/- Copyright (c) 2020 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Heather Macbeth, Sébastien Gouëzel -/ import analysis.calculus.cont_diff import tactic.ring_exp import analysis.normed_space.banach import topology.local_homeomorph /-! # Inverse function theorem In this file we prove the inverse function theorem. It says that if a map `f : E → F` has an invertible strict derivative `f'` at `a`, then it is locally invertible, and the inverse function has derivative `f' ⁻¹`. We define `has_strict_deriv_at.to_local_homeomorph` that repacks a function `f` with a `hf : has_strict_fderiv_at f f' a`, `f' : E ≃L[𝕜] F`, into a `local_homeomorph`. The `to_fun` of this `local_homeomorph` is `defeq` to `f`, so one can apply theorems about `local_homeomorph` to `hf.to_local_homeomorph f`, and get statements about `f`. Then we define `has_strict_fderiv_at.local_inverse` to be the `inv_fun` of this `local_homeomorph`, and prove two versions of the inverse function theorem: * `has_strict_fderiv_at.to_local_inverse`: if `f` has an invertible derivative `f'` at `a` in the strict sense (`hf`), then `hf.local_inverse f f' a` has derivative `f'.symm` at `f a` in the strict sense; * `has_strict_fderiv_at.to_local_left_inverse`: if `f` has an invertible derivative `f'` at `a` in the strict sense and `g` is locally left inverse to `f` near `a`, then `g` has derivative `f'.symm` at `f a` in the strict sense. In the one-dimensional case we reformulate these theorems in terms of `has_strict_deriv_at` and `f'⁻¹`. We also reformulate the theorems in terms of `cont_diff`, to give that `C^k` (respectively, smooth) inputs give `C^k` (smooth) inverses. These versions require that continuous differentiability implies strict differentiability; this is false over a general field, true over `ℝ` or `ℂ` and implemented here assuming `is_R_or_C 𝕂`. Some related theorems, providing the derivative and higher regularity assuming that we already know the inverse function, are formulated in `fderiv.lean`, `deriv.lean`, and `cont_diff.lean`. ## Notations In the section about `approximates_linear_on` we introduce some `local notation` to make formulas shorter: * by `N` we denote `∥f'⁻¹∥`; * by `g` we denote the auxiliary contracting map `x ↦ x + f'.symm (y - f x)` used to prove that `{x | f x = y}` is nonempty. ## Tags derivative, strictly differentiable, continuously differentiable, smooth, inverse function -/ open function set filter metric open_locale topological_space classical nnreal noncomputable theory variables {𝕜 : Type*} [nontrivially_normed_field 𝕜] variables {E : Type*} [normed_add_comm_group E] [normed_space 𝕜 E] variables {F : Type*} [normed_add_comm_group F] [normed_space 𝕜 F] variables {G : Type*} [normed_add_comm_group G] [normed_space 𝕜 G] variables {G' : Type*} [normed_add_comm_group G'] [normed_space 𝕜 G'] variables {ε : ℝ} open asymptotics filter metric set open continuous_linear_map (id) /-! ### Non-linear maps close to affine maps In this section we study a map `f` such that `∥f x - f y - f' (x - y)∥ ≤ c * ∥x - y∥` on an open set `s`, where `f' : E →L[𝕜] F` is a continuous linear map and `c` is suitably small. Maps of this type behave like `f a + f' (x - a)` near each `a ∈ s`. When `f'` is onto, we show that `f` is locally onto. When `f'` is a continuous linear equiv, we show that `f` is a homeomorphism between `s` and `f '' s`. More precisely, we define `approximates_linear_on.to_local_homeomorph` to be a `local_homeomorph` with `to_fun = f`, `source = s`, and `target = f '' s`. Maps of this type naturally appear in the proof of the inverse function theorem (see next section), and `approximates_linear_on.to_local_homeomorph` will imply that the locally inverse function exists. We define this auxiliary notion to split the proof of the inverse function theorem into small lemmas. This approach makes it possible - to prove a lower estimate on the size of the domain of the inverse function; - to reuse parts of the proofs in the case if a function is not strictly differentiable. E.g., for a function `f : E × F → G` with estimates on `f x y₁ - f x y₂` but not on `f x₁ y - f x₂ y`. -/ /-- We say that `f` approximates a continuous linear map `f'` on `s` with constant `c`, if `∥f x - f y - f' (x - y)∥ ≤ c * ∥x - y∥` whenever `x, y ∈ s`. This predicate is defined to facilitate the splitting of the inverse function theorem into small lemmas. Some of these lemmas can be useful, e.g., to prove that the inverse function is defined on a specific set. -/ def approximates_linear_on (f : E → F) (f' : E →L[𝕜] F) (s : set E) (c : ℝ≥0) : Prop := ∀ (x ∈ s) (y ∈ s), ∥f x - f y - f' (x - y)∥ ≤ c * ∥x - y∥ @[simp] lemma approximates_linear_on_empty (f : E → F) (f' : E →L[𝕜] F) (c : ℝ≥0) : approximates_linear_on f f' ∅ c := by simp [approximates_linear_on] namespace approximates_linear_on variables [cs : complete_space E] {f : E → F} /-! First we prove some properties of a function that `approximates_linear_on` a (not necessarily invertible) continuous linear map. -/ section variables {f' : E →L[𝕜] F} {s t : set E} {c c' : ℝ≥0} theorem mono_num (hc : c ≤ c') (hf : approximates_linear_on f f' s c) : approximates_linear_on f f' s c' := λ x hx y hy, le_trans (hf x hx y hy) (mul_le_mul_of_nonneg_right hc $ norm_nonneg _) theorem mono_set (hst : s ⊆ t) (hf : approximates_linear_on f f' t c) : approximates_linear_on f f' s c := λ x hx y hy, hf x (hst hx) y (hst hy) lemma approximates_linear_on_iff_lipschitz_on_with {f : E → F} {f' : E →L[𝕜] F} {s : set E} {c : ℝ≥0} : approximates_linear_on f f' s c ↔ lipschitz_on_with c (f - f') s := begin have : ∀ x y, f x - f y - f' (x - y) = (f - f') x - (f - f') y, { assume x y, simp only [map_sub, pi.sub_apply], abel }, simp only [this, lipschitz_on_with_iff_norm_sub_le, approximates_linear_on], end alias approximates_linear_on_iff_lipschitz_on_with ↔ lipschitz_on_with _root_.lipschitz_on_with.approximates_linear_on lemma lipschitz_sub (hf : approximates_linear_on f f' s c) : lipschitz_with c (λ x : s, f x - f' x) := begin refine lipschitz_with.of_dist_le_mul (λ x y, _), rw [dist_eq_norm, subtype.dist_eq, dist_eq_norm], convert hf x x.2 y y.2 using 2, rw [f'.map_sub], abel end protected lemma lipschitz (hf : approximates_linear_on f f' s c) : lipschitz_with (∥f'∥₊ + c) (s.restrict f) := by simpa only [restrict_apply, add_sub_cancel'_right] using (f'.lipschitz.restrict s).add hf.lipschitz_sub protected lemma continuous (hf : approximates_linear_on f f' s c) : continuous (s.restrict f) := hf.lipschitz.continuous protected lemma continuous_on (hf : approximates_linear_on f f' s c) : continuous_on f s := continuous_on_iff_continuous_restrict.2 hf.continuous end section locally_onto /-! We prove that a function which is linearly approximated by a continuous linear map with a nonlinear right inverse is locally onto. This will apply to the case where the approximating map is a linear equivalence, for the local inverse theorem, but also whenever the approximating map is onto, by Banach's open mapping theorem. -/ include cs variables {s : set E} {c : ℝ≥0} {f' : E →L[𝕜] F} /-- If a function is linearly approximated by a continuous linear map with a (possibly nonlinear) right inverse, then it is locally onto: a ball of an explicit radius is included in the image of the map. -/ theorem surj_on_closed_ball_of_nonlinear_right_inverse (hf : approximates_linear_on f f' s c) (f'symm : f'.nonlinear_right_inverse) {ε : ℝ} {b : E} (ε0 : 0 ≤ ε) (hε : closed_ball b ε ⊆ s) : surj_on f (closed_ball b ε) (closed_ball (f b) (((f'symm.nnnorm : ℝ)⁻¹ - c) * ε)) := begin assume y hy, cases le_or_lt (f'symm.nnnorm : ℝ) ⁻¹ c with hc hc, { refine ⟨b, by simp [ε0], _⟩, have : dist y (f b) ≤ 0 := (mem_closed_ball.1 hy).trans (mul_nonpos_of_nonpos_of_nonneg (by linarith) ε0), simp only [dist_le_zero] at this, rw this }, have If' : (0 : ℝ) < f'symm.nnnorm, by { rw [← inv_pos], exact (nnreal.coe_nonneg _).trans_lt hc }, have Icf' : (c : ℝ) * f'symm.nnnorm < 1, by rwa [inv_eq_one_div, lt_div_iff If'] at hc, have Jf' : (f'symm.nnnorm : ℝ) ≠ 0 := ne_of_gt If', have Jcf' : (1 : ℝ) - c * f'symm.nnnorm ≠ 0, by { apply ne_of_gt, linarith }, /- We have to show that `y` can be written as `f x` for some `x ∈ closed_ball b ε`. The idea of the proof is to apply the Banach contraction principle to the map `g : x ↦ x + f'symm (y - f x)`, as a fixed point of this map satisfies `f x = y`. When `f'symm` is a genuine linear inverse, `g` is a contracting map. In our case, since `f'symm` is nonlinear, this map is not contracting (it is not even continuous), but still the proof of the contraction theorem holds: `uₙ = gⁿ b` is a Cauchy sequence, converging exponentially fast to the desired point `x`. Instead of appealing to general results, we check this by hand. The main point is that `f (u n)` becomes exponentially close to `y`, and therefore `dist (u (n+1)) (u n)` becomes exponentally small, making it possible to get an inductive bound on `dist (u n) b`, from which one checks that `u n` stays in the ball on which one has a control. Therefore, the bound can be checked at the next step, and so on inductively. -/ set g := λ x, x + f'symm (y - f x) with hg, set u := λ (n : ℕ), g ^[n] b with hu, have usucc : ∀ n, u (n + 1) = g (u n), by simp [hu, ← iterate_succ_apply' g _ b], -- First bound: if `f z` is close to `y`, then `g z` is close to `z` (i.e., almost a fixed point). have A : ∀ z, dist (g z) z ≤ f'symm.nnnorm * dist (f z) y, { assume z, rw [dist_eq_norm, hg, add_sub_cancel', dist_eq_norm'], exact f'symm.bound _ }, -- Second bound: if `z` and `g z` are in the set with good control, then `f (g z)` becomes closer -- to `y` than `f z` was (this uses the linear approximation property, and is the reason for the -- choice of the formula for `g`). have B : ∀ z ∈ closed_ball b ε, g z ∈ closed_ball b ε → dist (f (g z)) y ≤ c * f'symm.nnnorm * dist (f z) y, { assume z hz hgz, set v := f'symm (y - f z) with hv, calc dist (f (g z)) y = ∥f (z + v) - y∥ : by rw [dist_eq_norm] ... = ∥f (z + v) - f z - f' v + f' v - (y - f z)∥ : by { congr' 1, abel } ... = ∥f (z + v) - f z - f' ((z + v) - z)∥ : by simp only [continuous_linear_map.nonlinear_right_inverse.right_inv, add_sub_cancel', sub_add_cancel] ... ≤ c * ∥(z + v) - z∥ : hf _ (hε hgz) _ (hε hz) ... ≤ c * (f'symm.nnnorm * dist (f z) y) : begin apply mul_le_mul_of_nonneg_left _ (nnreal.coe_nonneg c), simpa [hv, dist_eq_norm'] using f'symm.bound (y - f z), end ... = c * f'symm.nnnorm * dist (f z) y : by ring }, -- Third bound: a complicated bound on `dist w b` (that will show up in the induction) is enough -- to check that `w` is in the ball on which one has controls. Will be used to check that `u n` -- belongs to this ball for all `n`. have C : ∀ (n : ℕ) (w : E), dist w b ≤ f'symm.nnnorm * (1 - (c * f'symm.nnnorm)^n) / (1 - c * f'symm.nnnorm) * dist (f b) y → w ∈ closed_ball b ε, { assume n w hw, apply hw.trans, rw [div_mul_eq_mul_div, div_le_iff], swap, { linarith }, calc (f'symm.nnnorm : ℝ) * (1 - (c * f'symm.nnnorm) ^ n) * dist (f b) y = f'symm.nnnorm * dist (f b) y * (1 - (c * f'symm.nnnorm) ^ n) : by ring ... ≤ f'symm.nnnorm * dist (f b) y * 1 : begin apply mul_le_mul_of_nonneg_left _ (mul_nonneg (nnreal.coe_nonneg _) dist_nonneg), rw [sub_le_self_iff], exact pow_nonneg (mul_nonneg (nnreal.coe_nonneg _) (nnreal.coe_nonneg _)) _, end ... ≤ f'symm.nnnorm * (((f'symm.nnnorm : ℝ)⁻¹ - c) * ε) : by { rw [mul_one], exact mul_le_mul_of_nonneg_left (mem_closed_ball'.1 hy) (nnreal.coe_nonneg _) } ... = ε * (1 - c * f'symm.nnnorm) : by { field_simp, ring } }, /- Main inductive control: `f (u n)` becomes exponentially close to `y`, and therefore `dist (u (n+1)) (u n)` becomes exponentally small, making it possible to get an inductive bound on `dist (u n) b`, from which one checks that `u n` remains in the ball on which we have estimates. -/ have D : ∀ (n : ℕ), dist (f (u n)) y ≤ (c * f'symm.nnnorm)^n * dist (f b) y ∧ dist (u n) b ≤ f'symm.nnnorm * (1 - (c * f'symm.nnnorm)^n) / (1 - c * f'symm.nnnorm) * dist (f b) y, { assume n, induction n with n IH, { simp [hu, le_refl] }, rw usucc, have Ign : dist (g (u n)) b ≤ f'symm.nnnorm * (1 - (c * f'symm.nnnorm)^n.succ) / (1 - c * f'symm.nnnorm) * dist (f b) y := calc dist (g (u n)) b ≤ dist (g (u n)) (u n) + dist (u n) b : dist_triangle _ _ _ ... ≤ f'symm.nnnorm * dist (f (u n)) y + dist (u n) b : add_le_add (A _) le_rfl ... ≤ f'symm.nnnorm * ((c * f'symm.nnnorm)^n * dist (f b) y) + f'symm.nnnorm * (1 - (c * f'symm.nnnorm)^n) / (1 - c * f'symm.nnnorm) * dist (f b) y : add_le_add (mul_le_mul_of_nonneg_left IH.1 (nnreal.coe_nonneg _)) IH.2 ... = f'symm.nnnorm * (1 - (c * f'symm.nnnorm)^n.succ) / (1 - c * f'symm.nnnorm) * dist (f b) y : by { field_simp [Jcf'], ring_exp }, refine ⟨_, Ign⟩, calc dist (f (g (u n))) y ≤ c * f'symm.nnnorm * dist (f (u n)) y : B _ (C n _ IH.2) (C n.succ _ Ign) ... ≤ (c * f'symm.nnnorm) * ((c * f'symm.nnnorm)^n * dist (f b) y) : mul_le_mul_of_nonneg_left IH.1 (mul_nonneg (nnreal.coe_nonneg _) (nnreal.coe_nonneg _)) ... = (c * f'symm.nnnorm) ^ n.succ * dist (f b) y : by ring_exp }, -- Deduce from the inductive bound that `uₙ` is a Cauchy sequence, therefore converging. have : cauchy_seq u, { have : ∀ (n : ℕ), dist (u n) (u (n+1)) ≤ f'symm.nnnorm * dist (f b) y * (c * f'symm.nnnorm)^n, { assume n, calc dist (u n) (u (n+1)) = dist (g (u n)) (u n) : by rw [usucc, dist_comm] ... ≤ f'symm.nnnorm * dist (f (u n)) y : A _ ... ≤ f'symm.nnnorm * ((c * f'symm.nnnorm)^n * dist (f b) y) : mul_le_mul_of_nonneg_left (D n).1 (nnreal.coe_nonneg _) ... = f'symm.nnnorm * dist (f b) y * (c * f'symm.nnnorm)^n : by ring }, exact cauchy_seq_of_le_geometric _ _ Icf' this }, obtain ⟨x, hx⟩ : ∃ x, tendsto u at_top (𝓝 x) := cauchy_seq_tendsto_of_complete this, -- As all the `uₙ` belong to the ball `closed_ball b ε`, so does their limit `x`. have xmem : x ∈ closed_ball b ε := is_closed_ball.mem_of_tendsto hx (eventually_of_forall (λ n, C n _ (D n).2)), refine ⟨x, xmem, _⟩, -- It remains to check that `f x = y`. This follows from continuity of `f` on `closed_ball b ε` -- and from the fact that `f uₙ` is converging to `y` by construction. have hx' : tendsto u at_top (𝓝[closed_ball b ε] x), { simp only [nhds_within, tendsto_inf, hx, true_and, ge_iff_le, tendsto_principal], exact eventually_of_forall (λ n, C n _ (D n).2) }, have T1 : tendsto (λ n, f (u n)) at_top (𝓝 (f x)) := (hf.continuous_on.mono hε x xmem).tendsto.comp hx', have T2 : tendsto (λ n, f (u n)) at_top (𝓝 y), { rw tendsto_iff_dist_tendsto_zero, refine squeeze_zero (λ n, dist_nonneg) (λ n, (D n).1) _, simpa using (tendsto_pow_at_top_nhds_0_of_lt_1 (mul_nonneg (nnreal.coe_nonneg _) (nnreal.coe_nonneg _)) Icf').mul tendsto_const_nhds }, exact tendsto_nhds_unique T1 T2, end lemma open_image (hf : approximates_linear_on f f' s c) (f'symm : f'.nonlinear_right_inverse) (hs : is_open s) (hc : subsingleton F ∨ c < f'symm.nnnorm⁻¹) : is_open (f '' s) := begin cases hc with hE hc, { resetI, apply is_open_discrete }, simp only [is_open_iff_mem_nhds, nhds_basis_closed_ball.mem_iff, ball_image_iff] at hs ⊢, intros x hx, rcases hs x hx with ⟨ε, ε0, hε⟩, refine ⟨(f'symm.nnnorm⁻¹ - c) * ε, mul_pos (sub_pos.2 hc) ε0, _⟩, exact (hf.surj_on_closed_ball_of_nonlinear_right_inverse f'symm (le_of_lt ε0) hε).mono hε (subset.refl _) end lemma image_mem_nhds (hf : approximates_linear_on f f' s c) (f'symm : f'.nonlinear_right_inverse) {x : E} (hs : s ∈ 𝓝 x) (hc : subsingleton F ∨ c < f'symm.nnnorm⁻¹) : f '' s ∈ 𝓝 (f x) := begin obtain ⟨t, hts, ht, xt⟩ : ∃ t ⊆ s, is_open t ∧ x ∈ t := _root_.mem_nhds_iff.1 hs, have := is_open.mem_nhds ((hf.mono_set hts).open_image f'symm ht hc) (mem_image_of_mem _ xt), exact mem_of_superset this (image_subset _ hts), end lemma map_nhds_eq (hf : approximates_linear_on f f' s c) (f'symm : f'.nonlinear_right_inverse) {x : E} (hs : s ∈ 𝓝 x) (hc : subsingleton F ∨ c < f'symm.nnnorm⁻¹) : map f (𝓝 x) = 𝓝 (f x) := begin refine le_antisymm ((hf.continuous_on x (mem_of_mem_nhds hs)).continuous_at hs) (le_map (λ t ht, _)), have : f '' (s ∩ t) ∈ 𝓝 (f x) := (hf.mono_set (inter_subset_left s t)).image_mem_nhds f'symm (inter_mem hs ht) hc, exact mem_of_superset this (image_subset _ (inter_subset_right _ _)), end end locally_onto /-! From now on we assume that `f` approximates an invertible continuous linear map `f : E ≃L[𝕜] F`. We also assume that either `E = {0}`, or `c < ∥f'⁻¹∥⁻¹`. We use `N` as an abbreviation for `∥f'⁻¹∥`. -/ variables {f' : E ≃L[𝕜] F} {s : set E} {c : ℝ≥0} local notation `N` := ∥(f'.symm : F →L[𝕜] E)∥₊ protected lemma antilipschitz (hf : approximates_linear_on f (f' : E →L[𝕜] F) s c) (hc : subsingleton E ∨ c < N⁻¹) : antilipschitz_with (N⁻¹ - c)⁻¹ (s.restrict f) := begin cases hc with hE hc, { haveI : subsingleton s := ⟨λ x y, subtype.eq $ @subsingleton.elim _ hE _ _⟩, exact antilipschitz_with.of_subsingleton }, convert (f'.antilipschitz.restrict s).add_lipschitz_with hf.lipschitz_sub hc, simp [restrict] end protected lemma injective (hf : approximates_linear_on f (f' : E →L[𝕜] F) s c) (hc : subsingleton E ∨ c < N⁻¹) : injective (s.restrict f) := (hf.antilipschitz hc).injective protected lemma inj_on (hf : approximates_linear_on f (f' : E →L[𝕜] F) s c) (hc : subsingleton E ∨ c < N⁻¹) : inj_on f s := inj_on_iff_injective.2 $ hf.injective hc protected lemma surjective [complete_space E] (hf : approximates_linear_on f (f' : E →L[𝕜] F) univ c) (hc : subsingleton E ∨ c < N⁻¹) : surjective f := begin cases hc with hE hc, { haveI : subsingleton F := (equiv.subsingleton_congr f'.to_linear_equiv.to_equiv).1 hE, exact surjective_to_subsingleton _ }, { apply forall_of_forall_mem_closed_ball (λ (y : F), ∃ a, f a = y) (f 0) _, have hc' : (0 : ℝ) < N⁻¹ - c, by { rw sub_pos, exact hc }, let p : ℝ → Prop := λ R, closed_ball (f 0) R ⊆ set.range f, have hp : ∀ᶠ (r:ℝ) in at_top, p ((N⁻¹ - c) * r), { have hr : ∀ᶠ (r:ℝ) in at_top, 0 ≤ r := eventually_ge_at_top 0, refine hr.mono (λ r hr, subset.trans _ (image_subset_range f (closed_ball 0 r))), refine hf.surj_on_closed_ball_of_nonlinear_right_inverse f'.to_nonlinear_right_inverse hr _, exact subset_univ _ }, refine ((tendsto_id.const_mul_at_top hc').frequently hp.frequently).mono _, exact λ R h y hy, h hy }, end /-- A map approximating a linear equivalence on a set defines a local equivalence on this set. Should not be used outside of this file, because it is superseded by `to_local_homeomorph` below. This is a first step towards the inverse function. -/ def to_local_equiv (hf : approximates_linear_on f (f' : E →L[𝕜] F) s c) (hc : subsingleton E ∨ c < N⁻¹) : local_equiv E F := (hf.inj_on hc).to_local_equiv _ _ /-- The inverse function is continuous on `f '' s`. Use properties of `local_homeomorph` instead. -/ lemma inverse_continuous_on (hf : approximates_linear_on f (f' : E →L[𝕜] F) s c) (hc : subsingleton E ∨ c < N⁻¹) : continuous_on (hf.to_local_equiv hc).symm (f '' s) := begin apply continuous_on_iff_continuous_restrict.2, refine ((hf.antilipschitz hc).to_right_inv_on' _ (hf.to_local_equiv hc).right_inv').continuous, exact (λ x hx, (hf.to_local_equiv hc).map_target hx) end /-- The inverse function is approximated linearly on `f '' s` by `f'.symm`. -/ lemma to_inv (hf : approximates_linear_on f (f' : E →L[𝕜] F) s c) (hc : subsingleton E ∨ c < N⁻¹) : approximates_linear_on (hf.to_local_equiv hc).symm (f'.symm : F →L[𝕜] E) (f '' s) (N * (N⁻¹ - c)⁻¹ * c) := begin assume x hx y hy, set A := hf.to_local_equiv hc with hA, have Af : ∀ z, A z = f z := λ z, rfl, rcases (mem_image _ _ _).1 hx with ⟨x', x's, rfl⟩, rcases (mem_image _ _ _).1 hy with ⟨y', y's, rfl⟩, rw [← Af x', ← Af y', A.left_inv x's, A.left_inv y's], calc ∥x' - y' - (f'.symm) (A x' - A y')∥ ≤ N * ∥f' (x' - y' - (f'.symm) (A x' - A y'))∥ : (f' : E →L[𝕜] F).bound_of_antilipschitz f'.antilipschitz _ ... = N * ∥A y' - A x' - f' (y' - x')∥ : begin congr' 2, simp only [continuous_linear_equiv.apply_symm_apply, continuous_linear_equiv.map_sub], abel, end ... ≤ N * (c * ∥y' - x'∥) : mul_le_mul_of_nonneg_left (hf _ y's _ x's) (nnreal.coe_nonneg _) ... ≤ N * (c * (((N⁻¹ - c)⁻¹ : ℝ≥0) * ∥A y' - A x'∥)) : begin apply_rules [mul_le_mul_of_nonneg_left, nnreal.coe_nonneg], rw [← dist_eq_norm, ← dist_eq_norm], exact (hf.antilipschitz hc).le_mul_dist ⟨y', y's⟩ ⟨x', x's⟩, end ... = (N * (N⁻¹ - c)⁻¹ * c : ℝ≥0) * ∥A x' - A y'∥ : by { simp only [norm_sub_rev, nonneg.coe_mul], ring } end include cs section variables (f s) /-- Given a function `f` that approximates a linear equivalence on an open set `s`, returns a local homeomorph with `to_fun = f` and `source = s`. -/ def to_local_homeomorph (hf : approximates_linear_on f (f' : E →L[𝕜] F) s c) (hc : subsingleton E ∨ c < N⁻¹) (hs : is_open s) : local_homeomorph E F := { to_local_equiv := hf.to_local_equiv hc, open_source := hs, open_target := hf.open_image f'.to_nonlinear_right_inverse hs (by rwa f'.to_linear_equiv.to_equiv.subsingleton_congr at hc), continuous_to_fun := hf.continuous_on, continuous_inv_fun := hf.inverse_continuous_on hc } /-- A function `f` that approximates a linear equivalence on the whole space is a homeomorphism. -/ def to_homeomorph (hf : approximates_linear_on f (f' : E →L[𝕜] F) univ c) (hc : subsingleton E ∨ c < N⁻¹) : E ≃ₜ F := begin refine (hf.to_local_homeomorph _ _ hc is_open_univ).to_homeomorph_of_source_eq_univ_target_eq_univ rfl _, change f '' univ = univ, rw [image_univ, range_iff_surjective], exact hf.surjective hc, end omit cs /-- In a real vector space, a function `f` that approximates a linear equivalence on a subset `s` can be extended to a homeomorphism of the whole space. -/ lemma exists_homeomorph_extension {E : Type*} [normed_add_comm_group E] [normed_space ℝ E] {F : Type*} [normed_add_comm_group F] [normed_space ℝ F] [finite_dimensional ℝ F] {s : set E} {f : E → F} {f' : E ≃L[ℝ] F} {c : ℝ≥0} (hf : approximates_linear_on f (f' : E →L[ℝ] F) s c) (hc : subsingleton E ∨ lipschitz_extension_constant F * c < (∥(f'.symm : F →L[ℝ] E)∥₊)⁻¹) : ∃ g : E ≃ₜ F, eq_on f g s := begin -- the difference `f - f'` is Lipschitz on `s`. It can be extended to a Lipschitz function `u` -- on the whole space, with a slightly worse Lipschitz constant. Then `f' + u` will be the -- desired homeomorphism. obtain ⟨u, hu, uf⟩ : ∃ (u : E → F), lipschitz_with (lipschitz_extension_constant F * c) u ∧ eq_on (f - f') u s := hf.lipschitz_on_with.extend_finite_dimension, let g : E → F := λ x, f' x + u x, have fg : eq_on f g s := λ x hx, by simp_rw [g, ← uf hx, pi.sub_apply, add_sub_cancel'_right], have hg : approximates_linear_on g (f' : E →L[ℝ] F) univ (lipschitz_extension_constant F * c), { apply lipschitz_on_with.approximates_linear_on, rw lipschitz_on_univ, convert hu, ext x, simp only [add_sub_cancel', continuous_linear_equiv.coe_coe, pi.sub_apply] }, haveI : finite_dimensional ℝ E := f'.symm.to_linear_equiv.finite_dimensional, exact ⟨hg.to_homeomorph g hc, fg⟩, end end @[simp] lemma to_local_homeomorph_coe (hf : approximates_linear_on f (f' : E →L[𝕜] F) s c) (hc : subsingleton E ∨ c < N⁻¹) (hs : is_open s) : (hf.to_local_homeomorph f s hc hs : E → F) = f := rfl @[simp] lemma to_local_homeomorph_source (hf : approximates_linear_on f (f' : E →L[𝕜] F) s c) (hc : subsingleton E ∨ c < N⁻¹) (hs : is_open s) : (hf.to_local_homeomorph f s hc hs).source = s := rfl @[simp] lemma to_local_homeomorph_target (hf : approximates_linear_on f (f' : E →L[𝕜] F) s c) (hc : subsingleton E ∨ c < N⁻¹) (hs : is_open s) : (hf.to_local_homeomorph f s hc hs).target = f '' s := rfl lemma closed_ball_subset_target (hf : approximates_linear_on f (f' : E →L[𝕜] F) s c) (hc : subsingleton E ∨ c < N⁻¹) (hs : is_open s) {b : E} (ε0 : 0 ≤ ε) (hε : closed_ball b ε ⊆ s) : closed_ball (f b) ((N⁻¹ - c) * ε) ⊆ (hf.to_local_homeomorph f s hc hs).target := (hf.surj_on_closed_ball_of_nonlinear_right_inverse f'.to_nonlinear_right_inverse ε0 hε).mono hε (subset.refl _) end approximates_linear_on /-! ### Inverse function theorem Now we prove the inverse function theorem. Let `f : E → F` be a map defined on a complete vector space `E`. Assume that `f` has an invertible derivative `f' : E ≃L[𝕜] F` at `a : E` in the strict sense. Then `f` approximates `f'` in the sense of `approximates_linear_on` on an open neighborhood of `a`, and we can apply `approximates_linear_on.to_local_homeomorph` to construct the inverse function. -/ namespace has_strict_fderiv_at /-- If `f` has derivative `f'` at `a` in the strict sense and `c > 0`, then `f` approximates `f'` with constant `c` on some neighborhood of `a`. -/ lemma approximates_deriv_on_nhds {f : E → F} {f' : E →L[𝕜] F} {a : E} (hf : has_strict_fderiv_at f f' a) {c : ℝ≥0} (hc : subsingleton E ∨ 0 < c) : ∃ s ∈ 𝓝 a, approximates_linear_on f f' s c := begin cases hc with hE hc, { refine ⟨univ, is_open.mem_nhds is_open_univ trivial, λ x hx y hy, _⟩, simp [@subsingleton.elim E hE x y] }, have := hf.def hc, rw [nhds_prod_eq, filter.eventually, mem_prod_same_iff] at this, rcases this with ⟨s, has, hs⟩, exact ⟨s, has, λ x hx y hy, hs (mk_mem_prod hx hy)⟩ end lemma map_nhds_eq_of_surj [complete_space E] [complete_space F] {f : E → F} {f' : E →L[𝕜] F} {a : E} (hf : has_strict_fderiv_at f (f' : E →L[𝕜] F) a) (h : f'.range = ⊤) : map f (𝓝 a) = 𝓝 (f a) := begin let f'symm := f'.nonlinear_right_inverse_of_surjective h, set c : ℝ≥0 := f'symm.nnnorm⁻¹ / 2 with hc, have f'symm_pos : 0 < f'symm.nnnorm := f'.nonlinear_right_inverse_of_surjective_nnnorm_pos h, have cpos : 0 < c, by simp [hc, nnreal.half_pos, nnreal.inv_pos, f'symm_pos], obtain ⟨s, s_nhds, hs⟩ : ∃ s ∈ 𝓝 a, approximates_linear_on f f' s c := hf.approximates_deriv_on_nhds (or.inr cpos), apply hs.map_nhds_eq f'symm s_nhds (or.inr (nnreal.half_lt_self _)), simp [ne_of_gt f'symm_pos], end variables [cs : complete_space E] {f : E → F} {f' : E ≃L[𝕜] F} {a : E} lemma approximates_deriv_on_open_nhds (hf : has_strict_fderiv_at f (f' : E →L[𝕜] F) a) : ∃ (s : set E) (hs : a ∈ s ∧ is_open s), approximates_linear_on f (f' : E →L[𝕜] F) s (∥(f'.symm : F →L[𝕜] E)∥₊⁻¹ / 2) := begin refine ((nhds_basis_opens a).exists_iff _).1 _, exact (λ s t, approximates_linear_on.mono_set), exact (hf.approximates_deriv_on_nhds $ f'.subsingleton_or_nnnorm_symm_pos.imp id $ λ hf', nnreal.half_pos $ nnreal.inv_pos.2 $ hf') end include cs variable (f) /-- Given a function with an invertible strict derivative at `a`, returns a `local_homeomorph` with `to_fun = f` and `a ∈ source`. This is a part of the inverse function theorem. The other part `has_strict_fderiv_at.to_local_inverse` states that the inverse function of this `local_homeomorph` has derivative `f'.symm`. -/ def to_local_homeomorph (hf : has_strict_fderiv_at f (f' : E →L[𝕜] F) a) : local_homeomorph E F := approximates_linear_on.to_local_homeomorph f (classical.some hf.approximates_deriv_on_open_nhds) (classical.some_spec hf.approximates_deriv_on_open_nhds).snd (f'.subsingleton_or_nnnorm_symm_pos.imp id $ λ hf', nnreal.half_lt_self $ ne_of_gt $ nnreal.inv_pos.2 $ hf') (classical.some_spec hf.approximates_deriv_on_open_nhds).fst.2 variable {f} @[simp] lemma to_local_homeomorph_coe (hf : has_strict_fderiv_at f (f' : E →L[𝕜] F) a) : (hf.to_local_homeomorph f : E → F) = f := rfl lemma mem_to_local_homeomorph_source (hf : has_strict_fderiv_at f (f' : E →L[𝕜] F) a) : a ∈ (hf.to_local_homeomorph f).source := (classical.some_spec hf.approximates_deriv_on_open_nhds).fst.1 lemma image_mem_to_local_homeomorph_target (hf : has_strict_fderiv_at f (f' : E →L[𝕜] F) a) : f a ∈ (hf.to_local_homeomorph f).target := (hf.to_local_homeomorph f).map_source hf.mem_to_local_homeomorph_source lemma map_nhds_eq_of_equiv (hf : has_strict_fderiv_at f (f' : E →L[𝕜] F) a) : map f (𝓝 a) = 𝓝 (f a) := (hf.to_local_homeomorph f).map_nhds_eq hf.mem_to_local_homeomorph_source variables (f f' a) /-- Given a function `f` with an invertible derivative, returns a function that is locally inverse to `f`. -/ def local_inverse (hf : has_strict_fderiv_at f (f' : E →L[𝕜] F) a) : F → E := (hf.to_local_homeomorph f).symm variables {f f' a} lemma local_inverse_def (hf : has_strict_fderiv_at f (f' : E →L[𝕜] F) a) : hf.local_inverse f _ _ = (hf.to_local_homeomorph f).symm := rfl lemma eventually_left_inverse (hf : has_strict_fderiv_at f (f' : E →L[𝕜] F) a) : ∀ᶠ x in 𝓝 a, hf.local_inverse f f' a (f x) = x := (hf.to_local_homeomorph f).eventually_left_inverse hf.mem_to_local_homeomorph_source @[simp] lemma local_inverse_apply_image (hf : has_strict_fderiv_at f (f' : E →L[𝕜] F) a) : hf.local_inverse f f' a (f a) = a := hf.eventually_left_inverse.self_of_nhds lemma eventually_right_inverse (hf : has_strict_fderiv_at f (f' : E →L[𝕜] F) a) : ∀ᶠ y in 𝓝 (f a), f (hf.local_inverse f f' a y) = y := (hf.to_local_homeomorph f).eventually_right_inverse' hf.mem_to_local_homeomorph_source lemma local_inverse_continuous_at (hf : has_strict_fderiv_at f (f' : E →L[𝕜] F) a) : continuous_at (hf.local_inverse f f' a) (f a) := (hf.to_local_homeomorph f).continuous_at_symm hf.image_mem_to_local_homeomorph_target lemma local_inverse_tendsto (hf : has_strict_fderiv_at f (f' : E →L[𝕜] F) a) : tendsto (hf.local_inverse f f' a) (𝓝 $ f a) (𝓝 a) := (hf.to_local_homeomorph f).tendsto_symm hf.mem_to_local_homeomorph_source lemma local_inverse_unique (hf : has_strict_fderiv_at f (f' : E →L[𝕜] F) a) {g : F → E} (hg : ∀ᶠ x in 𝓝 a, g (f x) = x) : ∀ᶠ y in 𝓝 (f a), g y = local_inverse f f' a hf y := eventually_eq_of_left_inv_of_right_inv hg hf.eventually_right_inverse $ (hf.to_local_homeomorph f).tendsto_symm hf.mem_to_local_homeomorph_source /-- If `f` has an invertible derivative `f'` at `a` in the sense of strict differentiability `(hf)`, then the inverse function `hf.local_inverse f` has derivative `f'.symm` at `f a`. -/ theorem to_local_inverse (hf : has_strict_fderiv_at f (f' : E →L[𝕜] F) a) : has_strict_fderiv_at (hf.local_inverse f f' a) (f'.symm : F →L[𝕜] E) (f a) := (hf.to_local_homeomorph f).has_strict_fderiv_at_symm hf.image_mem_to_local_homeomorph_target $ by simpa [← local_inverse_def] using hf /-- If `f : E → F` has an invertible derivative `f'` at `a` in the sense of strict differentiability and `g (f x) = x` in a neighborhood of `a`, then `g` has derivative `f'.symm` at `f a`. For a version assuming `f (g y) = y` and continuity of `g` at `f a` but not `[complete_space E]` see `of_local_left_inverse`. -/ theorem to_local_left_inverse (hf : has_strict_fderiv_at f (f' : E →L[𝕜] F) a) {g : F → E} (hg : ∀ᶠ x in 𝓝 a, g (f x) = x) : has_strict_fderiv_at g (f'.symm : F →L[𝕜] E) (f a) := hf.to_local_inverse.congr_of_eventually_eq $ (hf.local_inverse_unique hg).mono $ λ _, eq.symm end has_strict_fderiv_at /-- If a function has an invertible strict derivative at all points, then it is an open map. -/ lemma open_map_of_strict_fderiv_equiv [complete_space E] {f : E → F} {f' : E → E ≃L[𝕜] F} (hf : ∀ x, has_strict_fderiv_at f (f' x : E →L[𝕜] F) x) : is_open_map f := is_open_map_iff_nhds_le.2 $ λ x, (hf x).map_nhds_eq_of_equiv.ge /-! ### Inverse function theorem, 1D case In this case we prove a version of the inverse function theorem for maps `f : 𝕜 → 𝕜`. We use `continuous_linear_equiv.units_equiv_aut` to translate `has_strict_deriv_at f f' a` and `f' ≠ 0` into `has_strict_fderiv_at f (_ : 𝕜 ≃L[𝕜] 𝕜) a`. -/ namespace has_strict_deriv_at variables [cs : complete_space 𝕜] {f : 𝕜 → 𝕜} {f' a : 𝕜} (hf : has_strict_deriv_at f f' a) (hf' : f' ≠ 0) include cs variables (f f' a) /-- A function that is inverse to `f` near `a`. -/ @[reducible] def local_inverse : 𝕜 → 𝕜 := (hf.has_strict_fderiv_at_equiv hf').local_inverse _ _ _ variables {f f' a} lemma map_nhds_eq : map f (𝓝 a) = 𝓝 (f a) := (hf.has_strict_fderiv_at_equiv hf').map_nhds_eq_of_equiv theorem to_local_inverse : has_strict_deriv_at (hf.local_inverse f f' a hf') f'⁻¹ (f a) := (hf.has_strict_fderiv_at_equiv hf').to_local_inverse theorem to_local_left_inverse {g : 𝕜 → 𝕜} (hg : ∀ᶠ x in 𝓝 a, g (f x) = x) : has_strict_deriv_at g f'⁻¹ (f a) := (hf.has_strict_fderiv_at_equiv hf').to_local_left_inverse hg end has_strict_deriv_at /-- If a function has a non-zero strict derivative at all points, then it is an open map. -/ lemma open_map_of_strict_deriv [complete_space 𝕜] {f f' : 𝕜 → 𝕜} (hf : ∀ x, has_strict_deriv_at f (f' x) x) (h0 : ∀ x, f' x ≠ 0) : is_open_map f := is_open_map_iff_nhds_le.2 $ λ x, ((hf x).map_nhds_eq (h0 x)).ge /-! ### Inverse function theorem, smooth case -/ namespace cont_diff_at variables {𝕂 : Type*} [is_R_or_C 𝕂] variables {E' : Type*} [normed_add_comm_group E'] [normed_space 𝕂 E'] variables {F' : Type*} [normed_add_comm_group F'] [normed_space 𝕂 F'] variables [complete_space E'] (f : E' → F') {f' : E' ≃L[𝕂] F'} {a : E'} /-- Given a `cont_diff` function over `𝕂` (which is `ℝ` or `ℂ`) with an invertible derivative at `a`, returns a `local_homeomorph` with `to_fun = f` and `a ∈ source`. -/ def to_local_homeomorph {n : with_top ℕ} (hf : cont_diff_at 𝕂 n f a) (hf' : has_fderiv_at f (f' : E' →L[𝕂] F') a) (hn : 1 ≤ n) : local_homeomorph E' F' := (hf.has_strict_fderiv_at' hf' hn).to_local_homeomorph f variable {f} @[simp] lemma to_local_homeomorph_coe {n : with_top ℕ} (hf : cont_diff_at 𝕂 n f a) (hf' : has_fderiv_at f (f' : E' →L[𝕂] F') a) (hn : 1 ≤ n) : (hf.to_local_homeomorph f hf' hn : E' → F') = f := rfl lemma mem_to_local_homeomorph_source {n : with_top ℕ} (hf : cont_diff_at 𝕂 n f a) (hf' : has_fderiv_at f (f' : E' →L[𝕂] F') a) (hn : 1 ≤ n) : a ∈ (hf.to_local_homeomorph f hf' hn).source := (hf.has_strict_fderiv_at' hf' hn).mem_to_local_homeomorph_source lemma image_mem_to_local_homeomorph_target {n : with_top ℕ} (hf : cont_diff_at 𝕂 n f a) (hf' : has_fderiv_at f (f' : E' →L[𝕂] F') a) (hn : 1 ≤ n) : f a ∈ (hf.to_local_homeomorph f hf' hn).target := (hf.has_strict_fderiv_at' hf' hn).image_mem_to_local_homeomorph_target /-- Given a `cont_diff` function over `𝕂` (which is `ℝ` or `ℂ`) with an invertible derivative at `a`, returns a function that is locally inverse to `f`. -/ def local_inverse {n : with_top ℕ} (hf : cont_diff_at 𝕂 n f a) (hf' : has_fderiv_at f (f' : E' →L[𝕂] F') a) (hn : 1 ≤ n) : F' → E' := (hf.has_strict_fderiv_at' hf' hn).local_inverse f f' a lemma local_inverse_apply_image {n : with_top ℕ} (hf : cont_diff_at 𝕂 n f a) (hf' : has_fderiv_at f (f' : E' →L[𝕂] F') a) (hn : 1 ≤ n) : hf.local_inverse hf' hn (f a) = a := (hf.has_strict_fderiv_at' hf' hn).local_inverse_apply_image /-- Given a `cont_diff` function over `𝕂` (which is `ℝ` or `ℂ`) with an invertible derivative at `a`, the inverse function (produced by `cont_diff.to_local_homeomorph`) is also `cont_diff`. -/ lemma to_local_inverse {n : with_top ℕ} (hf : cont_diff_at 𝕂 n f a) (hf' : has_fderiv_at f (f' : E' →L[𝕂] F') a) (hn : 1 ≤ n) : cont_diff_at 𝕂 n (hf.local_inverse hf' hn) (f a) := begin have := hf.local_inverse_apply_image hf' hn, apply (hf.to_local_homeomorph f hf' hn).cont_diff_at_symm (image_mem_to_local_homeomorph_target hf hf' hn), { convert hf' }, { convert hf } end end cont_diff_at