/- Copyright (c) 2019 Yury Kudriashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudriashov -/ import algebra.big_operators.order import analysis.convex.hull import linear_algebra.affine_space.basis /-! # Convex combinations This file defines convex combinations of points in a vector space. ## Main declarations * `finset.center_mass`: Center of mass of a finite family of points. ## Implementation notes We divide by the sum of the weights in the definition of `finset.center_mass` because of the way mathematical arguments go: one doesn't change weights, but merely adds some. This also makes a few lemmas unconditional on the sum of the weights being `1`. -/ open set function open_locale big_operators classical pointwise universes u u' variables {R E F ι ι' : Type*} [linear_ordered_field R] [add_comm_group E] [add_comm_group F] [module R E] [module R F] {s : set E} /-- Center of mass of a finite collection of points with prescribed weights. Note that we require neither `0 ≤ w i` nor `∑ w = 1`. -/ def finset.center_mass (t : finset ι) (w : ι → R) (z : ι → E) : E := (∑ i in t, w i)⁻¹ • (∑ i in t, w i • z i) variables (i j : ι) (c : R) (t : finset ι) (w : ι → R) (z : ι → E) open finset lemma finset.center_mass_empty : (∅ : finset ι).center_mass w z = 0 := by simp only [center_mass, sum_empty, smul_zero] lemma finset.center_mass_pair (hne : i ≠ j) : ({i, j} : finset ι).center_mass w z = (w i / (w i + w j)) • z i + (w j / (w i + w j)) • z j := by simp only [center_mass, sum_pair hne, smul_add, (mul_smul _ _ _).symm, div_eq_inv_mul] variable {w} lemma finset.center_mass_insert (ha : i ∉ t) (hw : ∑ j in t, w j ≠ 0) : (insert i t).center_mass w z = (w i / (w i + ∑ j in t, w j)) • z i + ((∑ j in t, w j) / (w i + ∑ j in t, w j)) • t.center_mass w z := begin simp only [center_mass, sum_insert ha, smul_add, (mul_smul _ _ _).symm, ← div_eq_inv_mul], congr' 2, rw [div_mul_eq_mul_div, mul_inv_cancel hw, one_div] end lemma finset.center_mass_singleton (hw : w i ≠ 0) : ({i} : finset ι).center_mass w z = z i := by rw [center_mass, sum_singleton, sum_singleton, ← mul_smul, inv_mul_cancel hw, one_smul] lemma finset.center_mass_eq_of_sum_1 (hw : ∑ i in t, w i = 1) : t.center_mass w z = ∑ i in t, w i • z i := by simp only [finset.center_mass, hw, inv_one, one_smul] lemma finset.center_mass_smul : t.center_mass w (λ i, c • z i) = c • t.center_mass w z := by simp only [finset.center_mass, finset.smul_sum, (mul_smul _ _ _).symm, mul_comm c, mul_assoc] /-- A convex combination of two centers of mass is a center of mass as well. This version deals with two different index types. -/ lemma finset.center_mass_segment' (s : finset ι) (t : finset ι') (ws : ι → R) (zs : ι → E) (wt : ι' → R) (zt : ι' → E) (hws : ∑ i in s, ws i = 1) (hwt : ∑ i in t, wt i = 1) (a b : R) (hab : a + b = 1) : a • s.center_mass ws zs + b • t.center_mass wt zt = (s.map embedding.inl ∪ t.map embedding.inr).center_mass (sum.elim (λ i, a * ws i) (λ j, b * wt j)) (sum.elim zs zt) := begin rw [s.center_mass_eq_of_sum_1 _ hws, t.center_mass_eq_of_sum_1 _ hwt, smul_sum, smul_sum, ← finset.sum_sum_elim, finset.center_mass_eq_of_sum_1], { congr' with ⟨⟩; simp only [sum.elim_inl, sum.elim_inr, mul_smul] }, { rw [sum_sum_elim, ← mul_sum, ← mul_sum, hws, hwt, mul_one, mul_one, hab] } end /-- A convex combination of two centers of mass is a center of mass as well. This version works if two centers of mass share the set of original points. -/ lemma finset.center_mass_segment (s : finset ι) (w₁ w₂ : ι → R) (z : ι → E) (hw₁ : ∑ i in s, w₁ i = 1) (hw₂ : ∑ i in s, w₂ i = 1) (a b : R) (hab : a + b = 1) : a • s.center_mass w₁ z + b • s.center_mass w₂ z = s.center_mass (λ i, a * w₁ i + b * w₂ i) z := have hw : ∑ i in s, (a * w₁ i + b * w₂ i) = 1, by simp only [mul_sum.symm, sum_add_distrib, mul_one, *], by simp only [finset.center_mass_eq_of_sum_1, smul_sum, sum_add_distrib, add_smul, mul_smul, *] lemma finset.center_mass_ite_eq (hi : i ∈ t) : t.center_mass (λ j, if (i = j) then (1 : R) else 0) z = z i := begin rw [finset.center_mass_eq_of_sum_1], transitivity ∑ j in t, if (i = j) then z i else 0, { congr' with i, split_ifs, exacts [h ▸ one_smul _ _, zero_smul _ _] }, { rw [sum_ite_eq, if_pos hi] }, { rw [sum_ite_eq, if_pos hi] } end variables {t w} lemma finset.center_mass_subset {t' : finset ι} (ht : t ⊆ t') (h : ∀ i ∈ t', i ∉ t → w i = 0) : t.center_mass w z = t'.center_mass w z := begin rw [center_mass, sum_subset ht h, smul_sum, center_mass, smul_sum], apply sum_subset ht, assume i hit' hit, rw [h i hit' hit, zero_smul, smul_zero] end lemma finset.center_mass_filter_ne_zero : (t.filter (λ i, w i ≠ 0)).center_mass w z = t.center_mass w z := finset.center_mass_subset z (filter_subset _ _) $ λ i hit hit', by simpa only [hit, mem_filter, true_and, ne.def, not_not] using hit' variable {z} /-- The center of mass of a finite subset of a convex set belongs to the set provided that all weights are non-negative, and the total weight is positive. -/ lemma convex.center_mass_mem (hs : convex R s) : (∀ i ∈ t, 0 ≤ w i) → (0 < ∑ i in t, w i) → (∀ i ∈ t, z i ∈ s) → t.center_mass w z ∈ s := begin induction t using finset.induction with i t hi ht, { simp [lt_irrefl] }, intros h₀ hpos hmem, have zi : z i ∈ s, from hmem _ (mem_insert_self _ _), have hs₀ : ∀ j ∈ t, 0 ≤ w j, from λ j hj, h₀ j $ mem_insert_of_mem hj, rw [sum_insert hi] at hpos, by_cases hsum_t : ∑ j in t, w j = 0, { have ws : ∀ j ∈ t, w j = 0, from (sum_eq_zero_iff_of_nonneg hs₀).1 hsum_t, have wz : ∑ j in t, w j • z j = 0, from sum_eq_zero (λ i hi, by simp [ws i hi]), simp only [center_mass, sum_insert hi, wz, hsum_t, add_zero], simp only [hsum_t, add_zero] at hpos, rw [← mul_smul, inv_mul_cancel (ne_of_gt hpos), one_smul], exact zi }, { rw [finset.center_mass_insert _ _ _ hi hsum_t], refine convex_iff_div.1 hs zi (ht hs₀ _ _) _ (sum_nonneg hs₀) hpos, { exact lt_of_le_of_ne (sum_nonneg hs₀) (ne.symm hsum_t) }, { intros j hj, exact hmem j (mem_insert_of_mem hj) }, { exact h₀ _ (mem_insert_self _ _) } } end lemma convex.sum_mem (hs : convex R s) (h₀ : ∀ i ∈ t, 0 ≤ w i) (h₁ : ∑ i in t, w i = 1) (hz : ∀ i ∈ t, z i ∈ s) : ∑ i in t, w i • z i ∈ s := by simpa only [h₁, center_mass, inv_one, one_smul] using hs.center_mass_mem h₀ (h₁.symm ▸ zero_lt_one) hz /-- A version of `convex.sum_mem` for `finsum`s. If `s` is a convex set, `w : ι → R` is a family of nonnegative weights with sum one and `z : ι → E` is a family of elements of a module over `R` such that `z i ∈ s` whenever `w i ≠ 0``, then the sum `∑ᶠ i, w i • z i` belongs to `s`. See also `partition_of_unity.finsum_smul_mem_convex`. -/ lemma convex.finsum_mem {ι : Sort*} {w : ι → R} {z : ι → E} {s : set E} (hs : convex R s) (h₀ : ∀ i, 0 ≤ w i) (h₁ : ∑ᶠ i, w i = 1) (hz : ∀ i, w i ≠ 0 → z i ∈ s) : ∑ᶠ i, w i • z i ∈ s := begin have hfin_w : (support (w ∘ plift.down)).finite, { by_contra H, rw [finsum, dif_neg H] at h₁, exact zero_ne_one h₁ }, have hsub : support ((λ i, w i • z i) ∘ plift.down) ⊆ hfin_w.to_finset, from (support_smul_subset_left _ _).trans hfin_w.coe_to_finset.ge, rw [finsum_eq_sum_plift_of_support_subset hsub], refine hs.sum_mem (λ _ _, h₀ _) _ (λ i hi, hz _ _), { rwa [finsum, dif_pos hfin_w] at h₁ }, { rwa [hfin_w.mem_to_finset] at hi } end lemma convex_iff_sum_mem : convex R s ↔ (∀ (t : finset E) (w : E → R), (∀ i ∈ t, 0 ≤ w i) → ∑ i in t, w i = 1 → (∀ x ∈ t, x ∈ s) → ∑ x in t, w x • x ∈ s ) := begin refine ⟨λ hs t w hw₀ hw₁ hts, hs.sum_mem hw₀ hw₁ hts, _⟩, intros h x y hx hy a b ha hb hab, by_cases h_cases: x = y, { rw [h_cases, ←add_smul, hab, one_smul], exact hy }, { convert h {x, y} (λ z, if z = y then b else a) _ _ _, { simp only [sum_pair h_cases, if_neg h_cases, if_pos rfl] }, { simp_intros i hi, cases hi; subst i; simp [ha, hb, if_neg h_cases] }, { simp only [sum_pair h_cases, if_neg h_cases, if_pos rfl, hab] }, { simp_intros i hi, cases hi; subst i; simp [hx, hy, if_neg h_cases] } } end lemma finset.center_mass_mem_convex_hull (t : finset ι) {w : ι → R} (hw₀ : ∀ i ∈ t, 0 ≤ w i) (hws : 0 < ∑ i in t, w i) {z : ι → E} (hz : ∀ i ∈ t, z i ∈ s) : t.center_mass w z ∈ convex_hull R s := (convex_convex_hull R s).center_mass_mem hw₀ hws (λ i hi, subset_convex_hull R s $ hz i hi) /-- A refinement of `finset.center_mass_mem_convex_hull` when the indexed family is a `finset` of the space. -/ lemma finset.center_mass_id_mem_convex_hull (t : finset E) {w : E → R} (hw₀ : ∀ i ∈ t, 0 ≤ w i) (hws : 0 < ∑ i in t, w i) : t.center_mass w id ∈ convex_hull R (t : set E) := t.center_mass_mem_convex_hull hw₀ hws (λ i, mem_coe.2) lemma affine_combination_eq_center_mass {ι : Type*} {t : finset ι} {p : ι → E} {w : ι → R} (hw₂ : ∑ i in t, w i = 1) : affine_combination t p w = center_mass t w p := begin rw [affine_combination_eq_weighted_vsub_of_point_vadd_of_sum_eq_one _ w _ hw₂ (0 : E), finset.weighted_vsub_of_point_apply, vadd_eq_add, add_zero, t.center_mass_eq_of_sum_1 _ hw₂], simp_rw [vsub_eq_sub, sub_zero], end lemma affine_combination_mem_convex_hull {s : finset ι} {v : ι → E} {w : ι → R} (hw₀ : ∀ i ∈ s, 0 ≤ w i) (hw₁ : s.sum w = 1) : s.affine_combination v w ∈ convex_hull R (range v) := begin rw affine_combination_eq_center_mass hw₁, apply s.center_mass_mem_convex_hull hw₀, { simp [hw₁], }, { simp, }, end /-- The centroid can be regarded as a center of mass. -/ @[simp] lemma finset.centroid_eq_center_mass (s : finset ι) (hs : s.nonempty) (p : ι → E) : s.centroid R p = s.center_mass (s.centroid_weights R) p := affine_combination_eq_center_mass (s.sum_centroid_weights_eq_one_of_nonempty R hs) lemma finset.centroid_mem_convex_hull (s : finset E) (hs : s.nonempty) : s.centroid R id ∈ convex_hull R (s : set E) := begin rw s.centroid_eq_center_mass hs, apply s.center_mass_id_mem_convex_hull, { simp only [inv_nonneg, implies_true_iff, nat.cast_nonneg, finset.centroid_weights_apply], }, { have hs_card : (s.card : R) ≠ 0, { simp [finset.nonempty_iff_ne_empty.mp hs] }, simp only [hs_card, finset.sum_const, nsmul_eq_mul, mul_inv_cancel, ne.def, not_false_iff, finset.centroid_weights_apply, zero_lt_one] } end lemma convex_hull_range_eq_exists_affine_combination (v : ι → E) : convex_hull R (range v) = { x | ∃ (s : finset ι) (w : ι → R) (hw₀ : ∀ i ∈ s, 0 ≤ w i) (hw₁ : s.sum w = 1), s.affine_combination v w = x } := begin refine subset.antisymm (convex_hull_min _ _) _, { intros x hx, obtain ⟨i, hi⟩ := set.mem_range.mp hx, refine ⟨{i}, function.const ι (1 : R), by simp, by simp, by simp [hi]⟩, }, { rw convex, rintros x y ⟨s, w, hw₀, hw₁, rfl⟩ ⟨s', w', hw₀', hw₁', rfl⟩ a b ha hb hab, let W : ι → R := λ i, (if i ∈ s then a * w i else 0) + (if i ∈ s' then b * w' i else 0), have hW₁ : (s ∪ s').sum W = 1, { rw [sum_add_distrib, ← sum_subset (subset_union_left s s'), ← sum_subset (subset_union_right s s'), sum_ite_of_true _ _ (λ i hi, hi), sum_ite_of_true _ _ (λ i hi, hi), ← mul_sum, ← mul_sum, hw₁, hw₁', ← add_mul, hab, mul_one]; intros i hi hi'; simp [hi'], }, refine ⟨s ∪ s', W, _, hW₁, _⟩, { rintros i -, by_cases hi : i ∈ s; by_cases hi' : i ∈ s'; simp [hi, hi', add_nonneg, mul_nonneg ha (hw₀ i _), mul_nonneg hb (hw₀' i _)], }, { simp_rw [affine_combination_eq_linear_combination (s ∪ s') v _ hW₁, affine_combination_eq_linear_combination s v w hw₁, affine_combination_eq_linear_combination s' v w' hw₁', add_smul, sum_add_distrib], rw [← sum_subset (subset_union_left s s'), ← sum_subset (subset_union_right s s')], { simp only [ite_smul, sum_ite_of_true _ _ (λ i hi, hi), mul_smul, ← smul_sum], }, { intros i hi hi', simp [hi'], }, { intros i hi hi', simp [hi'], }, }, }, { rintros x ⟨s, w, hw₀, hw₁, rfl⟩, exact affine_combination_mem_convex_hull hw₀ hw₁, }, end /-- Convex hull of `s` is equal to the set of all centers of masses of `finset`s `t`, `z '' t ⊆ s`. This version allows finsets in any type in any universe. -/ lemma convex_hull_eq (s : set E) : convex_hull R s = {x : E | ∃ (ι : Type u') (t : finset ι) (w : ι → R) (z : ι → E) (hw₀ : ∀ i ∈ t, 0 ≤ w i) (hw₁ : ∑ i in t, w i = 1) (hz : ∀ i ∈ t, z i ∈ s), t.center_mass w z = x} := begin refine subset.antisymm (convex_hull_min _ _) _, { intros x hx, use [punit, {punit.star}, λ _, 1, λ _, x, λ _ _, zero_le_one, finset.sum_singleton, λ _ _, hx], simp only [finset.center_mass, finset.sum_singleton, inv_one, one_smul] }, { rintros x y ⟨ι, sx, wx, zx, hwx₀, hwx₁, hzx, rfl⟩ ⟨ι', sy, wy, zy, hwy₀, hwy₁, hzy, rfl⟩ a b ha hb hab, rw [finset.center_mass_segment' _ _ _ _ _ _ hwx₁ hwy₁ _ _ hab], refine ⟨_, _, _, _, _, _, _, rfl⟩, { rintros i hi, rw [finset.mem_union, finset.mem_map, finset.mem_map] at hi, rcases hi with ⟨j, hj, rfl⟩|⟨j, hj, rfl⟩; simp only [sum.elim_inl, sum.elim_inr]; apply_rules [mul_nonneg, hwx₀, hwy₀] }, { simp [finset.sum_sum_elim, finset.mul_sum.symm, *] }, { intros i hi, rw [finset.mem_union, finset.mem_map, finset.mem_map] at hi, rcases hi with ⟨j, hj, rfl⟩|⟨j, hj, rfl⟩; apply_rules [hzx, hzy] } }, { rintros _ ⟨ι, t, w, z, hw₀, hw₁, hz, rfl⟩, exact t.center_mass_mem_convex_hull hw₀ (hw₁.symm ▸ zero_lt_one) hz } end lemma finset.convex_hull_eq (s : finset E) : convex_hull R ↑s = {x : E | ∃ (w : E → R) (hw₀ : ∀ y ∈ s, 0 ≤ w y) (hw₁ : ∑ y in s, w y = 1), s.center_mass w id = x} := begin refine subset.antisymm (convex_hull_min _ _) _, { intros x hx, rw [finset.mem_coe] at hx, refine ⟨_, _, _, finset.center_mass_ite_eq _ _ _ hx⟩, { intros, split_ifs, exacts [zero_le_one, le_refl 0] }, { rw [finset.sum_ite_eq, if_pos hx] } }, { rintros x y ⟨wx, hwx₀, hwx₁, rfl⟩ ⟨wy, hwy₀, hwy₁, rfl⟩ a b ha hb hab, rw [finset.center_mass_segment _ _ _ _ hwx₁ hwy₁ _ _ hab], refine ⟨_, _, _, rfl⟩, { rintros i hi, apply_rules [add_nonneg, mul_nonneg, hwx₀, hwy₀], }, { simp only [finset.sum_add_distrib, finset.mul_sum.symm, mul_one, *] } }, { rintros _ ⟨w, hw₀, hw₁, rfl⟩, exact s.center_mass_mem_convex_hull (λ x hx, hw₀ _ hx) (hw₁.symm ▸ zero_lt_one) (λ x hx, hx) } end lemma set.finite.convex_hull_eq {s : set E} (hs : s.finite) : convex_hull R s = {x : E | ∃ (w : E → R) (hw₀ : ∀ y ∈ s, 0 ≤ w y) (hw₁ : ∑ y in hs.to_finset, w y = 1), hs.to_finset.center_mass w id = x} := by simpa only [set.finite.coe_to_finset, set.finite.mem_to_finset, exists_prop] using hs.to_finset.convex_hull_eq /-- A weak version of Carathéodory's theorem. -/ lemma convex_hull_eq_union_convex_hull_finite_subsets (s : set E) : convex_hull R s = ⋃ (t : finset E) (w : ↑t ⊆ s), convex_hull R ↑t := begin refine subset.antisymm _ _, { rw convex_hull_eq, rintros x ⟨ι, t, w, z, hw₀, hw₁, hz, rfl⟩, simp only [mem_Union], refine ⟨t.image z, _, _⟩, { rw [coe_image, set.image_subset_iff], exact hz }, { apply t.center_mass_mem_convex_hull hw₀, { simp only [hw₁, zero_lt_one] }, { exact λ i hi, finset.mem_coe.2 (finset.mem_image_of_mem _ hi) } } }, { exact Union_subset (λ i, Union_subset convex_hull_mono), }, end lemma mk_mem_convex_hull_prod {t : set F} {x : E} {y : F} (hx : x ∈ convex_hull R s) (hy : y ∈ convex_hull R t) : (x, y) ∈ convex_hull R (s ×ˢ t) := begin rw convex_hull_eq at ⊢ hx hy, obtain ⟨ι, a, w, S, hw, hw', hS, hSp⟩ := hx, obtain ⟨κ, b, v, T, hv, hv', hT, hTp⟩ := hy, have h_sum : ∑ (i : ι × κ) in a.product b, w i.fst * v i.snd = 1, { rw [finset.sum_product, ← hw'], congr, ext i, have : ∑ (y : κ) in b, w i * v y = ∑ (y : κ) in b, v y * w i, { congr, ext, simp [mul_comm] }, rw [this, ← finset.sum_mul, hv'], simp }, refine ⟨ι × κ, a.product b, λ p, (w p.1) * (v p.2), λ p, (S p.1, T p.2), λ p hp, _, h_sum, λ p hp, _, _⟩, { rw mem_product at hp, exact mul_nonneg (hw p.1 hp.1) (hv p.2 hp.2) }, { rw mem_product at hp, exact ⟨hS p.1 hp.1, hT p.2 hp.2⟩ }, ext, { rw [←hSp, finset.center_mass_eq_of_sum_1 _ _ hw', finset.center_mass_eq_of_sum_1 _ _ h_sum], simp_rw [prod.fst_sum, prod.smul_mk], rw finset.sum_product, congr, ext i, have : ∑ (j : κ) in b, (w i * v j) • S i = ∑ (j : κ) in b, v j • w i • S i, { congr, ext, rw [mul_smul, smul_comm] }, rw [this, ←finset.sum_smul, hv', one_smul] }, { rw [←hTp, finset.center_mass_eq_of_sum_1 _ _ hv', finset.center_mass_eq_of_sum_1 _ _ h_sum], simp_rw [prod.snd_sum, prod.smul_mk], rw [finset.sum_product, finset.sum_comm], congr, ext j, simp_rw mul_smul, rw [←finset.sum_smul, hw', one_smul] } end @[simp] lemma convex_hull_prod (s : set E) (t : set F) : convex_hull R (s ×ˢ t) = convex_hull R s ×ˢ convex_hull R t := subset.antisymm (convex_hull_min (prod_mono (subset_convex_hull _ _) $ subset_convex_hull _ _) $ (convex_convex_hull _ _).prod $ convex_convex_hull _ _) $ prod_subset_iff.2 $ λ x hx y, mk_mem_convex_hull_prod hx lemma convex_hull_add (s t : set E) : convex_hull R (s + t) = convex_hull R s + convex_hull R t := by simp_rw [←image2_add, ←image_prod, is_linear_map.is_linear_map_add.convex_hull_image, convex_hull_prod] lemma convex_hull_sub (s t : set E) : convex_hull R (s - t) = convex_hull R s - convex_hull R t := by simp_rw [sub_eq_add_neg, convex_hull_add, convex_hull_neg] /-! ### `std_simplex` -/ variables (ι) [fintype ι] {f : ι → R} /-- `std_simplex 𝕜 ι` is the convex hull of the canonical basis in `ι → 𝕜`. -/ lemma convex_hull_basis_eq_std_simplex : convex_hull R (range $ λ(i j:ι), if i = j then (1:R) else 0) = std_simplex R ι := begin refine subset.antisymm (convex_hull_min _ (convex_std_simplex R ι)) _, { rintros _ ⟨i, rfl⟩, exact ite_eq_mem_std_simplex R i }, { rintros w ⟨hw₀, hw₁⟩, rw [pi_eq_sum_univ w, ← finset.univ.center_mass_eq_of_sum_1 _ hw₁], exact finset.univ.center_mass_mem_convex_hull (λ i hi, hw₀ i) (hw₁.symm ▸ zero_lt_one) (λ i hi, mem_range_self i) } end variable {ι} /-- The convex hull of a finite set is the image of the standard simplex in `s → ℝ` under the linear map sending each function `w` to `∑ x in s, w x • x`. Since we have no sums over finite sets, we use sum over `@finset.univ _ hs.fintype`. The map is defined in terms of operations on `(s → ℝ) →ₗ[ℝ] ℝ` so that later we will not need to prove that this map is linear. -/ lemma set.finite.convex_hull_eq_image {s : set E} (hs : s.finite) : convex_hull R s = by haveI := hs.fintype; exact (⇑(∑ x : s, (@linear_map.proj R s _ (λ i, R) _ _ x).smul_right x.1)) '' (std_simplex R s) := begin rw [← convex_hull_basis_eq_std_simplex, ← linear_map.convex_hull_image, ← set.range_comp, (∘)], apply congr_arg, convert subtype.range_coe.symm, ext x, simp [linear_map.sum_apply, ite_smul, finset.filter_eq] end /-- All values of a function `f ∈ std_simplex 𝕜 ι` belong to `[0, 1]`. -/ lemma mem_Icc_of_mem_std_simplex (hf : f ∈ std_simplex R ι) (x) : f x ∈ Icc (0 : R) 1 := ⟨hf.1 x, hf.2 ▸ finset.single_le_sum (λ y hy, hf.1 y) (finset.mem_univ x)⟩ /-- The convex hull of an affine basis is the intersection of the half-spaces defined by the corresponding barycentric coordinates. -/ lemma convex_hull_affine_basis_eq_nonneg_barycentric {ι : Type*} (b : affine_basis ι R E) : convex_hull R (range b.points) = { x | ∀ i, 0 ≤ b.coord i x } := begin rw convex_hull_range_eq_exists_affine_combination, ext x, split, { rintros ⟨s, w, hw₀, hw₁, rfl⟩ i, by_cases hi : i ∈ s, { rw b.coord_apply_combination_of_mem hi hw₁, exact hw₀ i hi, }, { rw b.coord_apply_combination_of_not_mem hi hw₁, }, }, { intros hx, have hx' : x ∈ affine_span R (range b.points), { rw b.tot, exact affine_subspace.mem_top R E x, }, obtain ⟨s, w, hw₁, rfl⟩ := (mem_affine_span_iff_eq_affine_combination R E).mp hx', refine ⟨s, w, _, hw₁, rfl⟩, intros i hi, specialize hx i, rw b.coord_apply_combination_of_mem hi hw₁ at hx, exact hx, }, end