/- Copyright (c) 2019 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Sébastien Gouëzel, Yury Kudryashov -/ import analysis.asymptotics.asymptotic_equivalent import analysis.calculus.tangent_cone import analysis.normed_space.bounded_linear_maps import analysis.normed_space.units /-! # The Fréchet derivative Let `E` and `F` be normed spaces, `f : E → F`, and `f' : E →L[𝕜] F` a continuous 𝕜-linear map, where `𝕜` is a non-discrete normed field. Then `has_fderiv_within_at f f' s x` says that `f` has derivative `f'` at `x`, where the domain of interest is restricted to `s`. We also have `has_fderiv_at f f' x := has_fderiv_within_at f f' x univ` Finally, `has_strict_fderiv_at f f' x` means that `f : E → F` has derivative `f' : E →L[𝕜] F` in the sense of strict differentiability, i.e., `f y - f z - f'(y - z) = o(y - z)` as `y, z → x`. This notion is used in the inverse function theorem, and is defined here only to avoid proving theorems like `is_bounded_bilinear_map.has_fderiv_at` twice: first for `has_fderiv_at`, then for `has_strict_fderiv_at`. ## Main results In addition to the definition and basic properties of the derivative, this file contains the usual formulas (and existence assertions) for the derivative of * constants * the identity * bounded linear maps * bounded bilinear maps * sum of two functions * sum of finitely many functions * multiplication of a function by a scalar constant * negative of a function * subtraction of two functions * multiplication of a function by a scalar function * multiplication of two scalar functions * composition of functions (the chain rule) * inverse function (assuming that it exists; the inverse function theorem is in `inverse.lean`) For most binary operations we also define `const_op` and `op_const` theorems for the cases when the first or second argument is a constant. This makes writing chains of `has_deriv_at`'s easier, and they more frequently lead to the desired result. One can also interpret the derivative of a function `f : 𝕜 → E` as an element of `E` (by identifying a linear function from `𝕜` to `E` with its value at `1`). Results on the Fréchet derivative are translated to this more elementary point of view on the derivative in the file `deriv.lean`. The derivative of polynomials is handled there, as it is naturally one-dimensional. The simplifier is set up to prove automatically that some functions are differentiable, or differentiable at a point (but not differentiable on a set or within a set at a point, as checking automatically that the good domains are mapped one to the other when using composition is not something the simplifier can easily do). This means that one can write `example (x : ℝ) : differentiable ℝ (λ x, sin (exp (3 + x^2)) - 5 * cos x) := by simp`. If there are divisions, one needs to supply to the simplifier proofs that the denominators do not vanish, as in ```lean example (x : ℝ) (h : 1 + sin x ≠ 0) : differentiable_at ℝ (λ x, exp x / (1 + sin x)) x := by simp [h] ``` Of course, these examples only work once `exp`, `cos` and `sin` have been shown to be differentiable, in `analysis.special_functions.trigonometric`. The simplifier is not set up to compute the Fréchet derivative of maps (as these are in general complicated multidimensional linear maps), but it will compute one-dimensional derivatives, see `deriv.lean`. ## Implementation details The derivative is defined in terms of the `is_o` relation, but also characterized in terms of the `tendsto` relation. We also introduce predicates `differentiable_within_at 𝕜 f s x` (where `𝕜` is the base field, `f` the function to be differentiated, `x` the point at which the derivative is asserted to exist, and `s` the set along which the derivative is defined), as well as `differentiable_at 𝕜 f x`, `differentiable_on 𝕜 f s` and `differentiable 𝕜 f` to express the existence of a derivative. To be able to compute with derivatives, we write `fderiv_within 𝕜 f s x` and `fderiv 𝕜 f x` for some choice of a derivative if it exists, and the zero function otherwise. This choice only behaves well along sets for which the derivative is unique, i.e., those for which the tangent directions span a dense subset of the whole space. The predicates `unique_diff_within_at s x` and `unique_diff_on s`, defined in `tangent_cone.lean` express this property. We prove that indeed they imply the uniqueness of the derivative. This is satisfied for open subsets, and in particular for `univ`. This uniqueness only holds when the field is non-discrete, which we request at the very beginning: otherwise, a derivative can be defined, but it has no interesting properties whatsoever. To make sure that the simplifier can prove automatically that functions are differentiable, we tag many lemmas with the `simp` attribute, for instance those saying that the sum of differentiable functions is differentiable, as well as their product, their cartesian product, and so on. A notable exception is the chain rule: we do not mark as a simp lemma the fact that, if `f` and `g` are differentiable, then their composition also is: `simp` would always be able to match this lemma, by taking `f` or `g` to be the identity. Instead, for every reasonable function (say, `exp`), we add a lemma that if `f` is differentiable then so is `(λ x, exp (f x))`. This means adding some boilerplate lemmas, but these can also be useful in their own right. Tests for this ability of the simplifier (with more examples) are provided in `tests/differentiable.lean`. ## Tags derivative, differentiable, Fréchet, calculus -/ open filter asymptotics continuous_linear_map set metric open_locale topological_space classical nnreal filter asymptotics ennreal noncomputable theory section variables {𝕜 : Type*} [nontrivially_normed_field 𝕜] variables {E : Type*} [normed_add_comm_group E] [normed_space 𝕜 E] variables {F : Type*} [normed_add_comm_group F] [normed_space 𝕜 F] variables {G : Type*} [normed_add_comm_group G] [normed_space 𝕜 G] variables {G' : Type*} [normed_add_comm_group G'] [normed_space 𝕜 G'] /-- A function `f` has the continuous linear map `f'` as derivative along the filter `L` if `f x' = f x + f' (x' - x) + o (x' - x)` when `x'` converges along the filter `L`. This definition is designed to be specialized for `L = 𝓝 x` (in `has_fderiv_at`), giving rise to the usual notion of Fréchet derivative, and for `L = 𝓝[s] x` (in `has_fderiv_within_at`), giving rise to the notion of Fréchet derivative along the set `s`. -/ def has_fderiv_at_filter (f : E → F) (f' : E →L[𝕜] F) (x : E) (L : filter E) := (λ x', f x' - f x - f' (x' - x)) =o[L] (λ x', x' - x) /-- A function `f` has the continuous linear map `f'` as derivative at `x` within a set `s` if `f x' = f x + f' (x' - x) + o (x' - x)` when `x'` tends to `x` inside `s`. -/ def has_fderiv_within_at (f : E → F) (f' : E →L[𝕜] F) (s : set E) (x : E) := has_fderiv_at_filter f f' x (𝓝[s] x) /-- A function `f` has the continuous linear map `f'` as derivative at `x` if `f x' = f x + f' (x' - x) + o (x' - x)` when `x'` tends to `x`. -/ def has_fderiv_at (f : E → F) (f' : E →L[𝕜] F) (x : E) := has_fderiv_at_filter f f' x (𝓝 x) /-- A function `f` has derivative `f'` at `a` in the sense of *strict differentiability* if `f x - f y - f' (x - y) = o(x - y)` as `x, y → a`. This form of differentiability is required, e.g., by the inverse function theorem. Any `C^1` function on a vector space over `ℝ` is strictly differentiable but this definition works, e.g., for vector spaces over `p`-adic numbers. -/ def has_strict_fderiv_at (f : E → F) (f' : E →L[𝕜] F) (x : E) := (λ p : E × E, f p.1 - f p.2 - f' (p.1 - p.2)) =o[𝓝 (x, x)] (λ p : E × E, p.1 - p.2) variables (𝕜) /-- A function `f` is differentiable at a point `x` within a set `s` if it admits a derivative there (possibly non-unique). -/ def differentiable_within_at (f : E → F) (s : set E) (x : E) := ∃f' : E →L[𝕜] F, has_fderiv_within_at f f' s x /-- A function `f` is differentiable at a point `x` if it admits a derivative there (possibly non-unique). -/ def differentiable_at (f : E → F) (x : E) := ∃f' : E →L[𝕜] F, has_fderiv_at f f' x /-- If `f` has a derivative at `x` within `s`, then `fderiv_within 𝕜 f s x` is such a derivative. Otherwise, it is set to `0`. -/ def fderiv_within (f : E → F) (s : set E) (x : E) : E →L[𝕜] F := if h : ∃f', has_fderiv_within_at f f' s x then classical.some h else 0 /-- If `f` has a derivative at `x`, then `fderiv 𝕜 f x` is such a derivative. Otherwise, it is set to `0`. -/ def fderiv (f : E → F) (x : E) : E →L[𝕜] F := if h : ∃f', has_fderiv_at f f' x then classical.some h else 0 /-- `differentiable_on 𝕜 f s` means that `f` is differentiable within `s` at any point of `s`. -/ def differentiable_on (f : E → F) (s : set E) := ∀x ∈ s, differentiable_within_at 𝕜 f s x /-- `differentiable 𝕜 f` means that `f` is differentiable at any point. -/ def differentiable (f : E → F) := ∀x, differentiable_at 𝕜 f x variables {𝕜} variables {f f₀ f₁ g : E → F} variables {f' f₀' f₁' g' : E →L[𝕜] F} variables (e : E →L[𝕜] F) variables {x : E} variables {s t : set E} variables {L L₁ L₂ : filter E} lemma fderiv_within_zero_of_not_differentiable_within_at (h : ¬ differentiable_within_at 𝕜 f s x) : fderiv_within 𝕜 f s x = 0 := have ¬ ∃ f', has_fderiv_within_at f f' s x, from h, by simp [fderiv_within, this] lemma fderiv_zero_of_not_differentiable_at (h : ¬ differentiable_at 𝕜 f x) : fderiv 𝕜 f x = 0 := have ¬ ∃ f', has_fderiv_at f f' x, from h, by simp [fderiv, this] section derivative_uniqueness /- In this section, we discuss the uniqueness of the derivative. We prove that the definitions `unique_diff_within_at` and `unique_diff_on` indeed imply the uniqueness of the derivative. -/ /-- If a function f has a derivative f' at x, a rescaled version of f around x converges to f', i.e., `n (f (x + (1/n) v) - f x)` converges to `f' v`. More generally, if `c n` tends to infinity and `c n * d n` tends to `v`, then `c n * (f (x + d n) - f x)` tends to `f' v`. This lemma expresses this fact, for functions having a derivative within a set. Its specific formulation is useful for tangent cone related discussions. -/ theorem has_fderiv_within_at.lim (h : has_fderiv_within_at f f' s x) {α : Type*} (l : filter α) {c : α → 𝕜} {d : α → E} {v : E} (dtop : ∀ᶠ n in l, x + d n ∈ s) (clim : tendsto (λ n, ∥c n∥) l at_top) (cdlim : tendsto (λ n, c n • d n) l (𝓝 v)) : tendsto (λn, c n • (f (x + d n) - f x)) l (𝓝 (f' v)) := begin have tendsto_arg : tendsto (λ n, x + d n) l (𝓝[s] x), { conv in (𝓝[s] x) { rw ← add_zero x }, rw [nhds_within, tendsto_inf], split, { apply tendsto_const_nhds.add (tangent_cone_at.lim_zero l clim cdlim) }, { rwa tendsto_principal } }, have : (λ y, f y - f x - f' (y - x)) =o[𝓝[s] x] (λ y, y - x) := h, have : (λ n, f (x + d n) - f x - f' ((x + d n) - x)) =o[l] (λ n, (x + d n) - x) := this.comp_tendsto tendsto_arg, have : (λ n, f (x + d n) - f x - f' (d n)) =o[l] d := by simpa only [add_sub_cancel'], have : (λ n, c n • (f (x + d n) - f x - f' (d n))) =o[l] (λ n, c n • d n) := (is_O_refl c l).smul_is_o this, have : (λ n, c n • (f (x + d n) - f x - f' (d n))) =o[l] (λ n, (1:ℝ)) := this.trans_is_O (cdlim.is_O_one ℝ), have L1 : tendsto (λn, c n • (f (x + d n) - f x - f' (d n))) l (𝓝 0) := (is_o_one_iff ℝ).1 this, have L2 : tendsto (λn, f' (c n • d n)) l (𝓝 (f' v)) := tendsto.comp f'.cont.continuous_at cdlim, have L3 : tendsto (λn, (c n • (f (x + d n) - f x - f' (d n)) + f' (c n • d n))) l (𝓝 (0 + f' v)) := L1.add L2, have : (λn, (c n • (f (x + d n) - f x - f' (d n)) + f' (c n • d n))) = (λn, c n • (f (x + d n) - f x)), by { ext n, simp [smul_add, smul_sub] }, rwa [this, zero_add] at L3 end /-- If `f'` and `f₁'` are two derivatives of `f` within `s` at `x`, then they are equal on the tangent cone to `s` at `x` -/ theorem has_fderiv_within_at.unique_on (hf : has_fderiv_within_at f f' s x) (hg : has_fderiv_within_at f f₁' s x) : eq_on f' f₁' (tangent_cone_at 𝕜 s x) := λ y ⟨c, d, dtop, clim, cdlim⟩, tendsto_nhds_unique (hf.lim at_top dtop clim cdlim) (hg.lim at_top dtop clim cdlim) /-- `unique_diff_within_at` achieves its goal: it implies the uniqueness of the derivative. -/ theorem unique_diff_within_at.eq (H : unique_diff_within_at 𝕜 s x) (hf : has_fderiv_within_at f f' s x) (hg : has_fderiv_within_at f f₁' s x) : f' = f₁' := continuous_linear_map.ext_on H.1 (hf.unique_on hg) theorem unique_diff_on.eq (H : unique_diff_on 𝕜 s) (hx : x ∈ s) (h : has_fderiv_within_at f f' s x) (h₁ : has_fderiv_within_at f f₁' s x) : f' = f₁' := (H x hx).eq h h₁ end derivative_uniqueness section fderiv_properties /-! ### Basic properties of the derivative -/ theorem has_fderiv_at_filter_iff_tendsto : has_fderiv_at_filter f f' x L ↔ tendsto (λ x', ∥x' - x∥⁻¹ * ∥f x' - f x - f' (x' - x)∥) L (𝓝 0) := have h : ∀ x', ∥x' - x∥ = 0 → ∥f x' - f x - f' (x' - x)∥ = 0, from λ x' hx', by { rw [sub_eq_zero.1 (norm_eq_zero.1 hx')], simp }, begin unfold has_fderiv_at_filter, rw [←is_o_norm_left, ←is_o_norm_right, is_o_iff_tendsto h], exact tendsto_congr (λ _, div_eq_inv_mul _ _), end theorem has_fderiv_within_at_iff_tendsto : has_fderiv_within_at f f' s x ↔ tendsto (λ x', ∥x' - x∥⁻¹ * ∥f x' - f x - f' (x' - x)∥) (𝓝[s] x) (𝓝 0) := has_fderiv_at_filter_iff_tendsto theorem has_fderiv_at_iff_tendsto : has_fderiv_at f f' x ↔ tendsto (λ x', ∥x' - x∥⁻¹ * ∥f x' - f x - f' (x' - x)∥) (𝓝 x) (𝓝 0) := has_fderiv_at_filter_iff_tendsto theorem has_fderiv_at_iff_is_o_nhds_zero : has_fderiv_at f f' x ↔ (λ h : E, f (x + h) - f x - f' h) =o[𝓝 0] (λh, h) := begin rw [has_fderiv_at, has_fderiv_at_filter, ← map_add_left_nhds_zero x, is_o_map], simp [(∘)] end /-- Converse to the mean value inequality: if `f` is differentiable at `x₀` and `C`-lipschitz on a neighborhood of `x₀` then it its derivative at `x₀` has norm bounded by `C`. This version only assumes that `∥f x - f x₀∥ ≤ C * ∥x - x₀∥` in a neighborhood of `x`. -/ lemma has_fderiv_at.le_of_lip' {f : E → F} {f' : E →L[𝕜] F} {x₀ : E} (hf : has_fderiv_at f f' x₀) {C : ℝ} (hC₀ : 0 ≤ C) (hlip : ∀ᶠ x in 𝓝 x₀, ∥f x - f x₀∥ ≤ C * ∥x - x₀∥) : ∥f'∥ ≤ C := begin refine le_of_forall_pos_le_add (λ ε ε0, op_norm_le_of_nhds_zero _ _), exact add_nonneg hC₀ ε0.le, rw [← map_add_left_nhds_zero x₀, eventually_map] at hlip, filter_upwards [is_o_iff.1 (has_fderiv_at_iff_is_o_nhds_zero.1 hf) ε0, hlip] with y hy hyC, rw add_sub_cancel' at hyC, calc ∥f' y∥ ≤ ∥f (x₀ + y) - f x₀∥ + ∥f (x₀ + y) - f x₀ - f' y∥ : norm_le_insert _ _ ... ≤ C * ∥y∥ + ε * ∥y∥ : add_le_add hyC hy ... = (C + ε) * ∥y∥ : (add_mul _ _ _).symm end /-- Converse to the mean value inequality: if `f` is differentiable at `x₀` and `C`-lipschitz on a neighborhood of `x₀` then it its derivative at `x₀` has norm bounded by `C`. -/ lemma has_fderiv_at.le_of_lip {f : E → F} {f' : E →L[𝕜] F} {x₀ : E} (hf : has_fderiv_at f f' x₀) {s : set E} (hs : s ∈ 𝓝 x₀) {C : ℝ≥0} (hlip : lipschitz_on_with C f s) : ∥f'∥ ≤ C := begin refine hf.le_of_lip' C.coe_nonneg _, filter_upwards [hs] with x hx using hlip.norm_sub_le hx (mem_of_mem_nhds hs), end theorem has_fderiv_at_filter.mono (h : has_fderiv_at_filter f f' x L₂) (hst : L₁ ≤ L₂) : has_fderiv_at_filter f f' x L₁ := h.mono hst theorem has_fderiv_within_at.mono_of_mem (h : has_fderiv_within_at f f' t x) (hst : t ∈ 𝓝[s] x) : has_fderiv_within_at f f' s x := h.mono $ nhds_within_le_iff.mpr hst theorem has_fderiv_within_at.mono (h : has_fderiv_within_at f f' t x) (hst : s ⊆ t) : has_fderiv_within_at f f' s x := h.mono $ nhds_within_mono _ hst theorem has_fderiv_at.has_fderiv_at_filter (h : has_fderiv_at f f' x) (hL : L ≤ 𝓝 x) : has_fderiv_at_filter f f' x L := h.mono hL theorem has_fderiv_at.has_fderiv_within_at (h : has_fderiv_at f f' x) : has_fderiv_within_at f f' s x := h.has_fderiv_at_filter inf_le_left lemma has_fderiv_within_at.differentiable_within_at (h : has_fderiv_within_at f f' s x) : differentiable_within_at 𝕜 f s x := ⟨f', h⟩ lemma has_fderiv_at.differentiable_at (h : has_fderiv_at f f' x) : differentiable_at 𝕜 f x := ⟨f', h⟩ @[simp] lemma has_fderiv_within_at_univ : has_fderiv_within_at f f' univ x ↔ has_fderiv_at f f' x := by { simp only [has_fderiv_within_at, nhds_within_univ], refl } lemma has_strict_fderiv_at.is_O_sub (hf : has_strict_fderiv_at f f' x) : (λ p : E × E, f p.1 - f p.2) =O[𝓝 (x, x)] (λ p : E × E, p.1 - p.2) := hf.is_O.congr_of_sub.2 (f'.is_O_comp _ _) lemma has_fderiv_at_filter.is_O_sub (h : has_fderiv_at_filter f f' x L) : (λ x', f x' - f x) =O[L] (λ x', x' - x) := h.is_O.congr_of_sub.2 (f'.is_O_sub _ _) protected lemma has_strict_fderiv_at.has_fderiv_at (hf : has_strict_fderiv_at f f' x) : has_fderiv_at f f' x := begin rw [has_fderiv_at, has_fderiv_at_filter, is_o_iff], exact (λ c hc, tendsto_id.prod_mk_nhds tendsto_const_nhds (is_o_iff.1 hf hc)) end protected lemma has_strict_fderiv_at.differentiable_at (hf : has_strict_fderiv_at f f' x) : differentiable_at 𝕜 f x := hf.has_fderiv_at.differentiable_at /-- If `f` is strictly differentiable at `x` with derivative `f'` and `K > ∥f'∥₊`, then `f` is `K`-Lipschitz in a neighborhood of `x`. -/ lemma has_strict_fderiv_at.exists_lipschitz_on_with_of_nnnorm_lt (hf : has_strict_fderiv_at f f' x) (K : ℝ≥0) (hK : ∥f'∥₊ < K) : ∃ s ∈ 𝓝 x, lipschitz_on_with K f s := begin have := hf.add_is_O_with (f'.is_O_with_comp _ _) hK, simp only [sub_add_cancel, is_O_with] at this, rcases exists_nhds_square this with ⟨U, Uo, xU, hU⟩, exact ⟨U, Uo.mem_nhds xU, lipschitz_on_with_iff_norm_sub_le.2 $ λ x hx y hy, hU (mk_mem_prod hx hy)⟩ end /-- If `f` is strictly differentiable at `x` with derivative `f'`, then `f` is Lipschitz in a neighborhood of `x`. See also `has_strict_fderiv_at.exists_lipschitz_on_with_of_nnnorm_lt` for a more precise statement. -/ lemma has_strict_fderiv_at.exists_lipschitz_on_with (hf : has_strict_fderiv_at f f' x) : ∃ K (s ∈ 𝓝 x), lipschitz_on_with K f s := (exists_gt _).imp hf.exists_lipschitz_on_with_of_nnnorm_lt /-- Directional derivative agrees with `has_fderiv`. -/ lemma has_fderiv_at.lim (hf : has_fderiv_at f f' x) (v : E) {α : Type*} {c : α → 𝕜} {l : filter α} (hc : tendsto (λ n, ∥c n∥) l at_top) : tendsto (λ n, (c n) • (f (x + (c n)⁻¹ • v) - f x)) l (𝓝 (f' v)) := begin refine (has_fderiv_within_at_univ.2 hf).lim _ (univ_mem' (λ _, trivial)) hc _, assume U hU, refine (eventually_ne_of_tendsto_norm_at_top hc (0:𝕜)).mono (λ y hy, _), convert mem_of_mem_nhds hU, dsimp only, rw [← mul_smul, mul_inv_cancel hy, one_smul] end theorem has_fderiv_at.unique (h₀ : has_fderiv_at f f₀' x) (h₁ : has_fderiv_at f f₁' x) : f₀' = f₁' := begin rw ← has_fderiv_within_at_univ at h₀ h₁, exact unique_diff_within_at_univ.eq h₀ h₁ end lemma has_fderiv_within_at_inter' (h : t ∈ 𝓝[s] x) : has_fderiv_within_at f f' (s ∩ t) x ↔ has_fderiv_within_at f f' s x := by simp [has_fderiv_within_at, nhds_within_restrict'' s h] lemma has_fderiv_within_at_inter (h : t ∈ 𝓝 x) : has_fderiv_within_at f f' (s ∩ t) x ↔ has_fderiv_within_at f f' s x := by simp [has_fderiv_within_at, nhds_within_restrict' s h] lemma has_fderiv_within_at.union (hs : has_fderiv_within_at f f' s x) (ht : has_fderiv_within_at f f' t x) : has_fderiv_within_at f f' (s ∪ t) x := begin simp only [has_fderiv_within_at, nhds_within_union], exact hs.sup ht, end lemma has_fderiv_within_at.nhds_within (h : has_fderiv_within_at f f' s x) (ht : s ∈ 𝓝[t] x) : has_fderiv_within_at f f' t x := (has_fderiv_within_at_inter' ht).1 (h.mono (inter_subset_right _ _)) lemma has_fderiv_within_at.has_fderiv_at (h : has_fderiv_within_at f f' s x) (hs : s ∈ 𝓝 x) : has_fderiv_at f f' x := by rwa [← univ_inter s, has_fderiv_within_at_inter hs, has_fderiv_within_at_univ] at h lemma differentiable_within_at.differentiable_at (h : differentiable_within_at 𝕜 f s x) (hs : s ∈ 𝓝 x) : differentiable_at 𝕜 f x := h.imp (λ f' hf', hf'.has_fderiv_at hs) lemma differentiable_within_at.has_fderiv_within_at (h : differentiable_within_at 𝕜 f s x) : has_fderiv_within_at f (fderiv_within 𝕜 f s x) s x := begin dunfold fderiv_within, dunfold differentiable_within_at at h, rw dif_pos h, exact classical.some_spec h end lemma differentiable_at.has_fderiv_at (h : differentiable_at 𝕜 f x) : has_fderiv_at f (fderiv 𝕜 f x) x := begin dunfold fderiv, dunfold differentiable_at at h, rw dif_pos h, exact classical.some_spec h end lemma differentiable_on.has_fderiv_at (h : differentiable_on 𝕜 f s) (hs : s ∈ 𝓝 x) : has_fderiv_at f (fderiv 𝕜 f x) x := ((h x (mem_of_mem_nhds hs)).differentiable_at hs).has_fderiv_at lemma differentiable_on.differentiable_at (h : differentiable_on 𝕜 f s) (hs : s ∈ 𝓝 x) : differentiable_at 𝕜 f x := (h.has_fderiv_at hs).differentiable_at lemma differentiable_on.eventually_differentiable_at (h : differentiable_on 𝕜 f s) (hs : s ∈ 𝓝 x) : ∀ᶠ y in 𝓝 x, differentiable_at 𝕜 f y := (eventually_eventually_nhds.2 hs).mono $ λ y, h.differentiable_at lemma has_fderiv_at.fderiv (h : has_fderiv_at f f' x) : fderiv 𝕜 f x = f' := by { ext, rw h.unique h.differentiable_at.has_fderiv_at } lemma fderiv_eq {f' : E → E →L[𝕜] F} (h : ∀ x, has_fderiv_at f (f' x) x) : fderiv 𝕜 f = f' := funext $ λ x, (h x).fderiv /-- Converse to the mean value inequality: if `f` is differentiable at `x₀` and `C`-lipschitz on a neighborhood of `x₀` then it its derivative at `x₀` has norm bounded by `C`. Version using `fderiv`. -/ lemma fderiv_at.le_of_lip {f : E → F} {x₀ : E} (hf : differentiable_at 𝕜 f x₀) {s : set E} (hs : s ∈ 𝓝 x₀) {C : ℝ≥0} (hlip : lipschitz_on_with C f s) : ∥fderiv 𝕜 f x₀∥ ≤ C := hf.has_fderiv_at.le_of_lip hs hlip lemma has_fderiv_within_at.fderiv_within (h : has_fderiv_within_at f f' s x) (hxs : unique_diff_within_at 𝕜 s x) : fderiv_within 𝕜 f s x = f' := (hxs.eq h h.differentiable_within_at.has_fderiv_within_at).symm /-- If `x` is not in the closure of `s`, then `f` has any derivative at `x` within `s`, as this statement is empty. -/ lemma has_fderiv_within_at_of_not_mem_closure (h : x ∉ closure s) : has_fderiv_within_at f f' s x := begin simp only [mem_closure_iff_nhds_within_ne_bot, ne_bot_iff, ne.def, not_not] at h, simp [has_fderiv_within_at, has_fderiv_at_filter, h, is_o, is_O_with], end lemma differentiable_within_at.mono (h : differentiable_within_at 𝕜 f t x) (st : s ⊆ t) : differentiable_within_at 𝕜 f s x := begin rcases h with ⟨f', hf'⟩, exact ⟨f', hf'.mono st⟩ end lemma differentiable_within_at_univ : differentiable_within_at 𝕜 f univ x ↔ differentiable_at 𝕜 f x := by simp only [differentiable_within_at, has_fderiv_within_at_univ, differentiable_at] lemma differentiable_within_at_inter (ht : t ∈ 𝓝 x) : differentiable_within_at 𝕜 f (s ∩ t) x ↔ differentiable_within_at 𝕜 f s x := by simp only [differentiable_within_at, has_fderiv_within_at, has_fderiv_at_filter, nhds_within_restrict' s ht] lemma differentiable_within_at_inter' (ht : t ∈ 𝓝[s] x) : differentiable_within_at 𝕜 f (s ∩ t) x ↔ differentiable_within_at 𝕜 f s x := by simp only [differentiable_within_at, has_fderiv_within_at, has_fderiv_at_filter, nhds_within_restrict'' s ht] lemma differentiable_within_at.antimono (h : differentiable_within_at 𝕜 f s x) (hst : s ⊆ t) (hx : s ∈ 𝓝[t] x) : differentiable_within_at 𝕜 f t x := by rwa [← differentiable_within_at_inter' hx, inter_eq_self_of_subset_right hst] lemma has_fderiv_within_at.antimono (h : has_fderiv_within_at f f' s x) (hst : s ⊆ t) (hs : unique_diff_within_at 𝕜 s x) (hx : s ∈ 𝓝[t] x) : has_fderiv_within_at f f' t x := begin have h' : has_fderiv_within_at f _ t x := (h.differentiable_within_at.antimono hst hx).has_fderiv_within_at, rwa hs.eq h (h'.mono hst), end lemma differentiable_at.differentiable_within_at (h : differentiable_at 𝕜 f x) : differentiable_within_at 𝕜 f s x := (differentiable_within_at_univ.2 h).mono (subset_univ _) lemma differentiable.differentiable_at (h : differentiable 𝕜 f) : differentiable_at 𝕜 f x := h x lemma differentiable_at.fderiv_within (h : differentiable_at 𝕜 f x) (hxs : unique_diff_within_at 𝕜 s x) : fderiv_within 𝕜 f s x = fderiv 𝕜 f x := begin apply has_fderiv_within_at.fderiv_within _ hxs, exact h.has_fderiv_at.has_fderiv_within_at end lemma differentiable_on.mono (h : differentiable_on 𝕜 f t) (st : s ⊆ t) : differentiable_on 𝕜 f s := λx hx, (h x (st hx)).mono st lemma differentiable_on_univ : differentiable_on 𝕜 f univ ↔ differentiable 𝕜 f := by { simp [differentiable_on, differentiable_within_at_univ], refl } lemma differentiable.differentiable_on (h : differentiable 𝕜 f) : differentiable_on 𝕜 f s := (differentiable_on_univ.2 h).mono (subset_univ _) lemma differentiable_on_of_locally_differentiable_on (h : ∀x∈s, ∃u, is_open u ∧ x ∈ u ∧ differentiable_on 𝕜 f (s ∩ u)) : differentiable_on 𝕜 f s := begin assume x xs, rcases h x xs with ⟨t, t_open, xt, ht⟩, exact (differentiable_within_at_inter (is_open.mem_nhds t_open xt)).1 (ht x ⟨xs, xt⟩) end lemma fderiv_within_subset (st : s ⊆ t) (ht : unique_diff_within_at 𝕜 s x) (h : differentiable_within_at 𝕜 f t x) : fderiv_within 𝕜 f s x = fderiv_within 𝕜 f t x := ((differentiable_within_at.has_fderiv_within_at h).mono st).fderiv_within ht lemma fderiv_within_subset' (st : s ⊆ t) (ht : unique_diff_within_at 𝕜 s x) (hx : s ∈ 𝓝[t] x) (h : differentiable_within_at 𝕜 f s x) : fderiv_within 𝕜 f s x = fderiv_within 𝕜 f t x := fderiv_within_subset st ht (h.antimono st hx) @[simp] lemma fderiv_within_univ : fderiv_within 𝕜 f univ = fderiv 𝕜 f := begin ext x : 1, by_cases h : differentiable_at 𝕜 f x, { apply has_fderiv_within_at.fderiv_within _ unique_diff_within_at_univ, rw has_fderiv_within_at_univ, apply h.has_fderiv_at }, { have : ¬ differentiable_within_at 𝕜 f univ x, by contrapose! h; rwa ← differentiable_within_at_univ, rw [fderiv_zero_of_not_differentiable_at h, fderiv_within_zero_of_not_differentiable_within_at this] } end lemma fderiv_within_inter (ht : t ∈ 𝓝 x) (hs : unique_diff_within_at 𝕜 s x) : fderiv_within 𝕜 f (s ∩ t) x = fderiv_within 𝕜 f s x := begin by_cases h : differentiable_within_at 𝕜 f (s ∩ t) x, { apply fderiv_within_subset (inter_subset_left _ _) _ ((differentiable_within_at_inter ht).1 h), apply hs.inter ht }, { have : ¬ differentiable_within_at 𝕜 f s x, by contrapose! h; rw differentiable_within_at_inter; assumption, rw [fderiv_within_zero_of_not_differentiable_within_at h, fderiv_within_zero_of_not_differentiable_within_at this] } end lemma fderiv_within_of_mem_nhds (h : s ∈ 𝓝 x) : fderiv_within 𝕜 f s x = fderiv 𝕜 f x := begin have : s = univ ∩ s, by simp only [univ_inter], rw [this, ← fderiv_within_univ], exact fderiv_within_inter h (unique_diff_on_univ _ (mem_univ _)) end lemma fderiv_within_of_open (hs : is_open s) (hx : x ∈ s) : fderiv_within 𝕜 f s x = fderiv 𝕜 f x := fderiv_within_of_mem_nhds (is_open.mem_nhds hs hx) lemma fderiv_within_eq_fderiv (hs : unique_diff_within_at 𝕜 s x) (h : differentiable_at 𝕜 f x) : fderiv_within 𝕜 f s x = fderiv 𝕜 f x := begin rw ← fderiv_within_univ, exact fderiv_within_subset (subset_univ _) hs h.differentiable_within_at end lemma fderiv_mem_iff {f : E → F} {s : set (E →L[𝕜] F)} {x : E} : fderiv 𝕜 f x ∈ s ↔ (differentiable_at 𝕜 f x ∧ fderiv 𝕜 f x ∈ s) ∨ (¬differentiable_at 𝕜 f x ∧ (0 : E →L[𝕜] F) ∈ s) := by by_cases hx : differentiable_at 𝕜 f x; simp [fderiv_zero_of_not_differentiable_at, *] lemma fderiv_within_mem_iff {f : E → F} {t : set E} {s : set (E →L[𝕜] F)} {x : E} : fderiv_within 𝕜 f t x ∈ s ↔ (differentiable_within_at 𝕜 f t x ∧ fderiv_within 𝕜 f t x ∈ s) ∨ (¬differentiable_within_at 𝕜 f t x ∧ (0 : E →L[𝕜] F) ∈ s) := by by_cases hx : differentiable_within_at 𝕜 f t x; simp [fderiv_within_zero_of_not_differentiable_within_at, *] end fderiv_properties section continuous /-! ### Deducing continuity from differentiability -/ theorem has_fderiv_at_filter.tendsto_nhds (hL : L ≤ 𝓝 x) (h : has_fderiv_at_filter f f' x L) : tendsto f L (𝓝 (f x)) := begin have : tendsto (λ x', f x' - f x) L (𝓝 0), { refine h.is_O_sub.trans_tendsto (tendsto.mono_left _ hL), rw ← sub_self x, exact tendsto_id.sub tendsto_const_nhds }, have := tendsto.add this tendsto_const_nhds, rw zero_add (f x) at this, exact this.congr (by simp) end theorem has_fderiv_within_at.continuous_within_at (h : has_fderiv_within_at f f' s x) : continuous_within_at f s x := has_fderiv_at_filter.tendsto_nhds inf_le_left h theorem has_fderiv_at.continuous_at (h : has_fderiv_at f f' x) : continuous_at f x := has_fderiv_at_filter.tendsto_nhds le_rfl h lemma differentiable_within_at.continuous_within_at (h : differentiable_within_at 𝕜 f s x) : continuous_within_at f s x := let ⟨f', hf'⟩ := h in hf'.continuous_within_at lemma differentiable_at.continuous_at (h : differentiable_at 𝕜 f x) : continuous_at f x := let ⟨f', hf'⟩ := h in hf'.continuous_at lemma differentiable_on.continuous_on (h : differentiable_on 𝕜 f s) : continuous_on f s := λx hx, (h x hx).continuous_within_at lemma differentiable.continuous (h : differentiable 𝕜 f) : continuous f := continuous_iff_continuous_at.2 $ λx, (h x).continuous_at protected lemma has_strict_fderiv_at.continuous_at (hf : has_strict_fderiv_at f f' x) : continuous_at f x := hf.has_fderiv_at.continuous_at lemma has_strict_fderiv_at.is_O_sub_rev {f' : E ≃L[𝕜] F} (hf : has_strict_fderiv_at f (f' : E →L[𝕜] F) x) : (λ p : E × E, p.1 - p.2) =O[𝓝 (x, x)](λ p : E × E, f p.1 - f p.2) := ((f'.is_O_comp_rev _ _).trans (hf.trans_is_O (f'.is_O_comp_rev _ _)).right_is_O_add).congr (λ _, rfl) (λ _, sub_add_cancel _ _) lemma has_fderiv_at_filter.is_O_sub_rev (hf : has_fderiv_at_filter f f' x L) {C} (hf' : antilipschitz_with C f') : (λ x', x' - x) =O[L] (λ x', f x' - f x) := have (λ x', x' - x) =O[L] (λ x', f' (x' - x)), from is_O_iff.2 ⟨C, eventually_of_forall $ λ x', add_monoid_hom_class.bound_of_antilipschitz f' hf' _⟩, (this.trans (hf.trans_is_O this).right_is_O_add).congr (λ _, rfl) (λ _, sub_add_cancel _ _) end continuous section congr /-! ### congr properties of the derivative -/ theorem filter.eventually_eq.has_strict_fderiv_at_iff (h : f₀ =ᶠ[𝓝 x] f₁) (h' : ∀ y, f₀' y = f₁' y) : has_strict_fderiv_at f₀ f₀' x ↔ has_strict_fderiv_at f₁ f₁' x := begin refine is_o_congr ((h.prod_mk_nhds h).mono _) (eventually_of_forall $ λ _, rfl), rintros p ⟨hp₁, hp₂⟩, simp only [*] end theorem has_strict_fderiv_at.congr_of_eventually_eq (h : has_strict_fderiv_at f f' x) (h₁ : f =ᶠ[𝓝 x] f₁) : has_strict_fderiv_at f₁ f' x := (h₁.has_strict_fderiv_at_iff (λ _, rfl)).1 h theorem filter.eventually_eq.has_fderiv_at_filter_iff (h₀ : f₀ =ᶠ[L] f₁) (hx : f₀ x = f₁ x) (h₁ : ∀ x, f₀' x = f₁' x) : has_fderiv_at_filter f₀ f₀' x L ↔ has_fderiv_at_filter f₁ f₁' x L := is_o_congr (h₀.mono $ λ y hy, by simp only [hy, h₁, hx]) (eventually_of_forall $ λ _, rfl) lemma has_fderiv_at_filter.congr_of_eventually_eq (h : has_fderiv_at_filter f f' x L) (hL : f₁ =ᶠ[L] f) (hx : f₁ x = f x) : has_fderiv_at_filter f₁ f' x L := (hL.has_fderiv_at_filter_iff hx $ λ _, rfl).2 h theorem filter.eventually_eq.has_fderiv_at_iff (h : f₀ =ᶠ[𝓝 x] f₁) : has_fderiv_at f₀ f' x ↔ has_fderiv_at f₁ f' x := h.has_fderiv_at_filter_iff h.eq_of_nhds (λ _, rfl) theorem filter.eventually_eq.differentiable_at_iff (h : f₀ =ᶠ[𝓝 x] f₁) : differentiable_at 𝕜 f₀ x ↔ differentiable_at 𝕜 f₁ x := exists_congr $ λ f', h.has_fderiv_at_iff theorem filter.eventually_eq.has_fderiv_within_at_iff (h : f₀ =ᶠ[𝓝[s] x] f₁) (hx : f₀ x = f₁ x) : has_fderiv_within_at f₀ f' s x ↔ has_fderiv_within_at f₁ f' s x := h.has_fderiv_at_filter_iff hx (λ _, rfl) theorem filter.eventually_eq.has_fderiv_within_at_iff_of_mem (h : f₀ =ᶠ[𝓝[s] x] f₁) (hx : x ∈ s) : has_fderiv_within_at f₀ f' s x ↔ has_fderiv_within_at f₁ f' s x := h.has_fderiv_within_at_iff (h.eq_of_nhds_within hx) theorem filter.eventually_eq.differentiable_within_at_iff (h : f₀ =ᶠ[𝓝[s] x] f₁) (hx : f₀ x = f₁ x) : differentiable_within_at 𝕜 f₀ s x ↔ differentiable_within_at 𝕜 f₁ s x := exists_congr $ λ f', h.has_fderiv_within_at_iff hx theorem filter.eventually_eq.differentiable_within_at_iff_of_mem (h : f₀ =ᶠ[𝓝[s] x] f₁) (hx : x ∈ s) : differentiable_within_at 𝕜 f₀ s x ↔ differentiable_within_at 𝕜 f₁ s x := h.differentiable_within_at_iff (h.eq_of_nhds_within hx) lemma has_fderiv_within_at.congr_mono (h : has_fderiv_within_at f f' s x) (ht : ∀x ∈ t, f₁ x = f x) (hx : f₁ x = f x) (h₁ : t ⊆ s) : has_fderiv_within_at f₁ f' t x := has_fderiv_at_filter.congr_of_eventually_eq (h.mono h₁) (filter.mem_inf_of_right ht) hx lemma has_fderiv_within_at.congr (h : has_fderiv_within_at f f' s x) (hs : ∀x ∈ s, f₁ x = f x) (hx : f₁ x = f x) : has_fderiv_within_at f₁ f' s x := h.congr_mono hs hx (subset.refl _) lemma has_fderiv_within_at.congr' (h : has_fderiv_within_at f f' s x) (hs : ∀x ∈ s, f₁ x = f x) (hx : x ∈ s) : has_fderiv_within_at f₁ f' s x := h.congr hs (hs x hx) lemma has_fderiv_within_at.congr_of_eventually_eq (h : has_fderiv_within_at f f' s x) (h₁ : f₁ =ᶠ[𝓝[s] x] f) (hx : f₁ x = f x) : has_fderiv_within_at f₁ f' s x := has_fderiv_at_filter.congr_of_eventually_eq h h₁ hx lemma has_fderiv_at.congr_of_eventually_eq (h : has_fderiv_at f f' x) (h₁ : f₁ =ᶠ[𝓝 x] f) : has_fderiv_at f₁ f' x := has_fderiv_at_filter.congr_of_eventually_eq h h₁ (mem_of_mem_nhds h₁ : _) lemma differentiable_within_at.congr_mono (h : differentiable_within_at 𝕜 f s x) (ht : ∀x ∈ t, f₁ x = f x) (hx : f₁ x = f x) (h₁ : t ⊆ s) : differentiable_within_at 𝕜 f₁ t x := (has_fderiv_within_at.congr_mono h.has_fderiv_within_at ht hx h₁).differentiable_within_at lemma differentiable_within_at.congr (h : differentiable_within_at 𝕜 f s x) (ht : ∀x ∈ s, f₁ x = f x) (hx : f₁ x = f x) : differentiable_within_at 𝕜 f₁ s x := differentiable_within_at.congr_mono h ht hx (subset.refl _) lemma differentiable_within_at.congr_of_eventually_eq (h : differentiable_within_at 𝕜 f s x) (h₁ : f₁ =ᶠ[𝓝[s] x] f) (hx : f₁ x = f x) : differentiable_within_at 𝕜 f₁ s x := (h.has_fderiv_within_at.congr_of_eventually_eq h₁ hx).differentiable_within_at lemma differentiable_on.congr_mono (h : differentiable_on 𝕜 f s) (h' : ∀x ∈ t, f₁ x = f x) (h₁ : t ⊆ s) : differentiable_on 𝕜 f₁ t := λ x hx, (h x (h₁ hx)).congr_mono h' (h' x hx) h₁ lemma differentiable_on.congr (h : differentiable_on 𝕜 f s) (h' : ∀x ∈ s, f₁ x = f x) : differentiable_on 𝕜 f₁ s := λ x hx, (h x hx).congr h' (h' x hx) lemma differentiable_on_congr (h' : ∀x ∈ s, f₁ x = f x) : differentiable_on 𝕜 f₁ s ↔ differentiable_on 𝕜 f s := ⟨λ h, differentiable_on.congr h (λy hy, (h' y hy).symm), λ h, differentiable_on.congr h h'⟩ lemma differentiable_at.congr_of_eventually_eq (h : differentiable_at 𝕜 f x) (hL : f₁ =ᶠ[𝓝 x] f) : differentiable_at 𝕜 f₁ x := hL.differentiable_at_iff.2 h lemma differentiable_within_at.fderiv_within_congr_mono (h : differentiable_within_at 𝕜 f s x) (hs : ∀x ∈ t, f₁ x = f x) (hx : f₁ x = f x) (hxt : unique_diff_within_at 𝕜 t x) (h₁ : t ⊆ s) : fderiv_within 𝕜 f₁ t x = fderiv_within 𝕜 f s x := (has_fderiv_within_at.congr_mono h.has_fderiv_within_at hs hx h₁).fderiv_within hxt lemma filter.eventually_eq.fderiv_within_eq (hs : unique_diff_within_at 𝕜 s x) (hL : f₁ =ᶠ[𝓝[s] x] f) (hx : f₁ x = f x) : fderiv_within 𝕜 f₁ s x = fderiv_within 𝕜 f s x := if h : differentiable_within_at 𝕜 f s x then has_fderiv_within_at.fderiv_within (h.has_fderiv_within_at.congr_of_eventually_eq hL hx) hs else have h' : ¬ differentiable_within_at 𝕜 f₁ s x, from mt (λ h, h.congr_of_eventually_eq (hL.mono $ λ x, eq.symm) hx.symm) h, by rw [fderiv_within_zero_of_not_differentiable_within_at h, fderiv_within_zero_of_not_differentiable_within_at h'] lemma filter.eventually_eq.fderiv_within_eq_nhds (hs : unique_diff_within_at 𝕜 s x) (hL : f₁ =ᶠ[𝓝 x] f) : fderiv_within 𝕜 f₁ s x = fderiv_within 𝕜 f s x := (show f₁ =ᶠ[𝓝[s] x] f, from nhds_within_le_nhds hL).fderiv_within_eq hs (mem_of_mem_nhds hL : _) lemma fderiv_within_congr (hs : unique_diff_within_at 𝕜 s x) (hL : ∀y∈s, f₁ y = f y) (hx : f₁ x = f x) : fderiv_within 𝕜 f₁ s x = fderiv_within 𝕜 f s x := begin apply filter.eventually_eq.fderiv_within_eq hs _ hx, apply mem_of_superset self_mem_nhds_within, exact hL end lemma filter.eventually_eq.fderiv_eq (hL : f₁ =ᶠ[𝓝 x] f) : fderiv 𝕜 f₁ x = fderiv 𝕜 f x := begin have A : f₁ x = f x := hL.eq_of_nhds, rw [← fderiv_within_univ, ← fderiv_within_univ], rw ← nhds_within_univ at hL, exact hL.fderiv_within_eq unique_diff_within_at_univ A end protected lemma filter.eventually_eq.fderiv (h : f₁ =ᶠ[𝓝 x] f) : fderiv 𝕜 f₁ =ᶠ[𝓝 x] fderiv 𝕜 f := h.eventually_eq_nhds.mono $ λ x h, h.fderiv_eq end congr section id /-! ### Derivative of the identity -/ theorem has_strict_fderiv_at_id (x : E) : has_strict_fderiv_at id (id 𝕜 E) x := (is_o_zero _ _).congr_left $ by simp theorem has_fderiv_at_filter_id (x : E) (L : filter E) : has_fderiv_at_filter id (id 𝕜 E) x L := (is_o_zero _ _).congr_left $ by simp theorem has_fderiv_within_at_id (x : E) (s : set E) : has_fderiv_within_at id (id 𝕜 E) s x := has_fderiv_at_filter_id _ _ theorem has_fderiv_at_id (x : E) : has_fderiv_at id (id 𝕜 E) x := has_fderiv_at_filter_id _ _ @[simp] lemma differentiable_at_id : differentiable_at 𝕜 id x := (has_fderiv_at_id x).differentiable_at @[simp] lemma differentiable_at_id' : differentiable_at 𝕜 (λ x, x) x := (has_fderiv_at_id x).differentiable_at lemma differentiable_within_at_id : differentiable_within_at 𝕜 id s x := differentiable_at_id.differentiable_within_at @[simp] lemma differentiable_id : differentiable 𝕜 (id : E → E) := λx, differentiable_at_id @[simp] lemma differentiable_id' : differentiable 𝕜 (λ (x : E), x) := λx, differentiable_at_id lemma differentiable_on_id : differentiable_on 𝕜 id s := differentiable_id.differentiable_on lemma fderiv_id : fderiv 𝕜 id x = id 𝕜 E := has_fderiv_at.fderiv (has_fderiv_at_id x) @[simp] lemma fderiv_id' : fderiv 𝕜 (λ (x : E), x) x = continuous_linear_map.id 𝕜 E := fderiv_id lemma fderiv_within_id (hxs : unique_diff_within_at 𝕜 s x) : fderiv_within 𝕜 id s x = id 𝕜 E := begin rw differentiable_at.fderiv_within (differentiable_at_id) hxs, exact fderiv_id end lemma fderiv_within_id' (hxs : unique_diff_within_at 𝕜 s x) : fderiv_within 𝕜 (λ (x : E), x) s x = continuous_linear_map.id 𝕜 E := fderiv_within_id hxs end id section const /-! ### derivative of a constant function -/ theorem has_strict_fderiv_at_const (c : F) (x : E) : has_strict_fderiv_at (λ _, c) (0 : E →L[𝕜] F) x := (is_o_zero _ _).congr_left $ λ _, by simp only [zero_apply, sub_self] theorem has_fderiv_at_filter_const (c : F) (x : E) (L : filter E) : has_fderiv_at_filter (λ x, c) (0 : E →L[𝕜] F) x L := (is_o_zero _ _).congr_left $ λ _, by simp only [zero_apply, sub_self] theorem has_fderiv_within_at_const (c : F) (x : E) (s : set E) : has_fderiv_within_at (λ x, c) (0 : E →L[𝕜] F) s x := has_fderiv_at_filter_const _ _ _ theorem has_fderiv_at_const (c : F) (x : E) : has_fderiv_at (λ x, c) (0 : E →L[𝕜] F) x := has_fderiv_at_filter_const _ _ _ @[simp] lemma differentiable_at_const (c : F) : differentiable_at 𝕜 (λx, c) x := ⟨0, has_fderiv_at_const c x⟩ lemma differentiable_within_at_const (c : F) : differentiable_within_at 𝕜 (λx, c) s x := differentiable_at.differentiable_within_at (differentiable_at_const _) lemma fderiv_const_apply (c : F) : fderiv 𝕜 (λy, c) x = 0 := has_fderiv_at.fderiv (has_fderiv_at_const c x) @[simp] lemma fderiv_const (c : F) : fderiv 𝕜 (λ (y : E), c) = 0 := by { ext m, rw fderiv_const_apply, refl } lemma fderiv_within_const_apply (c : F) (hxs : unique_diff_within_at 𝕜 s x) : fderiv_within 𝕜 (λy, c) s x = 0 := begin rw differentiable_at.fderiv_within (differentiable_at_const _) hxs, exact fderiv_const_apply _ end @[simp] lemma differentiable_const (c : F) : differentiable 𝕜 (λx : E, c) := λx, differentiable_at_const _ lemma differentiable_on_const (c : F) : differentiable_on 𝕜 (λx, c) s := (differentiable_const _).differentiable_on lemma has_fderiv_within_at_singleton (f : E → F) (x : E) : has_fderiv_within_at f (0 : E →L[𝕜] F) {x} x := by simp only [has_fderiv_within_at, nhds_within_singleton, has_fderiv_at_filter, is_o_pure, continuous_linear_map.zero_apply, sub_self] lemma has_fderiv_at_of_subsingleton [h : subsingleton E] (f : E → F) (x : E) : has_fderiv_at f (0 : E →L[𝕜] F) x := begin rw [← has_fderiv_within_at_univ, subsingleton_univ.eq_singleton_of_mem (mem_univ x)], exact has_fderiv_within_at_singleton f x end lemma differentiable_on_empty : differentiable_on 𝕜 f ∅ := λ x, false.elim lemma differentiable_on_singleton : differentiable_on 𝕜 f {x} := forall_eq.2 (has_fderiv_within_at_singleton f x).differentiable_within_at lemma set.subsingleton.differentiable_on (hs : s.subsingleton) : differentiable_on 𝕜 f s := hs.induction_on differentiable_on_empty (λ x, differentiable_on_singleton) end const section continuous_linear_map /-! ### Continuous linear maps There are currently two variants of these in mathlib, the bundled version (named `continuous_linear_map`, and denoted `E →L[𝕜] F`), and the unbundled version (with a predicate `is_bounded_linear_map`). We give statements for both versions. -/ protected theorem continuous_linear_map.has_strict_fderiv_at {x : E} : has_strict_fderiv_at e e x := (is_o_zero _ _).congr_left $ λ x, by simp only [e.map_sub, sub_self] protected lemma continuous_linear_map.has_fderiv_at_filter : has_fderiv_at_filter e e x L := (is_o_zero _ _).congr_left $ λ x, by simp only [e.map_sub, sub_self] protected lemma continuous_linear_map.has_fderiv_within_at : has_fderiv_within_at e e s x := e.has_fderiv_at_filter protected lemma continuous_linear_map.has_fderiv_at : has_fderiv_at e e x := e.has_fderiv_at_filter @[simp] protected lemma continuous_linear_map.differentiable_at : differentiable_at 𝕜 e x := e.has_fderiv_at.differentiable_at protected lemma continuous_linear_map.differentiable_within_at : differentiable_within_at 𝕜 e s x := e.differentiable_at.differentiable_within_at @[simp] protected lemma continuous_linear_map.fderiv : fderiv 𝕜 e x = e := e.has_fderiv_at.fderiv protected lemma continuous_linear_map.fderiv_within (hxs : unique_diff_within_at 𝕜 s x) : fderiv_within 𝕜 e s x = e := begin rw differentiable_at.fderiv_within e.differentiable_at hxs, exact e.fderiv end @[simp] protected lemma continuous_linear_map.differentiable : differentiable 𝕜 e := λx, e.differentiable_at protected lemma continuous_linear_map.differentiable_on : differentiable_on 𝕜 e s := e.differentiable.differentiable_on lemma is_bounded_linear_map.has_fderiv_at_filter (h : is_bounded_linear_map 𝕜 f) : has_fderiv_at_filter f h.to_continuous_linear_map x L := h.to_continuous_linear_map.has_fderiv_at_filter lemma is_bounded_linear_map.has_fderiv_within_at (h : is_bounded_linear_map 𝕜 f) : has_fderiv_within_at f h.to_continuous_linear_map s x := h.has_fderiv_at_filter lemma is_bounded_linear_map.has_fderiv_at (h : is_bounded_linear_map 𝕜 f) : has_fderiv_at f h.to_continuous_linear_map x := h.has_fderiv_at_filter lemma is_bounded_linear_map.differentiable_at (h : is_bounded_linear_map 𝕜 f) : differentiable_at 𝕜 f x := h.has_fderiv_at.differentiable_at lemma is_bounded_linear_map.differentiable_within_at (h : is_bounded_linear_map 𝕜 f) : differentiable_within_at 𝕜 f s x := h.differentiable_at.differentiable_within_at lemma is_bounded_linear_map.fderiv (h : is_bounded_linear_map 𝕜 f) : fderiv 𝕜 f x = h.to_continuous_linear_map := has_fderiv_at.fderiv (h.has_fderiv_at) lemma is_bounded_linear_map.fderiv_within (h : is_bounded_linear_map 𝕜 f) (hxs : unique_diff_within_at 𝕜 s x) : fderiv_within 𝕜 f s x = h.to_continuous_linear_map := begin rw differentiable_at.fderiv_within h.differentiable_at hxs, exact h.fderiv end lemma is_bounded_linear_map.differentiable (h : is_bounded_linear_map 𝕜 f) : differentiable 𝕜 f := λx, h.differentiable_at lemma is_bounded_linear_map.differentiable_on (h : is_bounded_linear_map 𝕜 f) : differentiable_on 𝕜 f s := h.differentiable.differentiable_on end continuous_linear_map section composition /-! ### Derivative of the composition of two functions For composition lemmas, we put x explicit to help the elaborator, as otherwise Lean tends to get confused since there are too many possibilities for composition -/ variable (x) theorem has_fderiv_at_filter.comp {g : F → G} {g' : F →L[𝕜] G} {L' : filter F} (hg : has_fderiv_at_filter g g' (f x) L') (hf : has_fderiv_at_filter f f' x L) (hL : tendsto f L L') : has_fderiv_at_filter (g ∘ f) (g'.comp f') x L := let eq₁ := (g'.is_O_comp _ _).trans_is_o hf in let eq₂ := (hg.comp_tendsto hL).trans_is_O hf.is_O_sub in by { refine eq₂.triangle (eq₁.congr_left (λ x', _)), simp } /- A readable version of the previous theorem, a general form of the chain rule. -/ example {g : F → G} {g' : F →L[𝕜] G} (hg : has_fderiv_at_filter g g' (f x) (L.map f)) (hf : has_fderiv_at_filter f f' x L) : has_fderiv_at_filter (g ∘ f) (g'.comp f') x L := begin unfold has_fderiv_at_filter at hg, have := calc (λ x', g (f x') - g (f x) - g' (f x' - f x)) =o[L] (λ x', f x' - f x) : hg.comp_tendsto le_rfl ... =O[L] (λ x', x' - x) : hf.is_O_sub, refine this.triangle _, calc (λ x' : E, g' (f x' - f x) - g'.comp f' (x' - x)) =ᶠ[L] λ x', g' (f x' - f x - f' (x' - x)) : eventually_of_forall (λ x', by simp) ... =O[L] λ x', f x' - f x - f' (x' - x) : g'.is_O_comp _ _ ... =o[L] λ x', x' - x : hf end theorem has_fderiv_within_at.comp {g : F → G} {g' : F →L[𝕜] G} {t : set F} (hg : has_fderiv_within_at g g' t (f x)) (hf : has_fderiv_within_at f f' s x) (hst : maps_to f s t) : has_fderiv_within_at (g ∘ f) (g'.comp f') s x := hg.comp x hf $ hf.continuous_within_at.tendsto_nhds_within hst theorem has_fderiv_at.comp_has_fderiv_within_at {g : F → G} {g' : F →L[𝕜] G} (hg : has_fderiv_at g g' (f x)) (hf : has_fderiv_within_at f f' s x) : has_fderiv_within_at (g ∘ f) (g'.comp f') s x := hg.comp x hf hf.continuous_within_at /-- The chain rule. -/ theorem has_fderiv_at.comp {g : F → G} {g' : F →L[𝕜] G} (hg : has_fderiv_at g g' (f x)) (hf : has_fderiv_at f f' x) : has_fderiv_at (g ∘ f) (g'.comp f') x := hg.comp x hf hf.continuous_at lemma differentiable_within_at.comp {g : F → G} {t : set F} (hg : differentiable_within_at 𝕜 g t (f x)) (hf : differentiable_within_at 𝕜 f s x) (h : maps_to f s t) : differentiable_within_at 𝕜 (g ∘ f) s x := (hg.has_fderiv_within_at.comp x hf.has_fderiv_within_at h).differentiable_within_at lemma differentiable_within_at.comp' {g : F → G} {t : set F} (hg : differentiable_within_at 𝕜 g t (f x)) (hf : differentiable_within_at 𝕜 f s x) : differentiable_within_at 𝕜 (g ∘ f) (s ∩ f⁻¹' t) x := hg.comp x (hf.mono (inter_subset_left _ _)) (inter_subset_right _ _) lemma differentiable_at.comp {g : F → G} (hg : differentiable_at 𝕜 g (f x)) (hf : differentiable_at 𝕜 f x) : differentiable_at 𝕜 (g ∘ f) x := (hg.has_fderiv_at.comp x hf.has_fderiv_at).differentiable_at lemma differentiable_at.comp_differentiable_within_at {g : F → G} (hg : differentiable_at 𝕜 g (f x)) (hf : differentiable_within_at 𝕜 f s x) : differentiable_within_at 𝕜 (g ∘ f) s x := hg.differentiable_within_at.comp x hf (maps_to_univ _ _) lemma fderiv_within.comp {g : F → G} {t : set F} (hg : differentiable_within_at 𝕜 g t (f x)) (hf : differentiable_within_at 𝕜 f s x) (h : maps_to f s t) (hxs : unique_diff_within_at 𝕜 s x) : fderiv_within 𝕜 (g ∘ f) s x = (fderiv_within 𝕜 g t (f x)).comp (fderiv_within 𝕜 f s x) := (hg.has_fderiv_within_at.comp x (hf.has_fderiv_within_at) h).fderiv_within hxs /-- Ternary version of `fderiv_within.comp`, with equality assumptions of basepoints added, in order to apply more easily as a rewrite from right-to-left. -/ lemma fderiv_within.comp₃ {g' : G → G'} {g : F → G} {t : set F} {u : set G} {y : F} {y' : G} (hg' : differentiable_within_at 𝕜 g' u y') (hg : differentiable_within_at 𝕜 g t y) (hf : differentiable_within_at 𝕜 f s x) (h2g : maps_to g t u) (h2f : maps_to f s t) (h3g : g y = y') (h3f : f x = y) (hxs : unique_diff_within_at 𝕜 s x) : fderiv_within 𝕜 (g' ∘ g ∘ f) s x = (fderiv_within 𝕜 g' u y').comp ((fderiv_within 𝕜 g t y).comp (fderiv_within 𝕜 f s x)) := begin substs h3g h3f, exact (hg'.has_fderiv_within_at.comp x (hg.has_fderiv_within_at.comp x (hf.has_fderiv_within_at) h2f) $ h2g.comp h2f).fderiv_within hxs end lemma fderiv.comp {g : F → G} (hg : differentiable_at 𝕜 g (f x)) (hf : differentiable_at 𝕜 f x) : fderiv 𝕜 (g ∘ f) x = (fderiv 𝕜 g (f x)).comp (fderiv 𝕜 f x) := (hg.has_fderiv_at.comp x hf.has_fderiv_at).fderiv lemma fderiv.comp_fderiv_within {g : F → G} (hg : differentiable_at 𝕜 g (f x)) (hf : differentiable_within_at 𝕜 f s x) (hxs : unique_diff_within_at 𝕜 s x) : fderiv_within 𝕜 (g ∘ f) s x = (fderiv 𝕜 g (f x)).comp (fderiv_within 𝕜 f s x) := (hg.has_fderiv_at.comp_has_fderiv_within_at x hf.has_fderiv_within_at).fderiv_within hxs lemma differentiable_on.comp {g : F → G} {t : set F} (hg : differentiable_on 𝕜 g t) (hf : differentiable_on 𝕜 f s) (st : maps_to f s t) : differentiable_on 𝕜 (g ∘ f) s := λx hx, differentiable_within_at.comp x (hg (f x) (st hx)) (hf x hx) st lemma differentiable.comp {g : F → G} (hg : differentiable 𝕜 g) (hf : differentiable 𝕜 f) : differentiable 𝕜 (g ∘ f) := λx, differentiable_at.comp x (hg (f x)) (hf x) lemma differentiable.comp_differentiable_on {g : F → G} (hg : differentiable 𝕜 g) (hf : differentiable_on 𝕜 f s) : differentiable_on 𝕜 (g ∘ f) s := hg.differentiable_on.comp hf (maps_to_univ _ _) /-- The chain rule for derivatives in the sense of strict differentiability. -/ protected lemma has_strict_fderiv_at.comp {g : F → G} {g' : F →L[𝕜] G} (hg : has_strict_fderiv_at g g' (f x)) (hf : has_strict_fderiv_at f f' x) : has_strict_fderiv_at (λ x, g (f x)) (g'.comp f') x := ((hg.comp_tendsto (hf.continuous_at.prod_map' hf.continuous_at)).trans_is_O hf.is_O_sub).triangle $ by simpa only [g'.map_sub, f'.coe_comp'] using (g'.is_O_comp _ _).trans_is_o hf protected lemma differentiable.iterate {f : E → E} (hf : differentiable 𝕜 f) (n : ℕ) : differentiable 𝕜 (f^[n]) := nat.rec_on n differentiable_id (λ n ihn, ihn.comp hf) protected lemma differentiable_on.iterate {f : E → E} (hf : differentiable_on 𝕜 f s) (hs : maps_to f s s) (n : ℕ) : differentiable_on 𝕜 (f^[n]) s := nat.rec_on n differentiable_on_id (λ n ihn, ihn.comp hf hs) variable {x} protected lemma has_fderiv_at_filter.iterate {f : E → E} {f' : E →L[𝕜] E} (hf : has_fderiv_at_filter f f' x L) (hL : tendsto f L L) (hx : f x = x) (n : ℕ) : has_fderiv_at_filter (f^[n]) (f'^n) x L := begin induction n with n ihn, { exact has_fderiv_at_filter_id x L }, { rw [function.iterate_succ, pow_succ'], rw ← hx at ihn, exact ihn.comp x hf hL } end protected lemma has_fderiv_at.iterate {f : E → E} {f' : E →L[𝕜] E} (hf : has_fderiv_at f f' x) (hx : f x = x) (n : ℕ) : has_fderiv_at (f^[n]) (f'^n) x := begin refine hf.iterate _ hx n, convert hf.continuous_at, exact hx.symm end protected lemma has_fderiv_within_at.iterate {f : E → E} {f' : E →L[𝕜] E} (hf : has_fderiv_within_at f f' s x) (hx : f x = x) (hs : maps_to f s s) (n : ℕ) : has_fderiv_within_at (f^[n]) (f'^n) s x := begin refine hf.iterate _ hx n, convert tendsto_inf.2 ⟨hf.continuous_within_at, _⟩, exacts [hx.symm, (tendsto_principal_principal.2 hs).mono_left inf_le_right] end protected lemma has_strict_fderiv_at.iterate {f : E → E} {f' : E →L[𝕜] E} (hf : has_strict_fderiv_at f f' x) (hx : f x = x) (n : ℕ) : has_strict_fderiv_at (f^[n]) (f'^n) x := begin induction n with n ihn, { exact has_strict_fderiv_at_id x }, { rw [function.iterate_succ, pow_succ'], rw ← hx at ihn, exact ihn.comp x hf } end protected lemma differentiable_at.iterate {f : E → E} (hf : differentiable_at 𝕜 f x) (hx : f x = x) (n : ℕ) : differentiable_at 𝕜 (f^[n]) x := (hf.has_fderiv_at.iterate hx n).differentiable_at protected lemma differentiable_within_at.iterate {f : E → E} (hf : differentiable_within_at 𝕜 f s x) (hx : f x = x) (hs : maps_to f s s) (n : ℕ) : differentiable_within_at 𝕜 (f^[n]) s x := (hf.has_fderiv_within_at.iterate hx hs n).differentiable_within_at end composition section cartesian_product /-! ### Derivative of the cartesian product of two functions -/ section prod variables {f₂ : E → G} {f₂' : E →L[𝕜] G} protected lemma has_strict_fderiv_at.prod (hf₁ : has_strict_fderiv_at f₁ f₁' x) (hf₂ : has_strict_fderiv_at f₂ f₂' x) : has_strict_fderiv_at (λx, (f₁ x, f₂ x)) (f₁'.prod f₂') x := hf₁.prod_left hf₂ lemma has_fderiv_at_filter.prod (hf₁ : has_fderiv_at_filter f₁ f₁' x L) (hf₂ : has_fderiv_at_filter f₂ f₂' x L) : has_fderiv_at_filter (λx, (f₁ x, f₂ x)) (f₁'.prod f₂') x L := hf₁.prod_left hf₂ lemma has_fderiv_within_at.prod (hf₁ : has_fderiv_within_at f₁ f₁' s x) (hf₂ : has_fderiv_within_at f₂ f₂' s x) : has_fderiv_within_at (λx, (f₁ x, f₂ x)) (f₁'.prod f₂') s x := hf₁.prod hf₂ lemma has_fderiv_at.prod (hf₁ : has_fderiv_at f₁ f₁' x) (hf₂ : has_fderiv_at f₂ f₂' x) : has_fderiv_at (λx, (f₁ x, f₂ x)) (f₁'.prod f₂') x := hf₁.prod hf₂ lemma has_fderiv_at_prod_mk_left (e₀ : E) (f₀ : F) : has_fderiv_at (λ e : E, (e, f₀)) (inl 𝕜 E F) e₀ := (has_fderiv_at_id e₀).prod (has_fderiv_at_const f₀ e₀) lemma has_fderiv_at_prod_mk_right (e₀ : E) (f₀ : F) : has_fderiv_at (λ f : F, (e₀, f)) (inr 𝕜 E F) f₀ := (has_fderiv_at_const e₀ f₀).prod (has_fderiv_at_id f₀) lemma differentiable_within_at.prod (hf₁ : differentiable_within_at 𝕜 f₁ s x) (hf₂ : differentiable_within_at 𝕜 f₂ s x) : differentiable_within_at 𝕜 (λx:E, (f₁ x, f₂ x)) s x := (hf₁.has_fderiv_within_at.prod hf₂.has_fderiv_within_at).differentiable_within_at @[simp] lemma differentiable_at.prod (hf₁ : differentiable_at 𝕜 f₁ x) (hf₂ : differentiable_at 𝕜 f₂ x) : differentiable_at 𝕜 (λx:E, (f₁ x, f₂ x)) x := (hf₁.has_fderiv_at.prod hf₂.has_fderiv_at).differentiable_at lemma differentiable_on.prod (hf₁ : differentiable_on 𝕜 f₁ s) (hf₂ : differentiable_on 𝕜 f₂ s) : differentiable_on 𝕜 (λx:E, (f₁ x, f₂ x)) s := λx hx, differentiable_within_at.prod (hf₁ x hx) (hf₂ x hx) @[simp] lemma differentiable.prod (hf₁ : differentiable 𝕜 f₁) (hf₂ : differentiable 𝕜 f₂) : differentiable 𝕜 (λx:E, (f₁ x, f₂ x)) := λ x, differentiable_at.prod (hf₁ x) (hf₂ x) lemma differentiable_at.fderiv_prod (hf₁ : differentiable_at 𝕜 f₁ x) (hf₂ : differentiable_at 𝕜 f₂ x) : fderiv 𝕜 (λx:E, (f₁ x, f₂ x)) x = (fderiv 𝕜 f₁ x).prod (fderiv 𝕜 f₂ x) := (hf₁.has_fderiv_at.prod hf₂.has_fderiv_at).fderiv lemma differentiable_at.fderiv_within_prod (hf₁ : differentiable_within_at 𝕜 f₁ s x) (hf₂ : differentiable_within_at 𝕜 f₂ s x) (hxs : unique_diff_within_at 𝕜 s x) : fderiv_within 𝕜 (λx:E, (f₁ x, f₂ x)) s x = (fderiv_within 𝕜 f₁ s x).prod (fderiv_within 𝕜 f₂ s x) := (hf₁.has_fderiv_within_at.prod hf₂.has_fderiv_within_at).fderiv_within hxs end prod section fst variables {f₂ : E → F × G} {f₂' : E →L[𝕜] F × G} {p : E × F} lemma has_strict_fderiv_at_fst : has_strict_fderiv_at (@prod.fst E F) (fst 𝕜 E F) p := (fst 𝕜 E F).has_strict_fderiv_at protected lemma has_strict_fderiv_at.fst (h : has_strict_fderiv_at f₂ f₂' x) : has_strict_fderiv_at (λ x, (f₂ x).1) ((fst 𝕜 F G).comp f₂') x := has_strict_fderiv_at_fst.comp x h lemma has_fderiv_at_filter_fst {L : filter (E × F)} : has_fderiv_at_filter (@prod.fst E F) (fst 𝕜 E F) p L := (fst 𝕜 E F).has_fderiv_at_filter protected lemma has_fderiv_at_filter.fst (h : has_fderiv_at_filter f₂ f₂' x L) : has_fderiv_at_filter (λ x, (f₂ x).1) ((fst 𝕜 F G).comp f₂') x L := has_fderiv_at_filter_fst.comp x h tendsto_map lemma has_fderiv_at_fst : has_fderiv_at (@prod.fst E F) (fst 𝕜 E F) p := has_fderiv_at_filter_fst protected lemma has_fderiv_at.fst (h : has_fderiv_at f₂ f₂' x) : has_fderiv_at (λ x, (f₂ x).1) ((fst 𝕜 F G).comp f₂') x := h.fst lemma has_fderiv_within_at_fst {s : set (E × F)} : has_fderiv_within_at (@prod.fst E F) (fst 𝕜 E F) s p := has_fderiv_at_filter_fst protected lemma has_fderiv_within_at.fst (h : has_fderiv_within_at f₂ f₂' s x) : has_fderiv_within_at (λ x, (f₂ x).1) ((fst 𝕜 F G).comp f₂') s x := h.fst lemma differentiable_at_fst : differentiable_at 𝕜 prod.fst p := has_fderiv_at_fst.differentiable_at @[simp] protected lemma differentiable_at.fst (h : differentiable_at 𝕜 f₂ x) : differentiable_at 𝕜 (λ x, (f₂ x).1) x := differentiable_at_fst.comp x h lemma differentiable_fst : differentiable 𝕜 (prod.fst : E × F → E) := λ x, differentiable_at_fst @[simp] protected lemma differentiable.fst (h : differentiable 𝕜 f₂) : differentiable 𝕜 (λ x, (f₂ x).1) := differentiable_fst.comp h lemma differentiable_within_at_fst {s : set (E × F)} : differentiable_within_at 𝕜 prod.fst s p := differentiable_at_fst.differentiable_within_at protected lemma differentiable_within_at.fst (h : differentiable_within_at 𝕜 f₂ s x) : differentiable_within_at 𝕜 (λ x, (f₂ x).1) s x := differentiable_at_fst.comp_differentiable_within_at x h lemma differentiable_on_fst {s : set (E × F)} : differentiable_on 𝕜 prod.fst s := differentiable_fst.differentiable_on protected lemma differentiable_on.fst (h : differentiable_on 𝕜 f₂ s) : differentiable_on 𝕜 (λ x, (f₂ x).1) s := differentiable_fst.comp_differentiable_on h lemma fderiv_fst : fderiv 𝕜 prod.fst p = fst 𝕜 E F := has_fderiv_at_fst.fderiv lemma fderiv.fst (h : differentiable_at 𝕜 f₂ x) : fderiv 𝕜 (λ x, (f₂ x).1) x = (fst 𝕜 F G).comp (fderiv 𝕜 f₂ x) := h.has_fderiv_at.fst.fderiv lemma fderiv_within_fst {s : set (E × F)} (hs : unique_diff_within_at 𝕜 s p) : fderiv_within 𝕜 prod.fst s p = fst 𝕜 E F := has_fderiv_within_at_fst.fderiv_within hs lemma fderiv_within.fst (hs : unique_diff_within_at 𝕜 s x) (h : differentiable_within_at 𝕜 f₂ s x) : fderiv_within 𝕜 (λ x, (f₂ x).1) s x = (fst 𝕜 F G).comp (fderiv_within 𝕜 f₂ s x) := h.has_fderiv_within_at.fst.fderiv_within hs end fst section snd variables {f₂ : E → F × G} {f₂' : E →L[𝕜] F × G} {p : E × F} lemma has_strict_fderiv_at_snd : has_strict_fderiv_at (@prod.snd E F) (snd 𝕜 E F) p := (snd 𝕜 E F).has_strict_fderiv_at protected lemma has_strict_fderiv_at.snd (h : has_strict_fderiv_at f₂ f₂' x) : has_strict_fderiv_at (λ x, (f₂ x).2) ((snd 𝕜 F G).comp f₂') x := has_strict_fderiv_at_snd.comp x h lemma has_fderiv_at_filter_snd {L : filter (E × F)} : has_fderiv_at_filter (@prod.snd E F) (snd 𝕜 E F) p L := (snd 𝕜 E F).has_fderiv_at_filter protected lemma has_fderiv_at_filter.snd (h : has_fderiv_at_filter f₂ f₂' x L) : has_fderiv_at_filter (λ x, (f₂ x).2) ((snd 𝕜 F G).comp f₂') x L := has_fderiv_at_filter_snd.comp x h tendsto_map lemma has_fderiv_at_snd : has_fderiv_at (@prod.snd E F) (snd 𝕜 E F) p := has_fderiv_at_filter_snd protected lemma has_fderiv_at.snd (h : has_fderiv_at f₂ f₂' x) : has_fderiv_at (λ x, (f₂ x).2) ((snd 𝕜 F G).comp f₂') x := h.snd lemma has_fderiv_within_at_snd {s : set (E × F)} : has_fderiv_within_at (@prod.snd E F) (snd 𝕜 E F) s p := has_fderiv_at_filter_snd protected lemma has_fderiv_within_at.snd (h : has_fderiv_within_at f₂ f₂' s x) : has_fderiv_within_at (λ x, (f₂ x).2) ((snd 𝕜 F G).comp f₂') s x := h.snd lemma differentiable_at_snd : differentiable_at 𝕜 prod.snd p := has_fderiv_at_snd.differentiable_at @[simp] protected lemma differentiable_at.snd (h : differentiable_at 𝕜 f₂ x) : differentiable_at 𝕜 (λ x, (f₂ x).2) x := differentiable_at_snd.comp x h lemma differentiable_snd : differentiable 𝕜 (prod.snd : E × F → F) := λ x, differentiable_at_snd @[simp] protected lemma differentiable.snd (h : differentiable 𝕜 f₂) : differentiable 𝕜 (λ x, (f₂ x).2) := differentiable_snd.comp h lemma differentiable_within_at_snd {s : set (E × F)} : differentiable_within_at 𝕜 prod.snd s p := differentiable_at_snd.differentiable_within_at protected lemma differentiable_within_at.snd (h : differentiable_within_at 𝕜 f₂ s x) : differentiable_within_at 𝕜 (λ x, (f₂ x).2) s x := differentiable_at_snd.comp_differentiable_within_at x h lemma differentiable_on_snd {s : set (E × F)} : differentiable_on 𝕜 prod.snd s := differentiable_snd.differentiable_on protected lemma differentiable_on.snd (h : differentiable_on 𝕜 f₂ s) : differentiable_on 𝕜 (λ x, (f₂ x).2) s := differentiable_snd.comp_differentiable_on h lemma fderiv_snd : fderiv 𝕜 prod.snd p = snd 𝕜 E F := has_fderiv_at_snd.fderiv lemma fderiv.snd (h : differentiable_at 𝕜 f₂ x) : fderiv 𝕜 (λ x, (f₂ x).2) x = (snd 𝕜 F G).comp (fderiv 𝕜 f₂ x) := h.has_fderiv_at.snd.fderiv lemma fderiv_within_snd {s : set (E × F)} (hs : unique_diff_within_at 𝕜 s p) : fderiv_within 𝕜 prod.snd s p = snd 𝕜 E F := has_fderiv_within_at_snd.fderiv_within hs lemma fderiv_within.snd (hs : unique_diff_within_at 𝕜 s x) (h : differentiable_within_at 𝕜 f₂ s x) : fderiv_within 𝕜 (λ x, (f₂ x).2) s x = (snd 𝕜 F G).comp (fderiv_within 𝕜 f₂ s x) := h.has_fderiv_within_at.snd.fderiv_within hs end snd section prod_map variables {f₂ : G → G'} {f₂' : G →L[𝕜] G'} {y : G} (p : E × G) protected theorem has_strict_fderiv_at.prod_map (hf : has_strict_fderiv_at f f' p.1) (hf₂ : has_strict_fderiv_at f₂ f₂' p.2) : has_strict_fderiv_at (prod.map f f₂) (f'.prod_map f₂') p := (hf.comp p has_strict_fderiv_at_fst).prod (hf₂.comp p has_strict_fderiv_at_snd) protected theorem has_fderiv_at.prod_map (hf : has_fderiv_at f f' p.1) (hf₂ : has_fderiv_at f₂ f₂' p.2) : has_fderiv_at (prod.map f f₂) (f'.prod_map f₂') p := (hf.comp p has_fderiv_at_fst).prod (hf₂.comp p has_fderiv_at_snd) @[simp] protected theorem differentiable_at.prod_map (hf : differentiable_at 𝕜 f p.1) (hf₂ : differentiable_at 𝕜 f₂ p.2) : differentiable_at 𝕜 (λ p : E × G, (f p.1, f₂ p.2)) p := (hf.comp p differentiable_at_fst).prod (hf₂.comp p differentiable_at_snd) end prod_map end cartesian_product section const_smul variables {R : Type*} [semiring R] [module R F] [smul_comm_class 𝕜 R F] [has_continuous_const_smul R F] /-! ### Derivative of a function multiplied by a constant -/ theorem has_strict_fderiv_at.const_smul (h : has_strict_fderiv_at f f' x) (c : R) : has_strict_fderiv_at (λ x, c • f x) (c • f') x := (c • (1 : F →L[𝕜] F)).has_strict_fderiv_at.comp x h theorem has_fderiv_at_filter.const_smul (h : has_fderiv_at_filter f f' x L) (c : R) : has_fderiv_at_filter (λ x, c • f x) (c • f') x L := (c • (1 : F →L[𝕜] F)).has_fderiv_at_filter.comp x h tendsto_map theorem has_fderiv_within_at.const_smul (h : has_fderiv_within_at f f' s x) (c : R) : has_fderiv_within_at (λ x, c • f x) (c • f') s x := h.const_smul c theorem has_fderiv_at.const_smul (h : has_fderiv_at f f' x) (c : R) : has_fderiv_at (λ x, c • f x) (c • f') x := h.const_smul c lemma differentiable_within_at.const_smul (h : differentiable_within_at 𝕜 f s x) (c : R) : differentiable_within_at 𝕜 (λy, c • f y) s x := (h.has_fderiv_within_at.const_smul c).differentiable_within_at lemma differentiable_at.const_smul (h : differentiable_at 𝕜 f x) (c : R) : differentiable_at 𝕜 (λy, c • f y) x := (h.has_fderiv_at.const_smul c).differentiable_at lemma differentiable_on.const_smul (h : differentiable_on 𝕜 f s) (c : R) : differentiable_on 𝕜 (λy, c • f y) s := λx hx, (h x hx).const_smul c lemma differentiable.const_smul (h : differentiable 𝕜 f) (c : R) : differentiable 𝕜 (λy, c • f y) := λx, (h x).const_smul c lemma fderiv_within_const_smul (hxs : unique_diff_within_at 𝕜 s x) (h : differentiable_within_at 𝕜 f s x) (c : R) : fderiv_within 𝕜 (λy, c • f y) s x = c • fderiv_within 𝕜 f s x := (h.has_fderiv_within_at.const_smul c).fderiv_within hxs lemma fderiv_const_smul (h : differentiable_at 𝕜 f x) (c : R) : fderiv 𝕜 (λy, c • f y) x = c • fderiv 𝕜 f x := (h.has_fderiv_at.const_smul c).fderiv end const_smul section add /-! ### Derivative of the sum of two functions -/ theorem has_strict_fderiv_at.add (hf : has_strict_fderiv_at f f' x) (hg : has_strict_fderiv_at g g' x) : has_strict_fderiv_at (λ y, f y + g y) (f' + g') x := (hf.add hg).congr_left $ λ y, by simp; abel theorem has_fderiv_at_filter.add (hf : has_fderiv_at_filter f f' x L) (hg : has_fderiv_at_filter g g' x L) : has_fderiv_at_filter (λ y, f y + g y) (f' + g') x L := (hf.add hg).congr_left $ λ _, by simp; abel theorem has_fderiv_within_at.add (hf : has_fderiv_within_at f f' s x) (hg : has_fderiv_within_at g g' s x) : has_fderiv_within_at (λ y, f y + g y) (f' + g') s x := hf.add hg theorem has_fderiv_at.add (hf : has_fderiv_at f f' x) (hg : has_fderiv_at g g' x) : has_fderiv_at (λ x, f x + g x) (f' + g') x := hf.add hg lemma differentiable_within_at.add (hf : differentiable_within_at 𝕜 f s x) (hg : differentiable_within_at 𝕜 g s x) : differentiable_within_at 𝕜 (λ y, f y + g y) s x := (hf.has_fderiv_within_at.add hg.has_fderiv_within_at).differentiable_within_at @[simp] lemma differentiable_at.add (hf : differentiable_at 𝕜 f x) (hg : differentiable_at 𝕜 g x) : differentiable_at 𝕜 (λ y, f y + g y) x := (hf.has_fderiv_at.add hg.has_fderiv_at).differentiable_at lemma differentiable_on.add (hf : differentiable_on 𝕜 f s) (hg : differentiable_on 𝕜 g s) : differentiable_on 𝕜 (λy, f y + g y) s := λx hx, (hf x hx).add (hg x hx) @[simp] lemma differentiable.add (hf : differentiable 𝕜 f) (hg : differentiable 𝕜 g) : differentiable 𝕜 (λy, f y + g y) := λx, (hf x).add (hg x) lemma fderiv_within_add (hxs : unique_diff_within_at 𝕜 s x) (hf : differentiable_within_at 𝕜 f s x) (hg : differentiable_within_at 𝕜 g s x) : fderiv_within 𝕜 (λy, f y + g y) s x = fderiv_within 𝕜 f s x + fderiv_within 𝕜 g s x := (hf.has_fderiv_within_at.add hg.has_fderiv_within_at).fderiv_within hxs lemma fderiv_add (hf : differentiable_at 𝕜 f x) (hg : differentiable_at 𝕜 g x) : fderiv 𝕜 (λy, f y + g y) x = fderiv 𝕜 f x + fderiv 𝕜 g x := (hf.has_fderiv_at.add hg.has_fderiv_at).fderiv theorem has_strict_fderiv_at.add_const (hf : has_strict_fderiv_at f f' x) (c : F) : has_strict_fderiv_at (λ y, f y + c) f' x := add_zero f' ▸ hf.add (has_strict_fderiv_at_const _ _) theorem has_fderiv_at_filter.add_const (hf : has_fderiv_at_filter f f' x L) (c : F) : has_fderiv_at_filter (λ y, f y + c) f' x L := add_zero f' ▸ hf.add (has_fderiv_at_filter_const _ _ _) theorem has_fderiv_within_at.add_const (hf : has_fderiv_within_at f f' s x) (c : F) : has_fderiv_within_at (λ y, f y + c) f' s x := hf.add_const c theorem has_fderiv_at.add_const (hf : has_fderiv_at f f' x) (c : F): has_fderiv_at (λ x, f x + c) f' x := hf.add_const c lemma differentiable_within_at.add_const (hf : differentiable_within_at 𝕜 f s x) (c : F) : differentiable_within_at 𝕜 (λ y, f y + c) s x := (hf.has_fderiv_within_at.add_const c).differentiable_within_at @[simp] lemma differentiable_within_at_add_const_iff (c : F) : differentiable_within_at 𝕜 (λ y, f y + c) s x ↔ differentiable_within_at 𝕜 f s x := ⟨λ h, by simpa using h.add_const (-c), λ h, h.add_const c⟩ lemma differentiable_at.add_const (hf : differentiable_at 𝕜 f x) (c : F) : differentiable_at 𝕜 (λ y, f y + c) x := (hf.has_fderiv_at.add_const c).differentiable_at @[simp] lemma differentiable_at_add_const_iff (c : F) : differentiable_at 𝕜 (λ y, f y + c) x ↔ differentiable_at 𝕜 f x := ⟨λ h, by simpa using h.add_const (-c), λ h, h.add_const c⟩ lemma differentiable_on.add_const (hf : differentiable_on 𝕜 f s) (c : F) : differentiable_on 𝕜 (λy, f y + c) s := λx hx, (hf x hx).add_const c @[simp] lemma differentiable_on_add_const_iff (c : F) : differentiable_on 𝕜 (λ y, f y + c) s ↔ differentiable_on 𝕜 f s := ⟨λ h, by simpa using h.add_const (-c), λ h, h.add_const c⟩ lemma differentiable.add_const (hf : differentiable 𝕜 f) (c : F) : differentiable 𝕜 (λy, f y + c) := λx, (hf x).add_const c @[simp] lemma differentiable_add_const_iff (c : F) : differentiable 𝕜 (λ y, f y + c) ↔ differentiable 𝕜 f := ⟨λ h, by simpa using h.add_const (-c), λ h, h.add_const c⟩ lemma fderiv_within_add_const (hxs : unique_diff_within_at 𝕜 s x) (c : F) : fderiv_within 𝕜 (λy, f y + c) s x = fderiv_within 𝕜 f s x := if hf : differentiable_within_at 𝕜 f s x then (hf.has_fderiv_within_at.add_const c).fderiv_within hxs else by { rw [fderiv_within_zero_of_not_differentiable_within_at hf, fderiv_within_zero_of_not_differentiable_within_at], simpa } lemma fderiv_add_const (c : F) : fderiv 𝕜 (λy, f y + c) x = fderiv 𝕜 f x := by simp only [← fderiv_within_univ, fderiv_within_add_const unique_diff_within_at_univ] theorem has_strict_fderiv_at.const_add (hf : has_strict_fderiv_at f f' x) (c : F) : has_strict_fderiv_at (λ y, c + f y) f' x := zero_add f' ▸ (has_strict_fderiv_at_const _ _).add hf theorem has_fderiv_at_filter.const_add (hf : has_fderiv_at_filter f f' x L) (c : F) : has_fderiv_at_filter (λ y, c + f y) f' x L := zero_add f' ▸ (has_fderiv_at_filter_const _ _ _).add hf theorem has_fderiv_within_at.const_add (hf : has_fderiv_within_at f f' s x) (c : F) : has_fderiv_within_at (λ y, c + f y) f' s x := hf.const_add c theorem has_fderiv_at.const_add (hf : has_fderiv_at f f' x) (c : F): has_fderiv_at (λ x, c + f x) f' x := hf.const_add c lemma differentiable_within_at.const_add (hf : differentiable_within_at 𝕜 f s x) (c : F) : differentiable_within_at 𝕜 (λ y, c + f y) s x := (hf.has_fderiv_within_at.const_add c).differentiable_within_at @[simp] lemma differentiable_within_at_const_add_iff (c : F) : differentiable_within_at 𝕜 (λ y, c + f y) s x ↔ differentiable_within_at 𝕜 f s x := ⟨λ h, by simpa using h.const_add (-c), λ h, h.const_add c⟩ lemma differentiable_at.const_add (hf : differentiable_at 𝕜 f x) (c : F) : differentiable_at 𝕜 (λ y, c + f y) x := (hf.has_fderiv_at.const_add c).differentiable_at @[simp] lemma differentiable_at_const_add_iff (c : F) : differentiable_at 𝕜 (λ y, c + f y) x ↔ differentiable_at 𝕜 f x := ⟨λ h, by simpa using h.const_add (-c), λ h, h.const_add c⟩ lemma differentiable_on.const_add (hf : differentiable_on 𝕜 f s) (c : F) : differentiable_on 𝕜 (λy, c + f y) s := λx hx, (hf x hx).const_add c @[simp] lemma differentiable_on_const_add_iff (c : F) : differentiable_on 𝕜 (λ y, c + f y) s ↔ differentiable_on 𝕜 f s := ⟨λ h, by simpa using h.const_add (-c), λ h, h.const_add c⟩ lemma differentiable.const_add (hf : differentiable 𝕜 f) (c : F) : differentiable 𝕜 (λy, c + f y) := λx, (hf x).const_add c @[simp] lemma differentiable_const_add_iff (c : F) : differentiable 𝕜 (λ y, c + f y) ↔ differentiable 𝕜 f := ⟨λ h, by simpa using h.const_add (-c), λ h, h.const_add c⟩ lemma fderiv_within_const_add (hxs : unique_diff_within_at 𝕜 s x) (c : F) : fderiv_within 𝕜 (λy, c + f y) s x = fderiv_within 𝕜 f s x := by simpa only [add_comm] using fderiv_within_add_const hxs c lemma fderiv_const_add (c : F) : fderiv 𝕜 (λy, c + f y) x = fderiv 𝕜 f x := by simp only [add_comm c, fderiv_add_const] end add section sum /-! ### Derivative of a finite sum of functions -/ open_locale big_operators variables {ι : Type*} {u : finset ι} {A : ι → (E → F)} {A' : ι → (E →L[𝕜] F)} theorem has_strict_fderiv_at.sum (h : ∀ i ∈ u, has_strict_fderiv_at (A i) (A' i) x) : has_strict_fderiv_at (λ y, ∑ i in u, A i y) (∑ i in u, A' i) x := begin dsimp [has_strict_fderiv_at] at *, convert is_o.sum h, simp [finset.sum_sub_distrib, continuous_linear_map.sum_apply] end theorem has_fderiv_at_filter.sum (h : ∀ i ∈ u, has_fderiv_at_filter (A i) (A' i) x L) : has_fderiv_at_filter (λ y, ∑ i in u, A i y) (∑ i in u, A' i) x L := begin dsimp [has_fderiv_at_filter] at *, convert is_o.sum h, simp [continuous_linear_map.sum_apply] end theorem has_fderiv_within_at.sum (h : ∀ i ∈ u, has_fderiv_within_at (A i) (A' i) s x) : has_fderiv_within_at (λ y, ∑ i in u, A i y) (∑ i in u, A' i) s x := has_fderiv_at_filter.sum h theorem has_fderiv_at.sum (h : ∀ i ∈ u, has_fderiv_at (A i) (A' i) x) : has_fderiv_at (λ y, ∑ i in u, A i y) (∑ i in u, A' i) x := has_fderiv_at_filter.sum h theorem differentiable_within_at.sum (h : ∀ i ∈ u, differentiable_within_at 𝕜 (A i) s x) : differentiable_within_at 𝕜 (λ y, ∑ i in u, A i y) s x := has_fderiv_within_at.differentiable_within_at $ has_fderiv_within_at.sum $ λ i hi, (h i hi).has_fderiv_within_at @[simp] theorem differentiable_at.sum (h : ∀ i ∈ u, differentiable_at 𝕜 (A i) x) : differentiable_at 𝕜 (λ y, ∑ i in u, A i y) x := has_fderiv_at.differentiable_at $ has_fderiv_at.sum $ λ i hi, (h i hi).has_fderiv_at theorem differentiable_on.sum (h : ∀ i ∈ u, differentiable_on 𝕜 (A i) s) : differentiable_on 𝕜 (λ y, ∑ i in u, A i y) s := λ x hx, differentiable_within_at.sum $ λ i hi, h i hi x hx @[simp] theorem differentiable.sum (h : ∀ i ∈ u, differentiable 𝕜 (A i)) : differentiable 𝕜 (λ y, ∑ i in u, A i y) := λ x, differentiable_at.sum $ λ i hi, h i hi x theorem fderiv_within_sum (hxs : unique_diff_within_at 𝕜 s x) (h : ∀ i ∈ u, differentiable_within_at 𝕜 (A i) s x) : fderiv_within 𝕜 (λ y, ∑ i in u, A i y) s x = (∑ i in u, fderiv_within 𝕜 (A i) s x) := (has_fderiv_within_at.sum (λ i hi, (h i hi).has_fderiv_within_at)).fderiv_within hxs theorem fderiv_sum (h : ∀ i ∈ u, differentiable_at 𝕜 (A i) x) : fderiv 𝕜 (λ y, ∑ i in u, A i y) x = (∑ i in u, fderiv 𝕜 (A i) x) := (has_fderiv_at.sum (λ i hi, (h i hi).has_fderiv_at)).fderiv end sum section pi /-! ### Derivatives of functions `f : E → Π i, F' i` In this section we formulate `has_*fderiv*_pi` theorems as `iff`s, and provide two versions of each theorem: * the version without `'` deals with `φ : Π i, E → F' i` and `φ' : Π i, E →L[𝕜] F' i` and is designed to deduce differentiability of `λ x i, φ i x` from differentiability of each `φ i`; * the version with `'` deals with `Φ : E → Π i, F' i` and `Φ' : E →L[𝕜] Π i, F' i` and is designed to deduce differentiability of the components `λ x, Φ x i` from differentiability of `Φ`. -/ variables {ι : Type*} [fintype ι] {F' : ι → Type*} [Π i, normed_add_comm_group (F' i)] [Π i, normed_space 𝕜 (F' i)] {φ : Π i, E → F' i} {φ' : Π i, E →L[𝕜] F' i} {Φ : E → Π i, F' i} {Φ' : E →L[𝕜] Π i, F' i} @[simp] lemma has_strict_fderiv_at_pi' : has_strict_fderiv_at Φ Φ' x ↔ ∀ i, has_strict_fderiv_at (λ x, Φ x i) ((proj i).comp Φ') x := begin simp only [has_strict_fderiv_at, continuous_linear_map.coe_pi], exact is_o_pi end @[simp] lemma has_strict_fderiv_at_pi : has_strict_fderiv_at (λ x i, φ i x) (continuous_linear_map.pi φ') x ↔ ∀ i, has_strict_fderiv_at (φ i) (φ' i) x := has_strict_fderiv_at_pi' @[simp] lemma has_fderiv_at_filter_pi' : has_fderiv_at_filter Φ Φ' x L ↔ ∀ i, has_fderiv_at_filter (λ x, Φ x i) ((proj i).comp Φ') x L := begin simp only [has_fderiv_at_filter, continuous_linear_map.coe_pi], exact is_o_pi end lemma has_fderiv_at_filter_pi : has_fderiv_at_filter (λ x i, φ i x) (continuous_linear_map.pi φ') x L ↔ ∀ i, has_fderiv_at_filter (φ i) (φ' i) x L := has_fderiv_at_filter_pi' @[simp] lemma has_fderiv_at_pi' : has_fderiv_at Φ Φ' x ↔ ∀ i, has_fderiv_at (λ x, Φ x i) ((proj i).comp Φ') x := has_fderiv_at_filter_pi' lemma has_fderiv_at_pi : has_fderiv_at (λ x i, φ i x) (continuous_linear_map.pi φ') x ↔ ∀ i, has_fderiv_at (φ i) (φ' i) x := has_fderiv_at_filter_pi @[simp] lemma has_fderiv_within_at_pi' : has_fderiv_within_at Φ Φ' s x ↔ ∀ i, has_fderiv_within_at (λ x, Φ x i) ((proj i).comp Φ') s x := has_fderiv_at_filter_pi' lemma has_fderiv_within_at_pi : has_fderiv_within_at (λ x i, φ i x) (continuous_linear_map.pi φ') s x ↔ ∀ i, has_fderiv_within_at (φ i) (φ' i) s x := has_fderiv_at_filter_pi @[simp] lemma differentiable_within_at_pi : differentiable_within_at 𝕜 Φ s x ↔ ∀ i, differentiable_within_at 𝕜 (λ x, Φ x i) s x := ⟨λ h i, (has_fderiv_within_at_pi'.1 h.has_fderiv_within_at i).differentiable_within_at, λ h, (has_fderiv_within_at_pi.2 (λ i, (h i).has_fderiv_within_at)).differentiable_within_at⟩ @[simp] lemma differentiable_at_pi : differentiable_at 𝕜 Φ x ↔ ∀ i, differentiable_at 𝕜 (λ x, Φ x i) x := ⟨λ h i, (has_fderiv_at_pi'.1 h.has_fderiv_at i).differentiable_at, λ h, (has_fderiv_at_pi.2 (λ i, (h i).has_fderiv_at)).differentiable_at⟩ lemma differentiable_on_pi : differentiable_on 𝕜 Φ s ↔ ∀ i, differentiable_on 𝕜 (λ x, Φ x i) s := ⟨λ h i x hx, differentiable_within_at_pi.1 (h x hx) i, λ h x hx, differentiable_within_at_pi.2 (λ i, h i x hx)⟩ lemma differentiable_pi : differentiable 𝕜 Φ ↔ ∀ i, differentiable 𝕜 (λ x, Φ x i) := ⟨λ h i x, differentiable_at_pi.1 (h x) i, λ h x, differentiable_at_pi.2 (λ i, h i x)⟩ -- TODO: find out which version (`φ` or `Φ`) works better with `rw`/`simp` lemma fderiv_within_pi (h : ∀ i, differentiable_within_at 𝕜 (φ i) s x) (hs : unique_diff_within_at 𝕜 s x) : fderiv_within 𝕜 (λ x i, φ i x) s x = pi (λ i, fderiv_within 𝕜 (φ i) s x) := (has_fderiv_within_at_pi.2 (λ i, (h i).has_fderiv_within_at)).fderiv_within hs lemma fderiv_pi (h : ∀ i, differentiable_at 𝕜 (φ i) x) : fderiv 𝕜 (λ x i, φ i x) x = pi (λ i, fderiv 𝕜 (φ i) x) := (has_fderiv_at_pi.2 (λ i, (h i).has_fderiv_at)).fderiv end pi section neg /-! ### Derivative of the negative of a function -/ theorem has_strict_fderiv_at.neg (h : has_strict_fderiv_at f f' x) : has_strict_fderiv_at (λ x, -f x) (-f') x := (-1 : F →L[𝕜] F).has_strict_fderiv_at.comp x h theorem has_fderiv_at_filter.neg (h : has_fderiv_at_filter f f' x L) : has_fderiv_at_filter (λ x, -f x) (-f') x L := (-1 : F →L[𝕜] F).has_fderiv_at_filter.comp x h tendsto_map theorem has_fderiv_within_at.neg (h : has_fderiv_within_at f f' s x) : has_fderiv_within_at (λ x, -f x) (-f') s x := h.neg theorem has_fderiv_at.neg (h : has_fderiv_at f f' x) : has_fderiv_at (λ x, -f x) (-f') x := h.neg lemma differentiable_within_at.neg (h : differentiable_within_at 𝕜 f s x) : differentiable_within_at 𝕜 (λy, -f y) s x := h.has_fderiv_within_at.neg.differentiable_within_at @[simp] lemma differentiable_within_at_neg_iff : differentiable_within_at 𝕜 (λy, -f y) s x ↔ differentiable_within_at 𝕜 f s x := ⟨λ h, by simpa only [neg_neg] using h.neg, λ h, h.neg⟩ lemma differentiable_at.neg (h : differentiable_at 𝕜 f x) : differentiable_at 𝕜 (λy, -f y) x := h.has_fderiv_at.neg.differentiable_at @[simp] lemma differentiable_at_neg_iff : differentiable_at 𝕜 (λy, -f y) x ↔ differentiable_at 𝕜 f x := ⟨λ h, by simpa only [neg_neg] using h.neg, λ h, h.neg⟩ lemma differentiable_on.neg (h : differentiable_on 𝕜 f s) : differentiable_on 𝕜 (λy, -f y) s := λx hx, (h x hx).neg @[simp] lemma differentiable_on_neg_iff : differentiable_on 𝕜 (λy, -f y) s ↔ differentiable_on 𝕜 f s := ⟨λ h, by simpa only [neg_neg] using h.neg, λ h, h.neg⟩ lemma differentiable.neg (h : differentiable 𝕜 f) : differentiable 𝕜 (λy, -f y) := λx, (h x).neg @[simp] lemma differentiable_neg_iff : differentiable 𝕜 (λy, -f y) ↔ differentiable 𝕜 f := ⟨λ h, by simpa only [neg_neg] using h.neg, λ h, h.neg⟩ lemma fderiv_within_neg (hxs : unique_diff_within_at 𝕜 s x) : fderiv_within 𝕜 (λy, -f y) s x = - fderiv_within 𝕜 f s x := if h : differentiable_within_at 𝕜 f s x then h.has_fderiv_within_at.neg.fderiv_within hxs else by { rw [fderiv_within_zero_of_not_differentiable_within_at h, fderiv_within_zero_of_not_differentiable_within_at, neg_zero], simpa } @[simp] lemma fderiv_neg : fderiv 𝕜 (λy, -f y) x = - fderiv 𝕜 f x := by simp only [← fderiv_within_univ, fderiv_within_neg unique_diff_within_at_univ] end neg section sub /-! ### Derivative of the difference of two functions -/ theorem has_strict_fderiv_at.sub (hf : has_strict_fderiv_at f f' x) (hg : has_strict_fderiv_at g g' x) : has_strict_fderiv_at (λ x, f x - g x) (f' - g') x := by simpa only [sub_eq_add_neg] using hf.add hg.neg theorem has_fderiv_at_filter.sub (hf : has_fderiv_at_filter f f' x L) (hg : has_fderiv_at_filter g g' x L) : has_fderiv_at_filter (λ x, f x - g x) (f' - g') x L := by simpa only [sub_eq_add_neg] using hf.add hg.neg theorem has_fderiv_within_at.sub (hf : has_fderiv_within_at f f' s x) (hg : has_fderiv_within_at g g' s x) : has_fderiv_within_at (λ x, f x - g x) (f' - g') s x := hf.sub hg theorem has_fderiv_at.sub (hf : has_fderiv_at f f' x) (hg : has_fderiv_at g g' x) : has_fderiv_at (λ x, f x - g x) (f' - g') x := hf.sub hg lemma differentiable_within_at.sub (hf : differentiable_within_at 𝕜 f s x) (hg : differentiable_within_at 𝕜 g s x) : differentiable_within_at 𝕜 (λ y, f y - g y) s x := (hf.has_fderiv_within_at.sub hg.has_fderiv_within_at).differentiable_within_at @[simp] lemma differentiable_at.sub (hf : differentiable_at 𝕜 f x) (hg : differentiable_at 𝕜 g x) : differentiable_at 𝕜 (λ y, f y - g y) x := (hf.has_fderiv_at.sub hg.has_fderiv_at).differentiable_at lemma differentiable_on.sub (hf : differentiable_on 𝕜 f s) (hg : differentiable_on 𝕜 g s) : differentiable_on 𝕜 (λy, f y - g y) s := λx hx, (hf x hx).sub (hg x hx) @[simp] lemma differentiable.sub (hf : differentiable 𝕜 f) (hg : differentiable 𝕜 g) : differentiable 𝕜 (λy, f y - g y) := λx, (hf x).sub (hg x) lemma fderiv_within_sub (hxs : unique_diff_within_at 𝕜 s x) (hf : differentiable_within_at 𝕜 f s x) (hg : differentiable_within_at 𝕜 g s x) : fderiv_within 𝕜 (λy, f y - g y) s x = fderiv_within 𝕜 f s x - fderiv_within 𝕜 g s x := (hf.has_fderiv_within_at.sub hg.has_fderiv_within_at).fderiv_within hxs lemma fderiv_sub (hf : differentiable_at 𝕜 f x) (hg : differentiable_at 𝕜 g x) : fderiv 𝕜 (λy, f y - g y) x = fderiv 𝕜 f x - fderiv 𝕜 g x := (hf.has_fderiv_at.sub hg.has_fderiv_at).fderiv theorem has_strict_fderiv_at.sub_const (hf : has_strict_fderiv_at f f' x) (c : F) : has_strict_fderiv_at (λ x, f x - c) f' x := by simpa only [sub_eq_add_neg] using hf.add_const (-c) theorem has_fderiv_at_filter.sub_const (hf : has_fderiv_at_filter f f' x L) (c : F) : has_fderiv_at_filter (λ x, f x - c) f' x L := by simpa only [sub_eq_add_neg] using hf.add_const (-c) theorem has_fderiv_within_at.sub_const (hf : has_fderiv_within_at f f' s x) (c : F) : has_fderiv_within_at (λ x, f x - c) f' s x := hf.sub_const c theorem has_fderiv_at.sub_const (hf : has_fderiv_at f f' x) (c : F) : has_fderiv_at (λ x, f x - c) f' x := hf.sub_const c lemma differentiable_within_at.sub_const (hf : differentiable_within_at 𝕜 f s x) (c : F) : differentiable_within_at 𝕜 (λ y, f y - c) s x := (hf.has_fderiv_within_at.sub_const c).differentiable_within_at @[simp] lemma differentiable_within_at_sub_const_iff (c : F) : differentiable_within_at 𝕜 (λ y, f y - c) s x ↔ differentiable_within_at 𝕜 f s x := by simp only [sub_eq_add_neg, differentiable_within_at_add_const_iff] lemma differentiable_at.sub_const (hf : differentiable_at 𝕜 f x) (c : F) : differentiable_at 𝕜 (λ y, f y - c) x := (hf.has_fderiv_at.sub_const c).differentiable_at @[simp] lemma differentiable_at_sub_const_iff (c : F) : differentiable_at 𝕜 (λ y, f y - c) x ↔ differentiable_at 𝕜 f x := by simp only [sub_eq_add_neg, differentiable_at_add_const_iff] lemma differentiable_on.sub_const (hf : differentiable_on 𝕜 f s) (c : F) : differentiable_on 𝕜 (λy, f y - c) s := λx hx, (hf x hx).sub_const c @[simp] lemma differentiable_on_sub_const_iff (c : F) : differentiable_on 𝕜 (λ y, f y - c) s ↔ differentiable_on 𝕜 f s := by simp only [sub_eq_add_neg, differentiable_on_add_const_iff] lemma differentiable.sub_const (hf : differentiable 𝕜 f) (c : F) : differentiable 𝕜 (λy, f y - c) := λx, (hf x).sub_const c @[simp] lemma differentiable_sub_const_iff (c : F) : differentiable 𝕜 (λ y, f y - c) ↔ differentiable 𝕜 f := by simp only [sub_eq_add_neg, differentiable_add_const_iff] lemma fderiv_within_sub_const (hxs : unique_diff_within_at 𝕜 s x) (c : F) : fderiv_within 𝕜 (λy, f y - c) s x = fderiv_within 𝕜 f s x := by simp only [sub_eq_add_neg, fderiv_within_add_const hxs] lemma fderiv_sub_const (c : F) : fderiv 𝕜 (λy, f y - c) x = fderiv 𝕜 f x := by simp only [sub_eq_add_neg, fderiv_add_const] theorem has_strict_fderiv_at.const_sub (hf : has_strict_fderiv_at f f' x) (c : F) : has_strict_fderiv_at (λ x, c - f x) (-f') x := by simpa only [sub_eq_add_neg] using hf.neg.const_add c theorem has_fderiv_at_filter.const_sub (hf : has_fderiv_at_filter f f' x L) (c : F) : has_fderiv_at_filter (λ x, c - f x) (-f') x L := by simpa only [sub_eq_add_neg] using hf.neg.const_add c theorem has_fderiv_within_at.const_sub (hf : has_fderiv_within_at f f' s x) (c : F) : has_fderiv_within_at (λ x, c - f x) (-f') s x := hf.const_sub c theorem has_fderiv_at.const_sub (hf : has_fderiv_at f f' x) (c : F) : has_fderiv_at (λ x, c - f x) (-f') x := hf.const_sub c lemma differentiable_within_at.const_sub (hf : differentiable_within_at 𝕜 f s x) (c : F) : differentiable_within_at 𝕜 (λ y, c - f y) s x := (hf.has_fderiv_within_at.const_sub c).differentiable_within_at @[simp] lemma differentiable_within_at_const_sub_iff (c : F) : differentiable_within_at 𝕜 (λ y, c - f y) s x ↔ differentiable_within_at 𝕜 f s x := by simp [sub_eq_add_neg] lemma differentiable_at.const_sub (hf : differentiable_at 𝕜 f x) (c : F) : differentiable_at 𝕜 (λ y, c - f y) x := (hf.has_fderiv_at.const_sub c).differentiable_at @[simp] lemma differentiable_at_const_sub_iff (c : F) : differentiable_at 𝕜 (λ y, c - f y) x ↔ differentiable_at 𝕜 f x := by simp [sub_eq_add_neg] lemma differentiable_on.const_sub (hf : differentiable_on 𝕜 f s) (c : F) : differentiable_on 𝕜 (λy, c - f y) s := λx hx, (hf x hx).const_sub c @[simp] lemma differentiable_on_const_sub_iff (c : F) : differentiable_on 𝕜 (λ y, c - f y) s ↔ differentiable_on 𝕜 f s := by simp [sub_eq_add_neg] lemma differentiable.const_sub (hf : differentiable 𝕜 f) (c : F) : differentiable 𝕜 (λy, c - f y) := λx, (hf x).const_sub c @[simp] lemma differentiable_const_sub_iff (c : F) : differentiable 𝕜 (λ y, c - f y) ↔ differentiable 𝕜 f := by simp [sub_eq_add_neg] lemma fderiv_within_const_sub (hxs : unique_diff_within_at 𝕜 s x) (c : F) : fderiv_within 𝕜 (λy, c - f y) s x = -fderiv_within 𝕜 f s x := by simp only [sub_eq_add_neg, fderiv_within_const_add, fderiv_within_neg, hxs] lemma fderiv_const_sub (c : F) : fderiv 𝕜 (λy, c - f y) x = -fderiv 𝕜 f x := by simp only [← fderiv_within_univ, fderiv_within_const_sub unique_diff_within_at_univ] end sub section bilinear_map /-! ### Derivative of a bounded bilinear map -/ variables {b : E × F → G} {u : set (E × F) } open normed_field lemma is_bounded_bilinear_map.has_strict_fderiv_at (h : is_bounded_bilinear_map 𝕜 b) (p : E × F) : has_strict_fderiv_at b (h.deriv p) p := begin rw has_strict_fderiv_at, set T := (E × F) × (E × F), have : (λ q : T, b (q.1 - q.2)) =o[𝓝 (p, p)] (λ q : T, ∥q.1 - q.2∥ * 1), { refine (h.is_O'.comp_tendsto le_top).trans_is_o _, simp only [(∘)], refine (is_O_refl (λ q : T, ∥q.1 - q.2∥) _).mul_is_o (is_o.norm_left $ (is_o_one_iff _).2 _), rw [← sub_self p], exact continuous_at_fst.sub continuous_at_snd }, simp only [mul_one, is_o_norm_right] at this, refine (is_o.congr_of_sub _).1 this, clear this, convert_to (λ q : T, h.deriv (p - q.2) (q.1 - q.2)) =o[𝓝 (p, p)] (λ q : T, q.1 - q.2), { ext ⟨⟨x₁, y₁⟩, ⟨x₂, y₂⟩⟩, rcases p with ⟨x, y⟩, simp only [is_bounded_bilinear_map_deriv_coe, prod.mk_sub_mk, h.map_sub_left, h.map_sub_right], abel }, have : (λ q : T, p - q.2) =o[𝓝 (p, p)] (λ q, (1:ℝ)), from (is_o_one_iff _).2 (sub_self p ▸ tendsto_const_nhds.sub continuous_at_snd), apply is_bounded_bilinear_map_apply.is_O_comp.trans_is_o, refine is_o.trans_is_O _ (is_O_const_mul_self 1 _ _).of_norm_right, refine is_o.mul_is_O _ (is_O_refl _ _), exact (((h.is_bounded_linear_map_deriv.is_O_id ⊤).comp_tendsto le_top : _).trans_is_o this).norm_left end lemma is_bounded_bilinear_map.has_fderiv_at (h : is_bounded_bilinear_map 𝕜 b) (p : E × F) : has_fderiv_at b (h.deriv p) p := (h.has_strict_fderiv_at p).has_fderiv_at lemma is_bounded_bilinear_map.has_fderiv_within_at (h : is_bounded_bilinear_map 𝕜 b) (p : E × F) : has_fderiv_within_at b (h.deriv p) u p := (h.has_fderiv_at p).has_fderiv_within_at lemma is_bounded_bilinear_map.differentiable_at (h : is_bounded_bilinear_map 𝕜 b) (p : E × F) : differentiable_at 𝕜 b p := (h.has_fderiv_at p).differentiable_at lemma is_bounded_bilinear_map.differentiable_within_at (h : is_bounded_bilinear_map 𝕜 b) (p : E × F) : differentiable_within_at 𝕜 b u p := (h.differentiable_at p).differentiable_within_at lemma is_bounded_bilinear_map.fderiv (h : is_bounded_bilinear_map 𝕜 b) (p : E × F) : fderiv 𝕜 b p = h.deriv p := has_fderiv_at.fderiv (h.has_fderiv_at p) lemma is_bounded_bilinear_map.fderiv_within (h : is_bounded_bilinear_map 𝕜 b) (p : E × F) (hxs : unique_diff_within_at 𝕜 u p) : fderiv_within 𝕜 b u p = h.deriv p := begin rw differentiable_at.fderiv_within (h.differentiable_at p) hxs, exact h.fderiv p end lemma is_bounded_bilinear_map.differentiable (h : is_bounded_bilinear_map 𝕜 b) : differentiable 𝕜 b := λx, h.differentiable_at x lemma is_bounded_bilinear_map.differentiable_on (h : is_bounded_bilinear_map 𝕜 b) : differentiable_on 𝕜 b u := h.differentiable.differentiable_on end bilinear_map section clm_comp_apply /-! ### Derivative of the pointwise composition/application of continuous linear maps -/ variables {H : Type*} [normed_add_comm_group H] [normed_space 𝕜 H] {c : E → G →L[𝕜] H} {c' : E →L[𝕜] G →L[𝕜] H} {d : E → F →L[𝕜] G} {d' : E →L[𝕜] F →L[𝕜] G} {u : E → G} {u' : E →L[𝕜] G} lemma has_strict_fderiv_at.clm_comp (hc : has_strict_fderiv_at c c' x) (hd : has_strict_fderiv_at d d' x) : has_strict_fderiv_at (λ y, (c y).comp (d y)) ((compL 𝕜 F G H (c x)).comp d' + ((compL 𝕜 F G H).flip (d x)).comp c') x := (is_bounded_bilinear_map_comp.has_strict_fderiv_at (c x, d x)).comp x $ hc.prod hd lemma has_fderiv_within_at.clm_comp (hc : has_fderiv_within_at c c' s x) (hd : has_fderiv_within_at d d' s x) : has_fderiv_within_at (λ y, (c y).comp (d y)) ((compL 𝕜 F G H (c x)).comp d' + ((compL 𝕜 F G H).flip (d x)).comp c') s x := (is_bounded_bilinear_map_comp.has_fderiv_at (c x, d x)).comp_has_fderiv_within_at x $ hc.prod hd lemma has_fderiv_at.clm_comp (hc : has_fderiv_at c c' x) (hd : has_fderiv_at d d' x) : has_fderiv_at (λ y, (c y).comp (d y)) ((compL 𝕜 F G H (c x)).comp d' + ((compL 𝕜 F G H).flip (d x)).comp c') x := (is_bounded_bilinear_map_comp.has_fderiv_at (c x, d x)).comp x $ hc.prod hd lemma differentiable_within_at.clm_comp (hc : differentiable_within_at 𝕜 c s x) (hd : differentiable_within_at 𝕜 d s x) : differentiable_within_at 𝕜 (λ y, (c y).comp (d y)) s x := (hc.has_fderiv_within_at.clm_comp hd.has_fderiv_within_at).differentiable_within_at lemma differentiable_at.clm_comp (hc : differentiable_at 𝕜 c x) (hd : differentiable_at 𝕜 d x) : differentiable_at 𝕜 (λ y, (c y).comp (d y)) x := (hc.has_fderiv_at.clm_comp hd.has_fderiv_at).differentiable_at lemma differentiable_on.clm_comp (hc : differentiable_on 𝕜 c s) (hd : differentiable_on 𝕜 d s) : differentiable_on 𝕜 (λ y, (c y).comp (d y)) s := λx hx, (hc x hx).clm_comp (hd x hx) lemma differentiable.clm_comp (hc : differentiable 𝕜 c) (hd : differentiable 𝕜 d) : differentiable 𝕜 (λ y, (c y).comp (d y)) := λx, (hc x).clm_comp (hd x) lemma fderiv_within_clm_comp (hxs : unique_diff_within_at 𝕜 s x) (hc : differentiable_within_at 𝕜 c s x) (hd : differentiable_within_at 𝕜 d s x) : fderiv_within 𝕜 (λ y, (c y).comp (d y)) s x = (compL 𝕜 F G H (c x)).comp (fderiv_within 𝕜 d s x) + ((compL 𝕜 F G H).flip (d x)).comp (fderiv_within 𝕜 c s x) := (hc.has_fderiv_within_at.clm_comp hd.has_fderiv_within_at).fderiv_within hxs lemma fderiv_clm_comp (hc : differentiable_at 𝕜 c x) (hd : differentiable_at 𝕜 d x) : fderiv 𝕜 (λ y, (c y).comp (d y)) x = (compL 𝕜 F G H (c x)).comp (fderiv 𝕜 d x) + ((compL 𝕜 F G H).flip (d x)).comp (fderiv 𝕜 c x) := (hc.has_fderiv_at.clm_comp hd.has_fderiv_at).fderiv lemma has_strict_fderiv_at.clm_apply (hc : has_strict_fderiv_at c c' x) (hu : has_strict_fderiv_at u u' x) : has_strict_fderiv_at (λ y, (c y) (u y)) ((c x).comp u' + c'.flip (u x)) x := (is_bounded_bilinear_map_apply.has_strict_fderiv_at (c x, u x)).comp x (hc.prod hu) lemma has_fderiv_within_at.clm_apply (hc : has_fderiv_within_at c c' s x) (hu : has_fderiv_within_at u u' s x) : has_fderiv_within_at (λ y, (c y) (u y)) ((c x).comp u' + c'.flip (u x)) s x := (is_bounded_bilinear_map_apply.has_fderiv_at (c x, u x)).comp_has_fderiv_within_at x (hc.prod hu) lemma has_fderiv_at.clm_apply (hc : has_fderiv_at c c' x) (hu : has_fderiv_at u u' x) : has_fderiv_at (λ y, (c y) (u y)) ((c x).comp u' + c'.flip (u x)) x := (is_bounded_bilinear_map_apply.has_fderiv_at (c x, u x)).comp x (hc.prod hu) lemma differentiable_within_at.clm_apply (hc : differentiable_within_at 𝕜 c s x) (hu : differentiable_within_at 𝕜 u s x) : differentiable_within_at 𝕜 (λ y, (c y) (u y)) s x := (hc.has_fderiv_within_at.clm_apply hu.has_fderiv_within_at).differentiable_within_at lemma differentiable_at.clm_apply (hc : differentiable_at 𝕜 c x) (hu : differentiable_at 𝕜 u x) : differentiable_at 𝕜 (λ y, (c y) (u y)) x := (hc.has_fderiv_at.clm_apply hu.has_fderiv_at).differentiable_at lemma differentiable_on.clm_apply (hc : differentiable_on 𝕜 c s) (hu : differentiable_on 𝕜 u s) : differentiable_on 𝕜 (λ y, (c y) (u y)) s := λx hx, (hc x hx).clm_apply (hu x hx) lemma differentiable.clm_apply (hc : differentiable 𝕜 c) (hu : differentiable 𝕜 u) : differentiable 𝕜 (λ y, (c y) (u y)) := λx, (hc x).clm_apply (hu x) lemma fderiv_within_clm_apply (hxs : unique_diff_within_at 𝕜 s x) (hc : differentiable_within_at 𝕜 c s x) (hu : differentiable_within_at 𝕜 u s x) : fderiv_within 𝕜 (λ y, (c y) (u y)) s x = ((c x).comp (fderiv_within 𝕜 u s x) + (fderiv_within 𝕜 c s x).flip (u x)) := (hc.has_fderiv_within_at.clm_apply hu.has_fderiv_within_at).fderiv_within hxs lemma fderiv_clm_apply (hc : differentiable_at 𝕜 c x) (hu : differentiable_at 𝕜 u x) : fderiv 𝕜 (λ y, (c y) (u y)) x = ((c x).comp (fderiv 𝕜 u x) + (fderiv 𝕜 c x).flip (u x)) := (hc.has_fderiv_at.clm_apply hu.has_fderiv_at).fderiv end clm_comp_apply section smul /-! ### Derivative of the product of a scalar-valued function and a vector-valued function If `c` is a differentiable scalar-valued function and `f` is a differentiable vector-valued function, then `λ x, c x • f x` is differentiable as well. Lemmas in this section works for function `c` taking values in the base field, as well as in a normed algebra over the base field: e.g., they work for `c : E → ℂ` and `f : E → F` provided that `F` is a complex normed vector space. -/ variables {𝕜' : Type*} [nontrivially_normed_field 𝕜'] [normed_algebra 𝕜 𝕜'] [normed_space 𝕜' F] [is_scalar_tower 𝕜 𝕜' F] variables {c : E → 𝕜'} {c' : E →L[𝕜] 𝕜'} theorem has_strict_fderiv_at.smul (hc : has_strict_fderiv_at c c' x) (hf : has_strict_fderiv_at f f' x) : has_strict_fderiv_at (λ y, c y • f y) (c x • f' + c'.smul_right (f x)) x := (is_bounded_bilinear_map_smul.has_strict_fderiv_at (c x, f x)).comp x $ hc.prod hf theorem has_fderiv_within_at.smul (hc : has_fderiv_within_at c c' s x) (hf : has_fderiv_within_at f f' s x) : has_fderiv_within_at (λ y, c y • f y) (c x • f' + c'.smul_right (f x)) s x := (is_bounded_bilinear_map_smul.has_fderiv_at (c x, f x)).comp_has_fderiv_within_at x $ hc.prod hf theorem has_fderiv_at.smul (hc : has_fderiv_at c c' x) (hf : has_fderiv_at f f' x) : has_fderiv_at (λ y, c y • f y) (c x • f' + c'.smul_right (f x)) x := (is_bounded_bilinear_map_smul.has_fderiv_at (c x, f x)).comp x $ hc.prod hf lemma differentiable_within_at.smul (hc : differentiable_within_at 𝕜 c s x) (hf : differentiable_within_at 𝕜 f s x) : differentiable_within_at 𝕜 (λ y, c y • f y) s x := (hc.has_fderiv_within_at.smul hf.has_fderiv_within_at).differentiable_within_at @[simp] lemma differentiable_at.smul (hc : differentiable_at 𝕜 c x) (hf : differentiable_at 𝕜 f x) : differentiable_at 𝕜 (λ y, c y • f y) x := (hc.has_fderiv_at.smul hf.has_fderiv_at).differentiable_at lemma differentiable_on.smul (hc : differentiable_on 𝕜 c s) (hf : differentiable_on 𝕜 f s) : differentiable_on 𝕜 (λ y, c y • f y) s := λx hx, (hc x hx).smul (hf x hx) @[simp] lemma differentiable.smul (hc : differentiable 𝕜 c) (hf : differentiable 𝕜 f) : differentiable 𝕜 (λ y, c y • f y) := λx, (hc x).smul (hf x) lemma fderiv_within_smul (hxs : unique_diff_within_at 𝕜 s x) (hc : differentiable_within_at 𝕜 c s x) (hf : differentiable_within_at 𝕜 f s x) : fderiv_within 𝕜 (λ y, c y • f y) s x = c x • fderiv_within 𝕜 f s x + (fderiv_within 𝕜 c s x).smul_right (f x) := (hc.has_fderiv_within_at.smul hf.has_fderiv_within_at).fderiv_within hxs lemma fderiv_smul (hc : differentiable_at 𝕜 c x) (hf : differentiable_at 𝕜 f x) : fderiv 𝕜 (λ y, c y • f y) x = c x • fderiv 𝕜 f x + (fderiv 𝕜 c x).smul_right (f x) := (hc.has_fderiv_at.smul hf.has_fderiv_at).fderiv theorem has_strict_fderiv_at.smul_const (hc : has_strict_fderiv_at c c' x) (f : F) : has_strict_fderiv_at (λ y, c y • f) (c'.smul_right f) x := by simpa only [smul_zero, zero_add] using hc.smul (has_strict_fderiv_at_const f x) theorem has_fderiv_within_at.smul_const (hc : has_fderiv_within_at c c' s x) (f : F) : has_fderiv_within_at (λ y, c y • f) (c'.smul_right f) s x := by simpa only [smul_zero, zero_add] using hc.smul (has_fderiv_within_at_const f x s) theorem has_fderiv_at.smul_const (hc : has_fderiv_at c c' x) (f : F) : has_fderiv_at (λ y, c y • f) (c'.smul_right f) x := by simpa only [smul_zero, zero_add] using hc.smul (has_fderiv_at_const f x) lemma differentiable_within_at.smul_const (hc : differentiable_within_at 𝕜 c s x) (f : F) : differentiable_within_at 𝕜 (λ y, c y • f) s x := (hc.has_fderiv_within_at.smul_const f).differentiable_within_at lemma differentiable_at.smul_const (hc : differentiable_at 𝕜 c x) (f : F) : differentiable_at 𝕜 (λ y, c y • f) x := (hc.has_fderiv_at.smul_const f).differentiable_at lemma differentiable_on.smul_const (hc : differentiable_on 𝕜 c s) (f : F) : differentiable_on 𝕜 (λ y, c y • f) s := λx hx, (hc x hx).smul_const f lemma differentiable.smul_const (hc : differentiable 𝕜 c) (f : F) : differentiable 𝕜 (λ y, c y • f) := λx, (hc x).smul_const f lemma fderiv_within_smul_const (hxs : unique_diff_within_at 𝕜 s x) (hc : differentiable_within_at 𝕜 c s x) (f : F) : fderiv_within 𝕜 (λ y, c y • f) s x = (fderiv_within 𝕜 c s x).smul_right f := (hc.has_fderiv_within_at.smul_const f).fderiv_within hxs lemma fderiv_smul_const (hc : differentiable_at 𝕜 c x) (f : F) : fderiv 𝕜 (λ y, c y • f) x = (fderiv 𝕜 c x).smul_right f := (hc.has_fderiv_at.smul_const f).fderiv end smul section mul /-! ### Derivative of the product of two functions -/ variables {𝔸 𝔸' : Type*} [normed_ring 𝔸] [normed_comm_ring 𝔸'] [normed_algebra 𝕜 𝔸] [normed_algebra 𝕜 𝔸'] {a b : E → 𝔸} {a' b' : E →L[𝕜] 𝔸} {c d : E → 𝔸'} {c' d' : E →L[𝕜] 𝔸'} theorem has_strict_fderiv_at.mul' {x : E} (ha : has_strict_fderiv_at a a' x) (hb : has_strict_fderiv_at b b' x) : has_strict_fderiv_at (λ y, a y * b y) (a x • b' + a'.smul_right (b x)) x := ((continuous_linear_map.lmul 𝕜 𝔸).is_bounded_bilinear_map.has_strict_fderiv_at (a x, b x)).comp x (ha.prod hb) theorem has_strict_fderiv_at.mul (hc : has_strict_fderiv_at c c' x) (hd : has_strict_fderiv_at d d' x) : has_strict_fderiv_at (λ y, c y * d y) (c x • d' + d x • c') x := by { convert hc.mul' hd, ext z, apply mul_comm } theorem has_fderiv_within_at.mul' (ha : has_fderiv_within_at a a' s x) (hb : has_fderiv_within_at b b' s x) : has_fderiv_within_at (λ y, a y * b y) (a x • b' + a'.smul_right (b x)) s x := ((continuous_linear_map.lmul 𝕜 𝔸).is_bounded_bilinear_map.has_fderiv_at (a x, b x)).comp_has_fderiv_within_at x (ha.prod hb) theorem has_fderiv_within_at.mul (hc : has_fderiv_within_at c c' s x) (hd : has_fderiv_within_at d d' s x) : has_fderiv_within_at (λ y, c y * d y) (c x • d' + d x • c') s x := by { convert hc.mul' hd, ext z, apply mul_comm } theorem has_fderiv_at.mul' (ha : has_fderiv_at a a' x) (hb : has_fderiv_at b b' x) : has_fderiv_at (λ y, a y * b y) (a x • b' + a'.smul_right (b x)) x := ((continuous_linear_map.lmul 𝕜 𝔸).is_bounded_bilinear_map.has_fderiv_at (a x, b x)).comp x (ha.prod hb) theorem has_fderiv_at.mul (hc : has_fderiv_at c c' x) (hd : has_fderiv_at d d' x) : has_fderiv_at (λ y, c y * d y) (c x • d' + d x • c') x := by { convert hc.mul' hd, ext z, apply mul_comm } lemma differentiable_within_at.mul (ha : differentiable_within_at 𝕜 a s x) (hb : differentiable_within_at 𝕜 b s x) : differentiable_within_at 𝕜 (λ y, a y * b y) s x := (ha.has_fderiv_within_at.mul' hb.has_fderiv_within_at).differentiable_within_at @[simp] lemma differentiable_at.mul (ha : differentiable_at 𝕜 a x) (hb : differentiable_at 𝕜 b x) : differentiable_at 𝕜 (λ y, a y * b y) x := (ha.has_fderiv_at.mul' hb.has_fderiv_at).differentiable_at lemma differentiable_on.mul (ha : differentiable_on 𝕜 a s) (hb : differentiable_on 𝕜 b s) : differentiable_on 𝕜 (λ y, a y * b y) s := λx hx, (ha x hx).mul (hb x hx) @[simp] lemma differentiable.mul (ha : differentiable 𝕜 a) (hb : differentiable 𝕜 b) : differentiable 𝕜 (λ y, a y * b y) := λx, (ha x).mul (hb x) lemma differentiable_within_at.pow (ha : differentiable_within_at 𝕜 a s x) : ∀ n : ℕ, differentiable_within_at 𝕜 (λ x, a x ^ n) s x | 0 := by simp only [pow_zero, differentiable_within_at_const] | (n + 1) := by simp only [pow_succ, differentiable_within_at.pow n, ha.mul] @[simp] lemma differentiable_at.pow (ha : differentiable_at 𝕜 a x) (n : ℕ) : differentiable_at 𝕜 (λ x, a x ^ n) x := differentiable_within_at_univ.mp $ ha.differentiable_within_at.pow n lemma differentiable_on.pow (ha : differentiable_on 𝕜 a s) (n : ℕ) : differentiable_on 𝕜 (λ x, a x ^ n) s := λ x h, (ha x h).pow n @[simp] lemma differentiable.pow (ha : differentiable 𝕜 a) (n : ℕ) : differentiable 𝕜 (λ x, a x ^ n) := λx, (ha x).pow n lemma fderiv_within_mul' (hxs : unique_diff_within_at 𝕜 s x) (ha : differentiable_within_at 𝕜 a s x) (hb : differentiable_within_at 𝕜 b s x) : fderiv_within 𝕜 (λ y, a y * b y) s x = a x • fderiv_within 𝕜 b s x + (fderiv_within 𝕜 a s x).smul_right (b x) := (ha.has_fderiv_within_at.mul' hb.has_fderiv_within_at).fderiv_within hxs lemma fderiv_within_mul (hxs : unique_diff_within_at 𝕜 s x) (hc : differentiable_within_at 𝕜 c s x) (hd : differentiable_within_at 𝕜 d s x) : fderiv_within 𝕜 (λ y, c y * d y) s x = c x • fderiv_within 𝕜 d s x + d x • fderiv_within 𝕜 c s x := (hc.has_fderiv_within_at.mul hd.has_fderiv_within_at).fderiv_within hxs lemma fderiv_mul' (ha : differentiable_at 𝕜 a x) (hb : differentiable_at 𝕜 b x) : fderiv 𝕜 (λ y, a y * b y) x = a x • fderiv 𝕜 b x + (fderiv 𝕜 a x).smul_right (b x) := (ha.has_fderiv_at.mul' hb.has_fderiv_at).fderiv lemma fderiv_mul (hc : differentiable_at 𝕜 c x) (hd : differentiable_at 𝕜 d x) : fderiv 𝕜 (λ y, c y * d y) x = c x • fderiv 𝕜 d x + d x • fderiv 𝕜 c x := (hc.has_fderiv_at.mul hd.has_fderiv_at).fderiv theorem has_strict_fderiv_at.mul_const' (ha : has_strict_fderiv_at a a' x) (b : 𝔸) : has_strict_fderiv_at (λ y, a y * b) (a'.smul_right b) x := (((continuous_linear_map.lmul 𝕜 𝔸).flip b).has_strict_fderiv_at).comp x ha theorem has_strict_fderiv_at.mul_const (hc : has_strict_fderiv_at c c' x) (d : 𝔸') : has_strict_fderiv_at (λ y, c y * d) (d • c') x := by { convert hc.mul_const' d, ext z, apply mul_comm } theorem has_fderiv_within_at.mul_const' (ha : has_fderiv_within_at a a' s x) (b : 𝔸) : has_fderiv_within_at (λ y, a y * b) (a'.smul_right b) s x := (((continuous_linear_map.lmul 𝕜 𝔸).flip b).has_fderiv_at).comp_has_fderiv_within_at x ha theorem has_fderiv_within_at.mul_const (hc : has_fderiv_within_at c c' s x) (d : 𝔸') : has_fderiv_within_at (λ y, c y * d) (d • c') s x := by { convert hc.mul_const' d, ext z, apply mul_comm } theorem has_fderiv_at.mul_const' (ha : has_fderiv_at a a' x) (b : 𝔸) : has_fderiv_at (λ y, a y * b) (a'.smul_right b) x := (((continuous_linear_map.lmul 𝕜 𝔸).flip b).has_fderiv_at).comp x ha theorem has_fderiv_at.mul_const (hc : has_fderiv_at c c' x) (d : 𝔸') : has_fderiv_at (λ y, c y * d) (d • c') x := by { convert hc.mul_const' d, ext z, apply mul_comm } lemma differentiable_within_at.mul_const (ha : differentiable_within_at 𝕜 a s x) (b : 𝔸) : differentiable_within_at 𝕜 (λ y, a y * b) s x := (ha.has_fderiv_within_at.mul_const' b).differentiable_within_at lemma differentiable_at.mul_const (ha : differentiable_at 𝕜 a x) (b : 𝔸) : differentiable_at 𝕜 (λ y, a y * b) x := (ha.has_fderiv_at.mul_const' b).differentiable_at lemma differentiable_on.mul_const (ha : differentiable_on 𝕜 a s) (b : 𝔸) : differentiable_on 𝕜 (λ y, a y * b) s := λx hx, (ha x hx).mul_const b lemma differentiable.mul_const (ha : differentiable 𝕜 a) (b : 𝔸) : differentiable 𝕜 (λ y, a y * b) := λx, (ha x).mul_const b lemma fderiv_within_mul_const' (hxs : unique_diff_within_at 𝕜 s x) (ha : differentiable_within_at 𝕜 a s x) (b : 𝔸) : fderiv_within 𝕜 (λ y, a y * b) s x = (fderiv_within 𝕜 a s x).smul_right b := (ha.has_fderiv_within_at.mul_const' b).fderiv_within hxs lemma fderiv_within_mul_const (hxs : unique_diff_within_at 𝕜 s x) (hc : differentiable_within_at 𝕜 c s x) (d : 𝔸') : fderiv_within 𝕜 (λ y, c y * d) s x = d • fderiv_within 𝕜 c s x := (hc.has_fderiv_within_at.mul_const d).fderiv_within hxs lemma fderiv_mul_const' (ha : differentiable_at 𝕜 a x) (b : 𝔸) : fderiv 𝕜 (λ y, a y * b) x = (fderiv 𝕜 a x).smul_right b := (ha.has_fderiv_at.mul_const' b).fderiv lemma fderiv_mul_const (hc : differentiable_at 𝕜 c x) (d : 𝔸') : fderiv 𝕜 (λ y, c y * d) x = d • fderiv 𝕜 c x := (hc.has_fderiv_at.mul_const d).fderiv theorem has_strict_fderiv_at.const_mul (ha : has_strict_fderiv_at a a' x) (b : 𝔸) : has_strict_fderiv_at (λ y, b * a y) (b • a') x := (((continuous_linear_map.lmul 𝕜 𝔸) b).has_strict_fderiv_at).comp x ha theorem has_fderiv_within_at.const_mul (ha : has_fderiv_within_at a a' s x) (b : 𝔸) : has_fderiv_within_at (λ y, b * a y) (b • a') s x := (((continuous_linear_map.lmul 𝕜 𝔸) b).has_fderiv_at).comp_has_fderiv_within_at x ha theorem has_fderiv_at.const_mul (ha : has_fderiv_at a a' x) (b : 𝔸) : has_fderiv_at (λ y, b * a y) (b • a') x := (((continuous_linear_map.lmul 𝕜 𝔸) b).has_fderiv_at).comp x ha lemma differentiable_within_at.const_mul (ha : differentiable_within_at 𝕜 a s x) (b : 𝔸) : differentiable_within_at 𝕜 (λ y, b * a y) s x := (ha.has_fderiv_within_at.const_mul b).differentiable_within_at lemma differentiable_at.const_mul (ha : differentiable_at 𝕜 a x) (b : 𝔸) : differentiable_at 𝕜 (λ y, b * a y) x := (ha.has_fderiv_at.const_mul b).differentiable_at lemma differentiable_on.const_mul (ha : differentiable_on 𝕜 a s) (b : 𝔸) : differentiable_on 𝕜 (λ y, b * a y) s := λx hx, (ha x hx).const_mul b lemma differentiable.const_mul (ha : differentiable 𝕜 a) (b : 𝔸) : differentiable 𝕜 (λ y, b * a y) := λx, (ha x).const_mul b lemma fderiv_within_const_mul (hxs : unique_diff_within_at 𝕜 s x) (ha : differentiable_within_at 𝕜 a s x) (b : 𝔸) : fderiv_within 𝕜 (λ y, b * a y) s x = b • fderiv_within 𝕜 a s x := (ha.has_fderiv_within_at.const_mul b).fderiv_within hxs lemma fderiv_const_mul (ha : differentiable_at 𝕜 a x) (b : 𝔸) : fderiv 𝕜 (λ y, b * a y) x = b • fderiv 𝕜 a x := (ha.has_fderiv_at.const_mul b).fderiv end mul section algebra_inverse variables {R : Type*} [normed_ring R] [normed_algebra 𝕜 R] [complete_space R] open normed_ring continuous_linear_map ring /-- At an invertible element `x` of a normed algebra `R`, the Fréchet derivative of the inversion operation is the linear map `λ t, - x⁻¹ * t * x⁻¹`. -/ lemma has_fderiv_at_ring_inverse (x : Rˣ) : has_fderiv_at ring.inverse (-lmul_left_right 𝕜 R ↑x⁻¹ ↑x⁻¹) x := begin have h_is_o : (λ (t : R), inverse (↑x + t) - ↑x⁻¹ + ↑x⁻¹ * t * ↑x⁻¹) =o[𝓝 0] (λ (t : R), t), { refine (inverse_add_norm_diff_second_order x).trans_is_o ((is_o_norm_norm).mp _), simp only [norm_pow, norm_norm], have h12 : 1 < 2 := by norm_num, convert (asymptotics.is_o_pow_pow h12).comp_tendsto tendsto_norm_zero, ext, simp }, have h_lim : tendsto (λ (y:R), y - x) (𝓝 x) (𝓝 0), { refine tendsto_zero_iff_norm_tendsto_zero.mpr _, exact tendsto_iff_norm_tendsto_zero.mp tendsto_id }, simp only [has_fderiv_at, has_fderiv_at_filter], convert h_is_o.comp_tendsto h_lim, ext y, simp only [coe_comp', function.comp_app, lmul_left_right_apply, neg_apply, inverse_unit x, units.inv_mul, add_sub_cancel'_right, mul_sub, sub_mul, one_mul, sub_neg_eq_add] end lemma differentiable_at_inverse (x : Rˣ) : differentiable_at 𝕜 (@ring.inverse R _) x := (has_fderiv_at_ring_inverse x).differentiable_at lemma fderiv_inverse (x : Rˣ) : fderiv 𝕜 (@ring.inverse R _) x = - lmul_left_right 𝕜 R ↑x⁻¹ ↑x⁻¹ := (has_fderiv_at_ring_inverse x).fderiv end algebra_inverse namespace continuous_linear_equiv /-! ### Differentiability of linear equivs, and invariance of differentiability -/ variable (iso : E ≃L[𝕜] F) protected lemma has_strict_fderiv_at : has_strict_fderiv_at iso (iso : E →L[𝕜] F) x := iso.to_continuous_linear_map.has_strict_fderiv_at protected lemma has_fderiv_within_at : has_fderiv_within_at iso (iso : E →L[𝕜] F) s x := iso.to_continuous_linear_map.has_fderiv_within_at protected lemma has_fderiv_at : has_fderiv_at iso (iso : E →L[𝕜] F) x := iso.to_continuous_linear_map.has_fderiv_at_filter protected lemma differentiable_at : differentiable_at 𝕜 iso x := iso.has_fderiv_at.differentiable_at protected lemma differentiable_within_at : differentiable_within_at 𝕜 iso s x := iso.differentiable_at.differentiable_within_at protected lemma fderiv : fderiv 𝕜 iso x = iso := iso.has_fderiv_at.fderiv protected lemma fderiv_within (hxs : unique_diff_within_at 𝕜 s x) : fderiv_within 𝕜 iso s x = iso := iso.to_continuous_linear_map.fderiv_within hxs protected lemma differentiable : differentiable 𝕜 iso := λx, iso.differentiable_at protected lemma differentiable_on : differentiable_on 𝕜 iso s := iso.differentiable.differentiable_on lemma comp_differentiable_within_at_iff {f : G → E} {s : set G} {x : G} : differentiable_within_at 𝕜 (iso ∘ f) s x ↔ differentiable_within_at 𝕜 f s x := begin refine ⟨λ H, _, λ H, iso.differentiable.differentiable_at.comp_differentiable_within_at x H⟩, have : differentiable_within_at 𝕜 (iso.symm ∘ (iso ∘ f)) s x := iso.symm.differentiable.differentiable_at.comp_differentiable_within_at x H, rwa [← function.comp.assoc iso.symm iso f, iso.symm_comp_self] at this, end lemma comp_differentiable_at_iff {f : G → E} {x : G} : differentiable_at 𝕜 (iso ∘ f) x ↔ differentiable_at 𝕜 f x := by rw [← differentiable_within_at_univ, ← differentiable_within_at_univ, iso.comp_differentiable_within_at_iff] lemma comp_differentiable_on_iff {f : G → E} {s : set G} : differentiable_on 𝕜 (iso ∘ f) s ↔ differentiable_on 𝕜 f s := begin rw [differentiable_on, differentiable_on], simp only [iso.comp_differentiable_within_at_iff], end lemma comp_differentiable_iff {f : G → E} : differentiable 𝕜 (iso ∘ f) ↔ differentiable 𝕜 f := begin rw [← differentiable_on_univ, ← differentiable_on_univ], exact iso.comp_differentiable_on_iff end lemma comp_has_fderiv_within_at_iff {f : G → E} {s : set G} {x : G} {f' : G →L[𝕜] E} : has_fderiv_within_at (iso ∘ f) ((iso : E →L[𝕜] F).comp f') s x ↔ has_fderiv_within_at f f' s x := begin refine ⟨λ H, _, λ H, iso.has_fderiv_at.comp_has_fderiv_within_at x H⟩, have A : f = iso.symm ∘ (iso ∘ f), by { rw [← function.comp.assoc, iso.symm_comp_self], refl }, have B : f' = (iso.symm : F →L[𝕜] E).comp ((iso : E →L[𝕜] F).comp f'), by rw [← continuous_linear_map.comp_assoc, iso.coe_symm_comp_coe, continuous_linear_map.id_comp], rw [A, B], exact iso.symm.has_fderiv_at.comp_has_fderiv_within_at x H end lemma comp_has_strict_fderiv_at_iff {f : G → E} {x : G} {f' : G →L[𝕜] E} : has_strict_fderiv_at (iso ∘ f) ((iso : E →L[𝕜] F).comp f') x ↔ has_strict_fderiv_at f f' x := begin refine ⟨λ H, _, λ H, iso.has_strict_fderiv_at.comp x H⟩, convert iso.symm.has_strict_fderiv_at.comp x H; ext z; apply (iso.symm_apply_apply _).symm end lemma comp_has_fderiv_at_iff {f : G → E} {x : G} {f' : G →L[𝕜] E} : has_fderiv_at (iso ∘ f) ((iso : E →L[𝕜] F).comp f') x ↔ has_fderiv_at f f' x := by rw [← has_fderiv_within_at_univ, ← has_fderiv_within_at_univ, iso.comp_has_fderiv_within_at_iff] lemma comp_has_fderiv_within_at_iff' {f : G → E} {s : set G} {x : G} {f' : G →L[𝕜] F} : has_fderiv_within_at (iso ∘ f) f' s x ↔ has_fderiv_within_at f ((iso.symm : F →L[𝕜] E).comp f') s x := by rw [← iso.comp_has_fderiv_within_at_iff, ← continuous_linear_map.comp_assoc, iso.coe_comp_coe_symm, continuous_linear_map.id_comp] lemma comp_has_fderiv_at_iff' {f : G → E} {x : G} {f' : G →L[𝕜] F} : has_fderiv_at (iso ∘ f) f' x ↔ has_fderiv_at f ((iso.symm : F →L[𝕜] E).comp f') x := by rw [← has_fderiv_within_at_univ, ← has_fderiv_within_at_univ, iso.comp_has_fderiv_within_at_iff'] lemma comp_fderiv_within {f : G → E} {s : set G} {x : G} (hxs : unique_diff_within_at 𝕜 s x) : fderiv_within 𝕜 (iso ∘ f) s x = (iso : E →L[𝕜] F).comp (fderiv_within 𝕜 f s x) := begin by_cases h : differentiable_within_at 𝕜 f s x, { rw [fderiv.comp_fderiv_within x iso.differentiable_at h hxs, iso.fderiv] }, { have : ¬differentiable_within_at 𝕜 (iso ∘ f) s x, from mt iso.comp_differentiable_within_at_iff.1 h, rw [fderiv_within_zero_of_not_differentiable_within_at h, fderiv_within_zero_of_not_differentiable_within_at this, continuous_linear_map.comp_zero] } end lemma comp_fderiv {f : G → E} {x : G} : fderiv 𝕜 (iso ∘ f) x = (iso : E →L[𝕜] F).comp (fderiv 𝕜 f x) := begin rw [← fderiv_within_univ, ← fderiv_within_univ], exact iso.comp_fderiv_within unique_diff_within_at_univ, end end continuous_linear_equiv namespace linear_isometry_equiv /-! ### Differentiability of linear isometry equivs, and invariance of differentiability -/ variable (iso : E ≃ₗᵢ[𝕜] F) protected lemma has_strict_fderiv_at : has_strict_fderiv_at iso (iso : E →L[𝕜] F) x := (iso : E ≃L[𝕜] F).has_strict_fderiv_at protected lemma has_fderiv_within_at : has_fderiv_within_at iso (iso : E →L[𝕜] F) s x := (iso : E ≃L[𝕜] F).has_fderiv_within_at protected lemma has_fderiv_at : has_fderiv_at iso (iso : E →L[𝕜] F) x := (iso : E ≃L[𝕜] F).has_fderiv_at protected lemma differentiable_at : differentiable_at 𝕜 iso x := iso.has_fderiv_at.differentiable_at protected lemma differentiable_within_at : differentiable_within_at 𝕜 iso s x := iso.differentiable_at.differentiable_within_at protected lemma fderiv : fderiv 𝕜 iso x = iso := iso.has_fderiv_at.fderiv protected lemma fderiv_within (hxs : unique_diff_within_at 𝕜 s x) : fderiv_within 𝕜 iso s x = iso := (iso : E ≃L[𝕜] F).fderiv_within hxs protected lemma differentiable : differentiable 𝕜 iso := λx, iso.differentiable_at protected lemma differentiable_on : differentiable_on 𝕜 iso s := iso.differentiable.differentiable_on lemma comp_differentiable_within_at_iff {f : G → E} {s : set G} {x : G} : differentiable_within_at 𝕜 (iso ∘ f) s x ↔ differentiable_within_at 𝕜 f s x := (iso : E ≃L[𝕜] F).comp_differentiable_within_at_iff lemma comp_differentiable_at_iff {f : G → E} {x : G} : differentiable_at 𝕜 (iso ∘ f) x ↔ differentiable_at 𝕜 f x := (iso : E ≃L[𝕜] F).comp_differentiable_at_iff lemma comp_differentiable_on_iff {f : G → E} {s : set G} : differentiable_on 𝕜 (iso ∘ f) s ↔ differentiable_on 𝕜 f s := (iso : E ≃L[𝕜] F).comp_differentiable_on_iff lemma comp_differentiable_iff {f : G → E} : differentiable 𝕜 (iso ∘ f) ↔ differentiable 𝕜 f := (iso : E ≃L[𝕜] F).comp_differentiable_iff lemma comp_has_fderiv_within_at_iff {f : G → E} {s : set G} {x : G} {f' : G →L[𝕜] E} : has_fderiv_within_at (iso ∘ f) ((iso : E →L[𝕜] F).comp f') s x ↔ has_fderiv_within_at f f' s x := (iso : E ≃L[𝕜] F).comp_has_fderiv_within_at_iff lemma comp_has_strict_fderiv_at_iff {f : G → E} {x : G} {f' : G →L[𝕜] E} : has_strict_fderiv_at (iso ∘ f) ((iso : E →L[𝕜] F).comp f') x ↔ has_strict_fderiv_at f f' x := (iso : E ≃L[𝕜] F).comp_has_strict_fderiv_at_iff lemma comp_has_fderiv_at_iff {f : G → E} {x : G} {f' : G →L[𝕜] E} : has_fderiv_at (iso ∘ f) ((iso : E →L[𝕜] F).comp f') x ↔ has_fderiv_at f f' x := (iso : E ≃L[𝕜] F).comp_has_fderiv_at_iff lemma comp_has_fderiv_within_at_iff' {f : G → E} {s : set G} {x : G} {f' : G →L[𝕜] F} : has_fderiv_within_at (iso ∘ f) f' s x ↔ has_fderiv_within_at f ((iso.symm : F →L[𝕜] E).comp f') s x := (iso : E ≃L[𝕜] F).comp_has_fderiv_within_at_iff' lemma comp_has_fderiv_at_iff' {f : G → E} {x : G} {f' : G →L[𝕜] F} : has_fderiv_at (iso ∘ f) f' x ↔ has_fderiv_at f ((iso.symm : F →L[𝕜] E).comp f') x := (iso : E ≃L[𝕜] F).comp_has_fderiv_at_iff' lemma comp_fderiv_within {f : G → E} {s : set G} {x : G} (hxs : unique_diff_within_at 𝕜 s x) : fderiv_within 𝕜 (iso ∘ f) s x = (iso : E →L[𝕜] F).comp (fderiv_within 𝕜 f s x) := (iso : E ≃L[𝕜] F).comp_fderiv_within hxs lemma comp_fderiv {f : G → E} {x : G} : fderiv 𝕜 (iso ∘ f) x = (iso : E →L[𝕜] F).comp (fderiv 𝕜 f x) := (iso : E ≃L[𝕜] F).comp_fderiv end linear_isometry_equiv /-- If `f (g y) = y` for `y` in some neighborhood of `a`, `g` is continuous at `a`, and `f` has an invertible derivative `f'` at `g a` in the strict sense, then `g` has the derivative `f'⁻¹` at `a` in the strict sense. This is one of the easy parts of the inverse function theorem: it assumes that we already have an inverse function. -/ theorem has_strict_fderiv_at.of_local_left_inverse {f : E → F} {f' : E ≃L[𝕜] F} {g : F → E} {a : F} (hg : continuous_at g a) (hf : has_strict_fderiv_at f (f' : E →L[𝕜] F) (g a)) (hfg : ∀ᶠ y in 𝓝 a, f (g y) = y) : has_strict_fderiv_at g (f'.symm : F →L[𝕜] E) a := begin replace hg := hg.prod_map' hg, replace hfg := hfg.prod_mk_nhds hfg, have : (λ p : F × F, g p.1 - g p.2 - f'.symm (p.1 - p.2)) =O[𝓝 (a, a)] (λ p : F × F, f' (g p.1 - g p.2) - (p.1 - p.2)), { refine ((f'.symm : F →L[𝕜] E).is_O_comp _ _).congr (λ x, _) (λ _, rfl), simp }, refine this.trans_is_o _, clear this, refine ((hf.comp_tendsto hg).symm.congr' (hfg.mono _) (eventually_of_forall $ λ _, rfl)).trans_is_O _, { rintros p ⟨hp1, hp2⟩, simp [hp1, hp2] }, { refine (hf.is_O_sub_rev.comp_tendsto hg).congr' (eventually_of_forall $ λ _, rfl) (hfg.mono _), rintros p ⟨hp1, hp2⟩, simp only [(∘), hp1, hp2] } end /-- If `f (g y) = y` for `y` in some neighborhood of `a`, `g` is continuous at `a`, and `f` has an invertible derivative `f'` at `g a`, then `g` has the derivative `f'⁻¹` at `a`. This is one of the easy parts of the inverse function theorem: it assumes that we already have an inverse function. -/ theorem has_fderiv_at.of_local_left_inverse {f : E → F} {f' : E ≃L[𝕜] F} {g : F → E} {a : F} (hg : continuous_at g a) (hf : has_fderiv_at f (f' : E →L[𝕜] F) (g a)) (hfg : ∀ᶠ y in 𝓝 a, f (g y) = y) : has_fderiv_at g (f'.symm : F →L[𝕜] E) a := begin have : (λ x : F, g x - g a - f'.symm (x - a)) =O[𝓝 a] (λ x : F, f' (g x - g a) - (x - a)), { refine ((f'.symm : F →L[𝕜] E).is_O_comp _ _).congr (λ x, _) (λ _, rfl), simp }, refine this.trans_is_o _, clear this, refine ((hf.comp_tendsto hg).symm.congr' (hfg.mono _) (eventually_of_forall $ λ _, rfl)).trans_is_O _, { rintros p hp, simp [hp, hfg.self_of_nhds] }, { refine ((hf.is_O_sub_rev f'.antilipschitz).comp_tendsto hg).congr' (eventually_of_forall $ λ _, rfl) (hfg.mono _), rintros p hp, simp only [(∘), hp, hfg.self_of_nhds] } end /-- If `f` is a local homeomorphism defined on a neighbourhood of `f.symm a`, and `f` has an invertible derivative `f'` in the sense of strict differentiability at `f.symm a`, then `f.symm` has the derivative `f'⁻¹` at `a`. This is one of the easy parts of the inverse function theorem: it assumes that we already have an inverse function. -/ lemma local_homeomorph.has_strict_fderiv_at_symm (f : local_homeomorph E F) {f' : E ≃L[𝕜] F} {a : F} (ha : a ∈ f.target) (htff' : has_strict_fderiv_at f (f' : E →L[𝕜] F) (f.symm a)) : has_strict_fderiv_at f.symm (f'.symm : F →L[𝕜] E) a := htff'.of_local_left_inverse (f.symm.continuous_at ha) (f.eventually_right_inverse ha) /-- If `f` is a local homeomorphism defined on a neighbourhood of `f.symm a`, and `f` has an invertible derivative `f'` at `f.symm a`, then `f.symm` has the derivative `f'⁻¹` at `a`. This is one of the easy parts of the inverse function theorem: it assumes that we already have an inverse function. -/ lemma local_homeomorph.has_fderiv_at_symm (f : local_homeomorph E F) {f' : E ≃L[𝕜] F} {a : F} (ha : a ∈ f.target) (htff' : has_fderiv_at f (f' : E →L[𝕜] F) (f.symm a)) : has_fderiv_at f.symm (f'.symm : F →L[𝕜] E) a := htff'.of_local_left_inverse (f.symm.continuous_at ha) (f.eventually_right_inverse ha) lemma has_fderiv_within_at.eventually_ne (h : has_fderiv_within_at f f' s x) (hf' : ∃ C, ∀ z, ∥z∥ ≤ C * ∥f' z∥) : ∀ᶠ z in 𝓝[s \ {x}] x, f z ≠ f x := begin rw [nhds_within, diff_eq, ← inf_principal, ← inf_assoc, eventually_inf_principal], have A : (λ z, z - x) =O[𝓝[s] x] (λ z, f' (z - x)) := (is_O_iff.2 $ hf'.imp $ λ C hC, eventually_of_forall $ λ z, hC _), have : (λ z, f z - f x) ~[𝓝[s] x] (λ z, f' (z - x)) := h.trans_is_O A, simpa [not_imp_not, sub_eq_zero] using (A.trans this.is_O_symm).eq_zero_imp end lemma has_fderiv_at.eventually_ne (h : has_fderiv_at f f' x) (hf' : ∃ C, ∀ z, ∥z∥ ≤ C * ∥f' z∥) : ∀ᶠ z in 𝓝[≠] x, f z ≠ f x := by simpa only [compl_eq_univ_diff] using (has_fderiv_within_at_univ.2 h).eventually_ne hf' end section /- In the special case of a normed space over the reals, we can use scalar multiplication in the `tendsto` characterization of the Fréchet derivative. -/ variables {E : Type*} [normed_add_comm_group E] [normed_space ℝ E] variables {F : Type*} [normed_add_comm_group F] [normed_space ℝ F] variables {f : E → F} {f' : E →L[ℝ] F} {x : E} theorem has_fderiv_at_filter_real_equiv {L : filter E} : tendsto (λ x' : E, ∥x' - x∥⁻¹ * ∥f x' - f x - f' (x' - x)∥) L (𝓝 0) ↔ tendsto (λ x' : E, ∥x' - x∥⁻¹ • (f x' - f x - f' (x' - x))) L (𝓝 0) := begin symmetry, rw [tendsto_iff_norm_tendsto_zero], refine tendsto_congr (λ x', _), have : ∥x' - x∥⁻¹ ≥ 0, from inv_nonneg.mpr (norm_nonneg _), simp [norm_smul, abs_of_nonneg this] end lemma has_fderiv_at.lim_real (hf : has_fderiv_at f f' x) (v : E) : tendsto (λ (c:ℝ), c • (f (x + c⁻¹ • v) - f x)) at_top (𝓝 (f' v)) := begin apply hf.lim v, rw tendsto_at_top_at_top, exact λ b, ⟨b, λ a ha, le_trans ha (le_abs_self _)⟩ end end section tangent_cone variables {𝕜 : Type*} [nontrivially_normed_field 𝕜] {E : Type*} [normed_add_comm_group E] [normed_space 𝕜 E] {F : Type*} [normed_add_comm_group F] [normed_space 𝕜 F] {f : E → F} {s : set E} {f' : E →L[𝕜] F} /-- The image of a tangent cone under the differential of a map is included in the tangent cone to the image. -/ lemma has_fderiv_within_at.maps_to_tangent_cone {x : E} (h : has_fderiv_within_at f f' s x) : maps_to f' (tangent_cone_at 𝕜 s x) (tangent_cone_at 𝕜 (f '' s) (f x)) := begin rintros v ⟨c, d, dtop, clim, cdlim⟩, refine ⟨c, (λn, f (x + d n) - f x), mem_of_superset dtop _, clim, h.lim at_top dtop clim cdlim⟩, simp [-mem_image, mem_image_of_mem] {contextual := tt} end /-- If a set has the unique differentiability property at a point x, then the image of this set under a map with onto derivative has also the unique differentiability property at the image point. -/ lemma has_fderiv_within_at.unique_diff_within_at {x : E} (h : has_fderiv_within_at f f' s x) (hs : unique_diff_within_at 𝕜 s x) (h' : dense_range f') : unique_diff_within_at 𝕜 (f '' s) (f x) := begin refine ⟨h'.dense_of_maps_to f'.continuous hs.1 _, h.continuous_within_at.mem_closure_image hs.2⟩, show submodule.span 𝕜 (tangent_cone_at 𝕜 s x) ≤ (submodule.span 𝕜 (tangent_cone_at 𝕜 (f '' s) (f x))).comap ↑f', rw [submodule.span_le], exact h.maps_to_tangent_cone.mono (subset.refl _) submodule.subset_span end lemma unique_diff_on.image {f' : E → E →L[𝕜] F} (hs : unique_diff_on 𝕜 s) (hf' : ∀ x ∈ s, has_fderiv_within_at f (f' x) s x) (hd : ∀ x ∈ s, dense_range (f' x)) : unique_diff_on 𝕜 (f '' s) := ball_image_iff.2 $ λ x hx, (hf' x hx).unique_diff_within_at (hs x hx) (hd x hx) lemma has_fderiv_within_at.unique_diff_within_at_of_continuous_linear_equiv {x : E} (e' : E ≃L[𝕜] F) (h : has_fderiv_within_at f (e' : E →L[𝕜] F) s x) (hs : unique_diff_within_at 𝕜 s x) : unique_diff_within_at 𝕜 (f '' s) (f x) := h.unique_diff_within_at hs e'.surjective.dense_range lemma continuous_linear_equiv.unique_diff_on_image (e : E ≃L[𝕜] F) (h : unique_diff_on 𝕜 s) : unique_diff_on 𝕜 (e '' s) := h.image (λ x _, e.has_fderiv_within_at) (λ x hx, e.surjective.dense_range) @[simp] lemma continuous_linear_equiv.unique_diff_on_image_iff (e : E ≃L[𝕜] F) : unique_diff_on 𝕜 (e '' s) ↔ unique_diff_on 𝕜 s := ⟨λ h, e.symm_image_image s ▸ e.symm.unique_diff_on_image h, e.unique_diff_on_image⟩ @[simp] lemma continuous_linear_equiv.unique_diff_on_preimage_iff (e : F ≃L[𝕜] E) : unique_diff_on 𝕜 (e ⁻¹' s) ↔ unique_diff_on 𝕜 s := by rw [← e.image_symm_eq_preimage, e.symm.unique_diff_on_image_iff] end tangent_cone section restrict_scalars /-! ### Restricting from `ℂ` to `ℝ`, or generally from `𝕜'` to `𝕜` If a function is differentiable over `ℂ`, then it is differentiable over `ℝ`. In this paragraph, we give variants of this statement, in the general situation where `ℂ` and `ℝ` are replaced respectively by `𝕜'` and `𝕜` where `𝕜'` is a normed algebra over `𝕜`. -/ variables (𝕜 : Type*) [nontrivially_normed_field 𝕜] variables {𝕜' : Type*} [nontrivially_normed_field 𝕜'] [normed_algebra 𝕜 𝕜'] variables {E : Type*} [normed_add_comm_group E] [normed_space 𝕜 E] [normed_space 𝕜' E] variables [is_scalar_tower 𝕜 𝕜' E] variables {F : Type*} [normed_add_comm_group F] [normed_space 𝕜 F] [normed_space 𝕜' F] variables [is_scalar_tower 𝕜 𝕜' F] variables {f : E → F} {f' : E →L[𝕜'] F} {s : set E} {x : E} lemma has_strict_fderiv_at.restrict_scalars (h : has_strict_fderiv_at f f' x) : has_strict_fderiv_at f (f'.restrict_scalars 𝕜) x := h lemma has_fderiv_at_filter.restrict_scalars {L} (h : has_fderiv_at_filter f f' x L) : has_fderiv_at_filter f (f'.restrict_scalars 𝕜) x L := h lemma has_fderiv_at.restrict_scalars (h : has_fderiv_at f f' x) : has_fderiv_at f (f'.restrict_scalars 𝕜) x := h lemma has_fderiv_within_at.restrict_scalars (h : has_fderiv_within_at f f' s x) : has_fderiv_within_at f (f'.restrict_scalars 𝕜) s x := h lemma differentiable_at.restrict_scalars (h : differentiable_at 𝕜' f x) : differentiable_at 𝕜 f x := (h.has_fderiv_at.restrict_scalars 𝕜).differentiable_at lemma differentiable_within_at.restrict_scalars (h : differentiable_within_at 𝕜' f s x) : differentiable_within_at 𝕜 f s x := (h.has_fderiv_within_at.restrict_scalars 𝕜).differentiable_within_at lemma differentiable_on.restrict_scalars (h : differentiable_on 𝕜' f s) : differentiable_on 𝕜 f s := λx hx, (h x hx).restrict_scalars 𝕜 lemma differentiable.restrict_scalars (h : differentiable 𝕜' f) : differentiable 𝕜 f := λx, (h x).restrict_scalars 𝕜 lemma has_fderiv_within_at_of_restrict_scalars {g' : E →L[𝕜] F} (h : has_fderiv_within_at f g' s x) (H : f'.restrict_scalars 𝕜 = g') : has_fderiv_within_at f f' s x := by { rw ← H at h, exact h } lemma has_fderiv_at_of_restrict_scalars {g' : E →L[𝕜] F} (h : has_fderiv_at f g' x) (H : f'.restrict_scalars 𝕜 = g') : has_fderiv_at f f' x := by { rw ← H at h, exact h } lemma differentiable_at.fderiv_restrict_scalars (h : differentiable_at 𝕜' f x) : fderiv 𝕜 f x = (fderiv 𝕜' f x).restrict_scalars 𝕜 := (h.has_fderiv_at.restrict_scalars 𝕜).fderiv lemma differentiable_within_at_iff_restrict_scalars (hf : differentiable_within_at 𝕜 f s x) (hs : unique_diff_within_at 𝕜 s x) : differentiable_within_at 𝕜' f s x ↔ ∃ (g' : E →L[𝕜'] F), g'.restrict_scalars 𝕜 = fderiv_within 𝕜 f s x := begin split, { rintros ⟨g', hg'⟩, exact ⟨g', hs.eq (hg'.restrict_scalars 𝕜) hf.has_fderiv_within_at⟩, }, { rintros ⟨f', hf'⟩, exact ⟨f', has_fderiv_within_at_of_restrict_scalars 𝕜 hf.has_fderiv_within_at hf'⟩, }, end lemma differentiable_at_iff_restrict_scalars (hf : differentiable_at 𝕜 f x) : differentiable_at 𝕜' f x ↔ ∃ (g' : E →L[𝕜'] F), g'.restrict_scalars 𝕜 = fderiv 𝕜 f x := begin rw [← differentiable_within_at_univ, ← fderiv_within_univ], exact differentiable_within_at_iff_restrict_scalars 𝕜 hf.differentiable_within_at unique_diff_within_at_univ, end end restrict_scalars /-! ### Support of derivatives -/ section support open function variables (𝕜 : Type*) {E F : Type*} [nontrivially_normed_field 𝕜] [normed_add_comm_group E] [normed_space 𝕜 E] [normed_add_comm_group F] [normed_space 𝕜 F] {f : E → F} lemma support_fderiv_subset : support (fderiv 𝕜 f) ⊆ tsupport f := begin intros x, rw [← not_imp_not], intro h2x, rw [not_mem_tsupport_iff_eventually_eq] at h2x, exact nmem_support.mpr (h2x.fderiv_eq.trans $ fderiv_const_apply 0), end lemma has_compact_support.fderiv (hf : has_compact_support f) : has_compact_support (fderiv 𝕜 f) := hf.mono' $ support_fderiv_subset 𝕜 end support