/- Copyright (c) 2020 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov -/ import analysis.calculus.local_extr /-! # Darboux's theorem In this file we prove that the derivative of a differentiable function on an interval takes all intermediate values. The proof is based on the [Wikipedia](https://en.wikipedia.org/wiki/Darboux%27s_theorem_(analysis)) page about this theorem. -/ open filter set open_locale topological_space classical variables {a b : ℝ} {f f' : ℝ → ℝ} /-- **Darboux's theorem**: if `a ≤ b` and `f' a < m < f' b`, then `f' c = m` for some `c ∈ [a, b]`. -/ theorem exists_has_deriv_within_at_eq_of_gt_of_lt (hab : a ≤ b) (hf : ∀ x ∈ (Icc a b), has_deriv_within_at f (f' x) (Icc a b) x) {m : ℝ} (hma : f' a < m) (hmb : m < f' b) : m ∈ f' '' (Icc a b) := begin have hab' : a < b, { refine lt_of_le_of_ne hab (λ hab', _), subst b, exact lt_asymm hma hmb }, set g : ℝ → ℝ := λ x, f x - m * x, have hg : ∀ x ∈ Icc a b, has_deriv_within_at g (f' x - m) (Icc a b) x, { intros x hx, simpa using (hf x hx).sub ((has_deriv_within_at_id x _).const_mul m) }, obtain ⟨c, cmem, hc⟩ : ∃ c ∈ Icc a b, is_min_on g (Icc a b) c, from is_compact_Icc.exists_forall_le (nonempty_Icc.2 $ hab) (λ x hx, (hg x hx).continuous_within_at), have cmem' : c ∈ Ioo a b, { cases eq_or_lt_of_le cmem.1 with hac hac, -- Show that `c` can't be equal to `a` { subst c, refine absurd (sub_nonneg.1 $ nonneg_of_mul_nonneg_right _ (sub_pos.2 hab')) (not_le_of_lt hma), have : b - a ∈ pos_tangent_cone_at (Icc a b) a, from mem_pos_tangent_cone_at_of_segment_subset (segment_eq_Icc hab ▸ subset.refl _), simpa [-sub_nonneg, -continuous_linear_map.map_sub] using hc.localize.has_fderiv_within_at_nonneg (hg a (left_mem_Icc.2 hab)) this }, cases eq_or_lt_of_le cmem.2 with hbc hbc, -- Show that `c` can't be equal to `b` { subst c, refine absurd (sub_nonpos.1 $ nonpos_of_mul_nonneg_right _ (sub_lt_zero.2 hab')) (not_le_of_lt hmb), have : a - b ∈ pos_tangent_cone_at (Icc a b) b, from mem_pos_tangent_cone_at_of_segment_subset (by rw [segment_symm, segment_eq_Icc hab]), simpa [-sub_nonneg, -continuous_linear_map.map_sub] using hc.localize.has_fderiv_within_at_nonneg (hg b (right_mem_Icc.2 hab)) this }, exact ⟨hac, hbc⟩ }, use [c, cmem], rw [← sub_eq_zero], have : Icc a b ∈ 𝓝 c, by rwa [← mem_interior_iff_mem_nhds, interior_Icc], exact (hc.is_local_min this).has_deriv_at_eq_zero ((hg c cmem).has_deriv_at this) end /-- **Darboux's theorem**: if `a ≤ b` and `f' a > m > f' b`, then `f' c = m` for some `c ∈ [a, b]`. -/ theorem exists_has_deriv_within_at_eq_of_lt_of_gt (hab : a ≤ b) (hf : ∀ x ∈ (Icc a b), has_deriv_within_at f (f' x) (Icc a b) x) {m : ℝ} (hma : m < f' a) (hmb : f' b < m) : m ∈ f' '' (Icc a b) := let ⟨c, cmem, hc⟩ := exists_has_deriv_within_at_eq_of_gt_of_lt hab (λ x hx, (hf x hx).neg) (neg_lt_neg hma) (neg_lt_neg hmb) in ⟨c, cmem, neg_injective hc⟩ /-- **Darboux's theorem**: the image of a convex set under `f'` is a convex set. -/ theorem convex_image_has_deriv_at {s : set ℝ} (hs : convex ℝ s) (hf : ∀ x ∈ s, has_deriv_at f (f' x) x) : convex ℝ (f' '' s) := begin refine ord_connected.convex ⟨_⟩, rintros _ ⟨a, ha, rfl⟩ _ ⟨b, hb, rfl⟩ m ⟨hma, hmb⟩, cases eq_or_lt_of_le hma with hma hma, by exact hma ▸ mem_image_of_mem f' ha, cases eq_or_lt_of_le hmb with hmb hmb, by exact hmb.symm ▸ mem_image_of_mem f' hb, cases le_total a b with hab hab, { have : Icc a b ⊆ s, from hs.ord_connected.out ha hb, rcases exists_has_deriv_within_at_eq_of_gt_of_lt hab (λ x hx, (hf x $ this hx).has_deriv_within_at) hma hmb with ⟨c, cmem, hc⟩, exact ⟨c, this cmem, hc⟩ }, { have : Icc b a ⊆ s, from hs.ord_connected.out hb ha, rcases exists_has_deriv_within_at_eq_of_lt_of_gt hab (λ x hx, (hf x $ this hx).has_deriv_within_at) hmb hma with ⟨c, cmem, hc⟩, exact ⟨c, this cmem, hc⟩ } end /-- If the derivative of a function is never equal to `m`, then either it is always greater than `m`, or it is always less than `m`. -/ theorem deriv_forall_lt_or_forall_gt_of_forall_ne {s : set ℝ} (hs : convex ℝ s) (hf : ∀ x ∈ s, has_deriv_at f (f' x) x) {m : ℝ} (hf' : ∀ x ∈ s, f' x ≠ m) : (∀ x ∈ s, f' x < m) ∨ (∀ x ∈ s, m < f' x) := begin contrapose! hf', rcases hf' with ⟨⟨b, hb, hmb⟩, ⟨a, ha, hma⟩⟩, exact (convex_image_has_deriv_at hs hf).ord_connected.out (mem_image_of_mem f' ha) (mem_image_of_mem f' hb) ⟨hma, hmb⟩ end