL_modusponens; GL_iff_imp1; GL_iff_imp2]);; let GL_and_eq_or = prove (`!p q. |-- (p || q) <=> |-- (Not(Not p && Not q))`, MESON_TAC[GL_modusponens; GL_axiom_or; GL_iff_imp1; GL_iff_imp2]);; let GL_tnd_th = prove (`!p. |-- (p || Not p)`, GEN_TAC THEN REWRITE_TAC[GL_and_eq_or] THEN REWRITE_TAC[GL_not_def] THEN MESON_TAC[GL_nc_th]);; let GL_iff_mp = prove (`!p q. |-- (p <-> q) /\ |-- p ==> |-- q`, MESON_TAC[GL_iff_imp1; GL_modusponens]);; let GL_and_subst = prove (`!p p' q q'. |-- (p <-> p') /\ |-- (q <-> q') ==> (|-- (p && q) <=> |-- (p' && q'))`, REPEAT STRIP_TAC THEN REWRITE_TAC[GL_and] THEN ASM_MESON_TAC[GL_iff_mp; GL_iff_sym]);; let GL_imp_mono_th = prove (`!p p' q q'. |-- ((p' --> p) && (q --> q') --> (p --> q) --> (p' --> q'))`, REPEAT GEN_TAC THEN MATCH_MP_TAC GL_ante_conj THEN MATCH_ACCEPT_TAC GL_imp_mono_th);; let GL_imp_mono = prove (`!p p' q q'. |-- (p' --> p) /\ |-- (q --> q') ==> |-- ((p --> q) --> (p' --> q'))`, REWRITE_TAC[GSYM GL_and] THEN MESON_TAC[GL_modusponens; GL_imp_mono_th]);; let GL_iff = prove (`!p q. |-- (p <-> q) ==> (|-- p <=> |-- q)`, MESON_TAC[GL_iff_imp1; GL_iff_imp2; GL_modusponens]);; let GL_iff_def = prove (`!p q. |-- (p <-> q) <=> |-- (p --> q) /\ |-- (q --> p)`, REPEAT GEN_TAC THEN EQ_TAC THENL [MESON_TAC[GL_iff_imp1; GL_iff_imp2]; MATCH_ACCEPT_TAC GL_imp_antisym]);; let GL_not_subst = prove (`!p q. |-- (p <-> q) ==> |-- (Not p <-> Not q)`, MESON_TAC[GL_iff_def; GL_iff_imp2; GL_contrapos]);; let GL_and_rigth_true_th = prove (`!p. |-- (p && True <-> p)`, GEN_TAC THEN REWRITE_TAC[GL_iff_def] THEN CONJ_TAC THENL [MATCH_ACCEPT_TAC GL_and_left_th; ALL_TAC] THEN MATCH_MP_TAC GL_and_intro THEN REWRITE_TAC[GL_imp_refl_th] THEN MATCH_MP_TAC GL_add_assum THEN MATCH_ACCEPT_TAC GL_truth_th);; let GL_and_comm_th = prove (`!p q. |-- (p && q <-> q && p)`, SUBGOAL_THEN `!p q. |-- (p && q --> q && p)` (fun th -> MESON_TAC[th; GL_iff_def]) THEN MESON_TAC[GL_and_intro; GL_and_left_th; GL_and_right_th]);; let GL_and_assoc_th = prove (`!p q r. |-- ((p && q) && r <-> p && (q && r))`, REPEAT GEN_TAC THEN MATCH_MP_TAC GL_imp_antisym THEN CONJ_TAC THEN MATCH_MP_TAC GL_and_intro THEN MESON_TAC[GL_and_left_th; GL_and_right_th; GL_imp_trans; GL_and_intro]);; let GL_and_subst_th = prove (`!p p' q q'. |-- (p <-> p') /\ |-- (q <-> q') ==> |-- (p && q <-> p' && q')`, SUBGOAL_THEN `!p p' q q'. |-- (p <-> p') /\ |-- (q <-> q') ==> |-- (p && q --> p' && q')` (fun th -> MESON_TAC[th; GL_iff_def]) THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC GL_and_intro THEN CONJ_TAC THENL [MATCH_MP_TAC GL_imp_trans THEN EXISTS_TAC `p:form` THEN REWRITE_TAC[GL_and_left_th] THEN ASM_SIMP_TAC[GL_iff_imp1]; MATCH_MP_TAC GL_imp_trans THEN EXISTS_TAC `q:form` THEN REWRITE_TAC[GL_and_right_th] THEN ASM_SIMP_TAC[GL_iff_imp1]]);; let GL_imp_subst = prove (`!p p' q q'. |-- (p <-> p') /\ |-- (q <-> q') ==> |-- ((p --> q) <-> (p' --> q'))`, REPEAT GEN_TAC THEN STRIP_TAC THEN REWRITE_TAC[GL_iff_def] THEN POP_ASSUM_LIST (MP_TAC o end_itlist CONJ) THEN SUBGOAL_THEN `!p q p' q'. |-- (p <-> p') /\ |-- (q <-> q') ==> |-- ((p --> q) --> (p' --> q'))` (fun th -> MESON_TAC[th; GL_iff_sym]) THEN REPEAT GEN_TAC THEN STRIP_TAC THEN MATCH_MP_TAC GL_imp_mono THEN ASM_MESON_TAC[GL_iff_imp1; GL_iff_sym]);; let GL_de_morgan_and_th = prove (`!p q. |-- (Not (p && q) <-> Not p || Not q)`, REPEAT GEN_TAC THEN MATCH_MP_TAC GL_iff_trans THEN EXISTS_TAC `Not (Not (Not p) && Not (Not q))` THEN CONJ_TAC THENL [MATCH_MP_TAC GL_not_subst THEN ONCE_REWRITE_TAC[GL_iff_sym] THEN MATCH_MP_TAC GL_and_subst_th THEN CONJ_TAC THEN MATCH_ACCEPT_TAC GL_not_not_th; ONCE_REWRITE_TAC[GL_iff_sym] THEN MATCH_ACCEPT_TAC GL_axiom_or]);; let GL_iff_sym_th = prove (`!p q. |-- ((p <-> q) <-> (q <-> p))`, REPEAT GEN_TAC THEN MATCH_MP_TAC GL_iff_trans THEN EXISTS_TAC `(p --> q) && (q --> p)` THEN ASM_REWRITE_TAC[GL_iff_def_th] THEN ONCE_REWRITE_TAC[GL_iff_sym] THEN MATCH_MP_TAC GL_iff_trans THEN EXISTS_TAC `(q --> p) && (p --> q)` THEN REWRITE_TAC[GL_iff_def_th; GL_and_comm_th]);; let GL_iff_true_th = prove (`(!p. |-- ((p <-> True) <-> p)) /\ (!p. |-- ((True <-> p) <-> p))`, CLAIM_TAC "1" `!p. |-- ((p <-> True) <-> p)` THENL [GEN_TAC THEN MATCH_MP_TAC GL_imp_antisym THEN CONJ_TAC THENL [MATCH_MP_TAC GL_imp_trans THEN EXISTS_TAC `True --> p` THEN CONJ_TAC THENL [MATCH_ACCEPT_TAC GL_axiom_iffimp2; ALL_TAC] THEN MATCH_MP_TAC GL_imp_trans THEN EXISTS_TAC `(True --> p) && True` THEN REWRITE_TAC[GL_modusponens_th] THEN MATCH_MP_TAC GL_and_intro THEN REWRITE_TAC[GL_imp_refl_th] THEN MATCH_MP_TAC GL_add_assum THEN MATCH_ACCEPT_TAC GL_truth_th; ALL_TAC] THEN MATCH_MP_TAC GL_imp_trans THEN EXISTS_TAC `(p --> True) && (True --> p)` THEN CONJ_TAC THENL [ALL_TAC; MESON_TAC[GL_iff_def_th; GL_iff_imp2]] THEN MATCH_MP_TAC GL_and_intro THEN REWRITE_TAC[GL_axiom_addimp] THEN SIMP_TAC[GL_add_assum; GL_truth_th]; ALL_TAC] THEN ASM_REWRITE_TAC[] THEN GEN_TAC THEN MATCH_MP_TAC GL_iff_trans THEN EXISTS_TAC `p <-> True` THEN ASM_REWRITE_TAC[GL_iff_sym_th]);; let GL_or_subst_th = prove (`!p p' q q'. |-- (p <-> p') /\ |-- (q <-> q') ==> |-- (p || q <-> p' || q')`, SUBGOAL_THEN `!p p' q q'. |-- (p <-> p') /\ |-- (q <-> q') ==> |-- (p || q --> p' || q')` (fun th -> MESON_TAC[th; GL_iff_sym; GL_iff_def]) THEN REPEAT STRIP_TAC THEN REWRITE_TAC[GL_disj_imp] THEN CONJ_TAC THEN MATCH_MP_TAC GL_frege THENL [EXISTS_TAC `p':form` THEN CONJ_TAC THENL [MATCH_MP_TAC GL_add_assum THEN MATCH_ACCEPT_TAC GL_or_right_th; ASM_SIMP_TAC[GL_iff_imp1]]; EXISTS_TAC `q':form` THEN CONJ_TAC THENL [MATCH_MP_TAC GL_add_assum THEN MATCH_ACCEPT_TAC GL_or_left_th; ASM_SIMP_TAC[GL_iff_imp1]]]);; let GL_or_subst_right = prove (`!p q1 q2. |-- (q1 <-> q2) ==> |-- (p || q1 <-> p || q2)`, REPEAT STRIP_TAC THEN MATCH_MP_TAC GL_or_subst_th THEN ASM_REWRITE_TAC[GL_iff_refl_th]);; let GL_or_rid_th = prove (`!p. |-- (p || False <-> p)`, GEN_TAC THEN REWRITE_TAC[GL_iff_def] THEN CONJ_TAC THENL [REWRITE_TAC[GL_disj_imp; GL_imp_refl_th; GL_ex_falso_th]; MATCH_ACCEPT_TAC GL_or_right_th]);; let GL_or_lid_th = prove (`!p. |-- (False || p <-> p)`, GEN_TAC THEN REWRITE_TAC[GL_iff_def] THEN CONJ_TAC THENL [REWRITE_TAC[GL_disj_imp; GL_imp_refl_th; GL_ex_falso_th]; MATCH_ACCEPT_TAC GL_or_left_th]);; let GL_or_assoc_left_th = prove (`!p q r. |-- (p || (q || r) --> (p || q) || r)`, REPEAT GEN_TAC THEN REWRITE_TAC[GL_disj_imp] THEN MESON_TAC[GL_or_left_th; GL_or_right_th; GL_imp_trans]);; let GL_or_assoc_right_th = prove (`!p q r. |-- ((p || q) || r --> p || (q || r))`, REPEAT GEN_TAC THEN REWRITE_TAC[GL_disj_imp] THEN MESON_TAC[GL_or_left_th; GL_or_right_th; GL_imp_trans]);; let GL_or_assoc_th = prove (`!p q r. |-- (p || (q || r) <-> (p || q) || r)`, REWRITE_TAC[GL_iff_def; GL_or_assoc_left_th; GL_or_assoc_right_th]);; let GL_and_or_ldistrib_th = prove (`!p q r. |-- (p && (q || r) <-> p && q || p && r)`, REPEAT GEN_TAC THEN REWRITE_TAC[GL_iff_def; GL_disj_imp] THEN REPEAT CONJ_TAC THEN TRY (MATCH_MP_TAC GL_and_intro) THEN REPEAT CONJ_TAC THEN MATCH_MP_TAC GL_ante_conj THENL [MATCH_MP_TAC GL_imp_swap THEN REWRITE_TAC[GL_disj_imp] THEN CONJ_TAC THEN MATCH_MP_TAC GL_imp_swap THEN MATCH_MP_TAC GL_shunt THENL [MATCH_ACCEPT_TAC GL_or_right_th; MATCH_ACCEPT_TAC GL_or_left_th]; MATCH_ACCEPT_TAC GL_axiom_addimp; MATCH_MP_TAC GL_add_assum THEN MATCH_ACCEPT_TAC GL_or_right_th; MATCH_ACCEPT_TAC GL_axiom_addimp; MATCH_MP_TAC GL_add_assum THEN MATCH_ACCEPT_TAC GL_or_left_th]);; let GL_not_true_th = prove (`|-- (Not True <-> False)`, REWRITE_TAC[GL_iff_def; GL_ex_falso_th; GSYM GL_not_def] THEN MATCH_MP_TAC GL_iff_mp THEN EXISTS_TAC `True` THEN REWRITE_TAC[GL_truth_th] THEN ONCE_REWRITE_TAC[GL_iff_sym] THEN MATCH_ACCEPT_TAC GL_not_not_th);; let GL_and_subst_right_th = prove (`!p q1 q2. |-- ((q1 <-> q2) --> (p && q1 <-> p && q2))`, REPEAT GEN_TAC THEN MATCH_MP_TAC GL_imp_trans THEN EXISTS_TAC `(p && q1 --> p && q2) && (p && q2 --> p && q1)` THEN CONJ_TAC THENL [ALL_TAC; MATCH_MP_TAC GL_iff_imp2 THEN MATCH_ACCEPT_TAC GL_iff_def_th] THEN SUBGOAL_THEN `!p q1 q2. |-- ((q1 <-> q2) --> (p && q1 --> p && q2))` (fun th -> MATCH_MP_TAC GL_and_intro THEN MESON_TAC[th; GL_and_comm_th; GL_imp_trans; GL_iff_def_th; GL_iff_imp1; GL_iff_imp2]) THEN REPEAT GEN_TAC THEN MATCH_MP_TAC GL_shunt THEN MATCH_MP_TAC GL_and_intro THEN CONJ_TAC THENL [MESON_TAC[GL_and_left_th; GL_and_right_th; GL_imp_trans]; ALL_TAC] THEN MATCH_MP_TAC GL_imp_trans THEN EXISTS_TAC `(q1 <-> q2) && q1` THEN CONJ_TAC THENL [MATCH_MP_TAC GL_and_intro THEN REWRITE_TAC[GL_and_left_th] THEN MESON_TAC[GL_and_right_th; GL_imp_trans]; MATCH_MP_TAC GL_imp_trans THEN EXISTS_TAC `(q1 --> q2) && q1` THEN REWRITE_TAC[GL_modusponens_th] THEN MATCH_MP_TAC GL_and_intro THEN REWRITE_TAC[GL_and_right_th] THEN MATCH_MP_TAC GL_imp_trans THEN EXISTS_TAC `(q1 <-> q2)` THEN REWRITE_TAC[GL_and_left_th] THEN MATCH_MP_TAC GL_imp_trans THEN EXISTS_TAC `(q1 --> q2) && (q2 --> q1)` THEN REWRITE_TAC[GL_and_left_th] THEN MATCH_MP_TAC GL_iff_imp1 THEN MATCH_ACCEPT_TAC GL_iff_def_th]);; let GL_and_subst_left_th = prove (`!p1 p2 q. |-- ((p1 <-> p2) --> (p1 && q <-> p2 && q))`, REPEAT GEN_TAC THEN MATCH_MP_TAC GL_imp_trans THEN EXISTS_TAC `(p1 && q --> p2 && q) && (p2 && q --> p1 && q)` THEN CONJ_TAC THENL [ALL_TAC; MATCH_MP_TAC GL_iff_imp2 THEN MATCH_ACCEPT_TAC GL_iff_def_th] THEN SUBGOAL_THEN `!p1 p2 q. |-- ((p1 <-> p2) --> (p1 && q --> p2 && q))` (fun th -> MATCH_MP_TAC GL_and_intro THEN MESON_TAC[th; GL_and_comm_th; GL_imp_trans; GL_iff_def_th; GL_iff_imp1; GL_iff_imp2]) THEN REPEAT GEN_TAC THEN MATCH_MP_TAC GL_shunt THEN MATCH_MP_TAC GL_and_intro THEN CONJ_TAC THENL [ALL_TAC; MESON_TAC[GL_and_left_th; GL_and_right_th; GL_imp_trans]] THEN MATCH_MP_TAC GL_imp_trans THEN EXISTS_TAC `(p1 <-> p2) && p1` THEN CONJ_TAC THENL [MATCH_MP_TAC GL_and_intro THEN REWRITE_TAC[GL_and_left_th] THEN MESON_TAC[GL_and_right_th; GL_and_left_th; GL_imp_trans]; MATCH_MP_TAC GL_imp_trans THEN EXISTS_TAC `(p1 --> p2) && p1` THEN REWRITE_TAC[GL_modusponens_th] THEN MATCH_MP_TAC GL_and_intro THEN REWRITE_TAC[GL_and_right_th] THEN MATCH_MP_TAC GL_imp_trans THEN EXISTS_TAC `(p1 <-> p2)` THEN REWRITE_TAC[GL_and_left_th] THEN MATCH_MP_TAC GL_imp_trans THEN EXISTS_TAC `(p1 --> p2) && (p2 --> p1)` THEN REWRITE_TAC[GL_and_left_th] THEN MATCH_MP_TAC GL_iff_imp1 THEN MATCH_ACCEPT_TAC GL_iff_def_th]);; let GL_contrapos_th = prove (`!p q. |-- ((p --> q) --> (Not q --> Not p))`, REPEAT GEN_TAC THEN MATCH_MP_TAC GL_imp_swap THEN MATCH_MP_TAC GL_imp_trans THEN EXISTS_TAC `(q --> False)` THEN CONJ_TAC THENL [MATCH_MP_TAC GL_iff_imp1 THEN MATCH_ACCEPT_TAC GL_axiom_not; MATCH_MP_TAC GL_shunt THEN MATCH_MP_TAC GL_imp_trans THEN EXISTS_TAC `p --> False` THEN CONJ_TAC THENL [MESON_TAC[GL_ante_conj; GL_imp_trans_th]; MESON_TAC[GL_axiom_not; GL_iff_imp2]]]);; let GL_contrapos_eq_th = prove (`!p q. |-- ((p --> q) <-> (Not q --> Not p))`, SUBGOAL_THEN `!p q. |-- ((Not q --> Not p) --> (p --> q))` (fun th -> MESON_TAC[th; GL_iff_def; GL_contrapos_th]) THEN GEN_TAC THEN GEN_TAC THEN MATCH_MP_TAC GL_imp_trans THEN EXISTS_TAC `Not (Not p) --> Not (Not q)` THEN CONJ_TAC THENL [MATCH_ACCEPT_TAC GL_contrapos_th; ALL_TAC] THEN MATCH_MP_TAC GL_iff_imp1 THEN MATCH_MP_TAC GL_imp_subst THEN MESON_TAC[GL_not_not_th]);; let GL_iff_sym_th = prove (`!p q. |-- ((p <-> q) --> (q <-> p))`, REPEAT GEN_TAC THEN MATCH_MP_TAC GL_imp_trans THEN EXISTS_TAC `(p --> q) && (q --> p)` THEN CONJ_TAC THENL [MESON_TAC[GL_iff_def_th; GL_iff_imp1]; ALL_TAC] THEN MATCH_MP_TAC GL_imp_trans THEN EXISTS_TAC `(q --> p) && (p --> q)` THEN CONJ_TAC THENL [MESON_TAC[GL_and_comm_th; GL_iff_imp1]; MESON_TAC[GL_iff_def_th; GL_iff_imp2]]);; let GL_de_morgan_or_th = prove (`!p q. |-- (Not (p || q) <-> Not p && Not q)`, REPEAT GEN_TAC THEN MATCH_MP_TAC GL_iff_trans THEN EXISTS_TAC `Not (Not (Not p && Not q))` THEN CONJ_TAC THENL [MATCH_MP_TAC GL_not_subst THEN MATCH_ACCEPT_TAC GL_axiom_or; MATCH_ACCEPT_TAC GL_not_not_th]);; let GL_crysippus_th = prove (`!p q. |-- (Not (p --> q) <-> p && Not q)`, REPEAT GEN_TAC THEN MATCH_MP_TAC GL_iff_trans THEN EXISTS_TAC `(p --> Not q --> False) --> False` THEN CONJ_TAC THENL [ALL_TAC; MESON_TAC[GL_axiom_and; GL_iff_sym]] THEN MATCH_MP_TAC GL_iff_trans THEN EXISTS_TAC `Not (p --> Not q --> False)` THEN CONJ_TAC THENL [ALL_TAC; MATCH_ACCEPT_TAC GL_axiom_not] THEN MATCH_MP_TAC GL_not_subst THEN MATCH_MP_TAC GL_imp_subst THEN CONJ_TAC THENL [MATCH_ACCEPT_TAC GL_iff_refl_th; ALL_TAC] THEN MATCH_MP_TAC GL_iff_trans THEN EXISTS_TAC `Not (Not q)` THEN CONJ_TAC THENL [MESON_TAC[GL_not_not_th; GL_iff_sym]; MATCH_ACCEPT_TAC GL_axiom_not]);; (* ------------------------------------------------------------------------- *) (* Substitution. *) (* ------------------------------------------------------------------------- *) let SUBST = new_recursive_definition form_RECURSION `(!f. SUBST f True = True) /\ (!f. SUBST f False = False) /\ (!f a. SUBST f (Atom a) = f a) /\ (!f p. SUBST f (Not p) = Not (SUBST f p)) /\ (!f p q. SUBST f (p && q) = SUBST f p && SUBST f q) /\ (!f p q. SUBST f (p || q) = SUBST f p || SUBST f q) /\ (!f p q. SUBST f (p --> q) = SUBST f p --> SUBST f q) /\ (!f p q. SUBST f (p <-> q) = SUBST f p <-> SUBST f q) /\ (!f p. SUBST f (Box p) = Box (SUBST f p))`;; let SUBST_IMP = prove (`!f p. |-- p ==> |-- (SUBST f p)`, GEN_TAC THEN MATCH_MP_TAC GLproves_INDUCT THEN REWRITE_TAC[SUBST] THEN CONJ_TAC THENL [MATCH_MP_TAC GLaxiom_INDUCT THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC (CONJUNCT1 GLproves_RULES) THEN REWRITE_TAC[GLaxiom_RULES; SUBST]; ALL_TAC] THEN REWRITE_TAC[SUBST; GLproves_RULES]);; let SUBSTITUTION_LEMMA = prove (`!f p q. |-- (p <-> q) ==> |-- (SUBST f p <-> SUBST f q)`, REWRITE_TAC[GSYM SUBST; SUBST_IMP]);; (* ------------------------------------------------------------------------- *) (* SUBST_IFF. *) (* ------------------------------------------------------------------------- *) let GL_iff_subst = prove (`!p p' q q'. |-- (p <-> p') /\ |-- (q <-> q') ==> |-- ((p <-> q) <-> (p' <-> q'))`, SUBGOAL_THEN `!p q p' q'. |-- (p <-> p') /\ |-- (q <-> q') ==> |-- ((p <-> q) --> (p' <-> q'))` (fun th -> REPEAT STRIP_TAC THEN REWRITE_TAC[GL_iff_def] THEN ASM_MESON_TAC[th; GL_iff_sym]) THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC GL_imp_trans THEN EXISTS_TAC `(p --> q) && (q --> p)` THEN CONJ_TAC THENL [MESON_TAC[GL_iff_def_th; GL_iff_imp1]; ALL_TAC] THEN MATCH_MP_TAC GL_imp_trans THEN EXISTS_TAC `(p' --> q') && (q' --> p')` THEN CONJ_TAC THENL [ALL_TAC; MESON_TAC[GL_iff_def_th; GL_iff_imp2]] THEN MATCH_MP_TAC GL_and_intro THEN CONJ_TAC THEN MATCH_MP_TAC GL_ante_conj THENL [MATCH_MP_TAC GL_imp_insert THEN MATCH_MP_TAC GL_imp_swap THEN MATCH_MP_TAC GL_imp_trans THEN EXISTS_TAC `p:form` THEN CONJ_TAC THENL [ASM_MESON_TAC[GL_iff_imp2]; ALL_TAC] THEN MATCH_MP_TAC GL_shunt THEN MATCH_MP_TAC GL_imp_trans THEN EXISTS_TAC `q:form` THEN CONJ_TAC THENL [ALL_TAC; ASM_MESON_TAC[GL_iff_imp1]] THEN MATCH_MP_TAC GL_ante_conj THEN MATCH_MP_TAC GL_imp_swap THEN MATCH_ACCEPT_TAC GL_imp_refl_th; ALL_TAC] THEN MATCH_MP_TAC GL_add_assum THEN MATCH_MP_TAC GL_imp_swap THEN MATCH_MP_TAC GL_imp_trans THEN EXISTS_TAC `q:form` THEN CONJ_TAC THENL [ASM_MESON_TAC[GL_iff_imp2]; ALL_TAC] THEN MATCH_MP_TAC GL_imp_swap THEN MATCH_MP_TAC GL_imp_add_assum THEN ASM_MESON_TAC[GL_iff_imp1]);; let GL_box_iff_th = prove (`!p q. |-- (Box (p <-> q) --> (Box p <-> Box q))`, REPEAT GEN_TAC THEN MATCH_MP_TAC GL_imp_trans THEN EXISTS_TAC `(Box p --> Box q) && (Box q --> Box p)` THEN CONJ_TAC THENL [ALL_TAC; MATCH_MP_TAC GL_iff_imp2 THEN MATCH_ACCEPT_TAC GL_iff_def_th] THEN MATCH_MP_TAC GL_and_intro THEN CONJ_TAC THENL [MATCH_MP_TAC GL_imp_trans THEN EXISTS_TAC `Box (p --> q)` THEN REWRITE_TAC[GL_axiom_boximp] THEN MATCH_MP_TAC GL_imp_box THEN MATCH_ACCEPT_TAC GL_axiom_iffimp1; MATCH_MP_TAC GL_imp_trans THEN EXISTS_TAC `Box (q --> p)` THEN REWRITE_TAC[GL_axiom_boximp] THEN MATCH_MP_TAC GL_imp_box THEN MATCH_ACCEPT_TAC GL_axiom_iffimp2]);; let GL_box_iff = prove (`!p q. |-- (Box (p <-> q)) ==> |-- (Box p <-> Box q)`, REPEAT STRIP_TAC THEN MATCH_MP_TAC GL_imp_antisym THEN CONJ_TAC THENL [MATCH_MP_TAC GL_modusponens THEN EXISTS_TAC `Box (p --> q)` THEN REWRITE_TAC[GL_axiom_boximp] THEN MATCH_MP_TAC GL_box_moduspones THEN EXISTS_TAC `(p <-> q)` THEN ASM_REWRITE_TAC[GL_axiom_iffimp1]; MATCH_MP_TAC GL_modusponens THEN EXISTS_TAC `Box (q --> p)` THEN REWRITE_TAC[GL_axiom_boximp] THEN MATCH_MP_TAC GL_box_moduspones THEN EXISTS_TAC `(p <-> q)` THEN ASM_REWRITE_TAC[GL_axiom_iffimp2]]);; let GL_box_subst = prove (`!p q. |-- (p <-> q) ==> |-- (Box p <-> Box q)`, SIMP_TAC[GL_box_iff; GL_necessitation]);; let SUBST_IFF = prove (`!f g p. (!a. |-- (f a <-> g a)) ==> |-- (SUBST f p <-> SUBST g p)`, GEN_TAC THEN GEN_TAC THEN REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN DISCH_TAC THEN MATCH_MP_TAC form_INDUCT THEN ASM_REWRITE_TAC[SUBST; GL_iff_refl_th] THEN REPEAT STRIP_TAC THENL [MATCH_MP_TAC GL_not_subst THEN POP_ASSUM MATCH_ACCEPT_TAC; MATCH_MP_TAC GL_and_subst_th THEN ASM_REWRITE_TAC[]; MATCH_MP_TAC GL_or_subst_th THEN ASM_REWRITE_TAC[]; MATCH_MP_TAC GL_imp_subst THEN ASM_REWRITE_TAC[]; MATCH_MP_TAC GL_iff_subst THEN ASM_REWRITE_TAC[]; MATCH_MP_TAC GL_box_subst THEN POP_ASSUM MATCH_ACCEPT_TAC]);; (* ----------------------------------------------------------------------- *) (* Some modal propositional schemas and derived rules. *) (* ----------------------------------------------------------------------- *) let GL_box_and_th = prove (`!p q. |-- (Box(p && q) --> (Box p && Box q))`, MESON_TAC[GL_and_intro; GL_imp_box;GL_and_left_th;GL_and_right_th]);; let GL_box_and_inv_th = prove (`!p q. |-- ((Box p && Box q) --> Box (p && q))`, MESON_TAC[GL_ante_conj; GL_imp_trans; GL_imp_box; GL_and_pair_th; GL_axiom_boximp; GL_shunt]);; let GL_schema_4 = prove (`!p. |-- (Box p --> Box (Box p))`, MESON_TAC[GL_axiom_lob; GL_imp_box; GL_and_pair_th; GL_and_intro; GL_shunt; GL_imp_trans;GL_and_right_th;GL_and_left_th;GL_box_and_th]);; let GL_dot_box = prove (`!p. |-- (Box p --> Box p && Box (Box p))`, MESON_TAC[GL_imp_refl_th; GL_schema_4; GL_and_intro]);;