/- Copyright (c) 2021 Yaël Dillies, Bhavik Mehta. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies, Bhavik Mehta -/ import analysis.convex.extreme import analysis.convex.function import analysis.normed_space.ordered /-! # Exposed sets This file defines exposed sets and exposed points for sets in a real vector space. An exposed subset of `A` is a subset of `A` that is the set of all maximal points of a functional (a continuous linear map `E → 𝕜`) over `A`. By convention, `∅` is an exposed subset of all sets. This allows for better functoriality of the definition (the intersection of two exposed subsets is exposed, faces of a polytope form a bounded lattice). This is an analytic notion of "being on the side of". It is stronger than being extreme (see `is_exposed.is_extreme`), but weaker (for exposed points) than being a vertex. An exposed set of `A` is sometimes called a "face of `A`", but we decided to reserve this terminology to the more specific notion of a face of a polytope (sometimes hopefully soon out on mathlib!). ## Main declarations * `is_exposed 𝕜 A B`: States that `B` is an exposed set of `A` (in the literature, `A` is often implicit). * `is_exposed.is_extreme`: An exposed set is also extreme. ## References See chapter 8 of [Barry Simon, *Convexity*][simon2011] ## TODO Define intrinsic frontier/interior and prove the lemmas related to exposed sets and points. Generalise to Locally Convex Topological Vector Spaces™ More not-yet-PRed stuff is available on the branch `sperner_again`. -/ open_locale classical affine big_operators open set variables (𝕜 : Type*) {E : Type*} [normed_linear_ordered_field 𝕜] [normed_add_comm_group E] [normed_space 𝕜 E] {l : E →L[𝕜] 𝕜} {A B C : set E} {X : finset E} {x : E} /-- A set `B` is exposed with respect to `A` iff it maximizes some functional over `A` (and contains all points maximizing it). Written `is_exposed 𝕜 A B`. -/ def is_exposed (A B : set E) : Prop := B.nonempty → ∃ l : E →L[𝕜] 𝕜, B = {x ∈ A | ∀ y ∈ A, l y ≤ l x} variables {𝕜} /-- A useful way to build exposed sets from intersecting `A` with halfspaces (modelled by an inequality with a functional). -/ def continuous_linear_map.to_exposed (l : E →L[𝕜] 𝕜) (A : set E) : set E := {x ∈ A | ∀ y ∈ A, l y ≤ l x} lemma continuous_linear_map.to_exposed.is_exposed : is_exposed 𝕜 A (l.to_exposed A) := λ h, ⟨l, rfl⟩ lemma is_exposed_empty : is_exposed 𝕜 A ∅ := λ ⟨x, hx⟩, by { exfalso, exact hx } namespace is_exposed protected lemma subset (hAB : is_exposed 𝕜 A B) : B ⊆ A := begin rintro x hx, obtain ⟨_, rfl⟩ := hAB ⟨x, hx⟩, exact hx.1, end @[refl] protected lemma refl (A : set E) : is_exposed 𝕜 A A := λ ⟨w, hw⟩, ⟨0, subset.antisymm (λ x hx, ⟨hx, λ y hy, by exact le_refl 0⟩) (λ x hx, hx.1)⟩ protected lemma antisymm (hB : is_exposed 𝕜 A B) (hA : is_exposed 𝕜 B A) : A = B := hA.subset.antisymm hB.subset /- `is_exposed` is *not* transitive: Consider a (topologically) open cube with vertices `A₀₀₀, ..., A₁₁₁` and add to it the triangle `A₀₀₀A₀₀₁A₀₁₀`. Then `A₀₀₁A₀₁₀` is an exposed subset of `A₀₀₀A₀₀₁A₀₁₀` which is an exposed subset of the cube, but `A₀₀₁A₀₁₀` is not itself an exposed subset of the cube. -/ protected lemma mono (hC : is_exposed 𝕜 A C) (hBA : B ⊆ A) (hCB : C ⊆ B) : is_exposed 𝕜 B C := begin rintro ⟨w, hw⟩, obtain ⟨l, rfl⟩ := hC ⟨w, hw⟩, exact ⟨l, subset.antisymm (λ x hx, ⟨hCB hx, λ y hy, hx.2 y (hBA hy)⟩) (λ x hx, ⟨hBA hx.1, λ y hy, (hw.2 y hy).trans (hx.2 w (hCB hw))⟩)⟩, end /-- If `B` is an exposed subset of `A`, then `B` is the intersection of `A` with some closed halfspace. The converse is *not* true. It would require that the corresponding open halfspace doesn't intersect `A`. -/ lemma eq_inter_halfspace (hAB : is_exposed 𝕜 A B) : ∃ l : E →L[𝕜] 𝕜, ∃ a, B = {x ∈ A | a ≤ l x} := begin obtain hB | hB := B.eq_empty_or_nonempty, { refine ⟨0, 1, _⟩, rw [hB, eq_comm, eq_empty_iff_forall_not_mem], rintro x ⟨-, h⟩, rw continuous_linear_map.zero_apply at h, linarith }, obtain ⟨l, rfl⟩ := hAB hB, obtain ⟨w, hw⟩ := hB, exact ⟨l, l w, subset.antisymm (λ x hx, ⟨hx.1, hx.2 w hw.1⟩) (λ x hx, ⟨hx.1, λ y hy, (hw.2 y hy).trans hx.2⟩)⟩, end protected lemma inter (hB : is_exposed 𝕜 A B) (hC : is_exposed 𝕜 A C) : is_exposed 𝕜 A (B ∩ C) := begin rintro ⟨w, hwB, hwC⟩, obtain ⟨l₁, rfl⟩ := hB ⟨w, hwB⟩, obtain ⟨l₂, rfl⟩ := hC ⟨w, hwC⟩, refine ⟨l₁ + l₂, subset.antisymm _ _⟩, { rintro x ⟨⟨hxA, hxB⟩, ⟨-, hxC⟩⟩, exact ⟨hxA, λ z hz, add_le_add (hxB z hz) (hxC z hz)⟩ }, rintro x ⟨hxA, hx⟩, refine ⟨⟨hxA, λ y hy, _⟩, hxA, λ y hy, _⟩, { exact (add_le_add_iff_right (l₂ x)).1 ((add_le_add (hwB.2 y hy) (hwC.2 x hxA)).trans (hx w hwB.1)) }, { exact (add_le_add_iff_left (l₁ x)).1 (le_trans (add_le_add (hwB.2 x hxA) (hwC.2 y hy)) (hx w hwB.1)) } end lemma sInter {F : finset (set E)} (hF : F.nonempty) (hAF : ∀ B ∈ F, is_exposed 𝕜 A B) : is_exposed 𝕜 A (⋂₀ F) := begin revert hF F, refine finset.induction _ _, { rintro h, exfalso, exact empty_not_nonempty h }, rintro C F _ hF _ hCF, rw [finset.coe_insert, sInter_insert], obtain rfl | hFnemp := F.eq_empty_or_nonempty, { rw [finset.coe_empty, sInter_empty, inter_univ], exact hCF C (finset.mem_singleton_self C) }, exact (hCF C (finset.mem_insert_self C F)).inter (hF hFnemp (λ B hB, hCF B(finset.mem_insert_of_mem hB))), end lemma inter_left (hC : is_exposed 𝕜 A C) (hCB : C ⊆ B) : is_exposed 𝕜 (A ∩ B) C := begin rintro ⟨w, hw⟩, obtain ⟨l, rfl⟩ := hC ⟨w, hw⟩, exact ⟨l, subset.antisymm (λ x hx, ⟨⟨hx.1, hCB hx⟩, λ y hy, hx.2 y hy.1⟩) (λ x ⟨⟨hxC, _⟩, hx⟩, ⟨hxC, λ y hy, (hw.2 y hy).trans (hx w ⟨hC.subset hw, hCB hw⟩)⟩)⟩, end lemma inter_right (hC : is_exposed 𝕜 B C) (hCA : C ⊆ A) : is_exposed 𝕜 (A ∩ B) C := begin rw inter_comm, exact hC.inter_left hCA, end protected lemma is_extreme (hAB : is_exposed 𝕜 A B) : is_extreme 𝕜 A B := begin refine ⟨hAB.subset, λ x₁ hx₁A x₂ hx₂A x hxB hx, _⟩, obtain ⟨l, rfl⟩ := hAB ⟨x, hxB⟩, have hl : convex_on 𝕜 univ l := l.to_linear_map.convex_on convex_univ, have hlx₁ := hxB.2 x₁ hx₁A, have hlx₂ := hxB.2 x₂ hx₂A, refine ⟨⟨hx₁A, λ y hy, _⟩, ⟨hx₂A, λ y hy, _⟩⟩, { rw hlx₁.antisymm (hl.le_left_of_right_le (mem_univ _) (mem_univ _) hx hlx₂), exact hxB.2 y hy }, { rw hlx₂.antisymm (hl.le_right_of_left_le (mem_univ _) (mem_univ _) hx hlx₁), exact hxB.2 y hy } end protected lemma convex (hAB : is_exposed 𝕜 A B) (hA : convex 𝕜 A) : convex 𝕜 B := begin obtain rfl | hB := B.eq_empty_or_nonempty, { exact convex_empty }, obtain ⟨l, rfl⟩ := hAB hB, exact λ x₁ x₂ hx₁ hx₂ a b ha hb hab, ⟨hA hx₁.1 hx₂.1 ha hb hab, λ y hy, ((l.to_linear_map.concave_on convex_univ).convex_ge _ ⟨mem_univ _, hx₁.2 y hy⟩ ⟨mem_univ _, hx₂.2 y hy⟩ ha hb hab).2⟩, end protected lemma is_closed [order_closed_topology 𝕜] (hAB : is_exposed 𝕜 A B) (hA : is_closed A) : is_closed B := begin obtain ⟨l, a, rfl⟩ := hAB.eq_inter_halfspace, exact hA.is_closed_le continuous_on_const l.continuous.continuous_on, end protected lemma is_compact [order_closed_topology 𝕜] (hAB : is_exposed 𝕜 A B) (hA : is_compact A) : is_compact B := compact_of_is_closed_subset hA (hAB.is_closed hA.is_closed) hAB.subset end is_exposed variables (𝕜) /-- A point is exposed with respect to `A` iff there exists an hyperplane whose intersection with `A` is exactly that point. -/ def set.exposed_points (A : set E) : set E := {x ∈ A | ∃ l : E →L[𝕜] 𝕜, ∀ y ∈ A, l y ≤ l x ∧ (l x ≤ l y → y = x)} variables {𝕜} lemma exposed_point_def : x ∈ A.exposed_points 𝕜 ↔ x ∈ A ∧ ∃ l : E →L[𝕜] 𝕜, ∀ y ∈ A, l y ≤ l x ∧ (l x ≤ l y → y = x) := iff.rfl lemma exposed_points_subset : A.exposed_points 𝕜 ⊆ A := λ x hx, hx.1 @[simp] lemma exposed_points_empty : (∅ : set E).exposed_points 𝕜 = ∅ := subset_empty_iff.1 exposed_points_subset /-- Exposed points exactly correspond to exposed singletons. -/ lemma mem_exposed_points_iff_exposed_singleton : x ∈ A.exposed_points 𝕜 ↔ is_exposed 𝕜 A {x} := begin use λ ⟨hxA, l, hl⟩ h, ⟨l, eq.symm $ eq_singleton_iff_unique_mem.2 ⟨⟨hxA, λ y hy, (hl y hy).1⟩, λ z hz, (hl z hz.1).2 (hz.2 x hxA)⟩⟩, rintro h, obtain ⟨l, hl⟩ := h ⟨x, mem_singleton _⟩, rw [eq_comm, eq_singleton_iff_unique_mem] at hl, exact ⟨hl.1.1, l, λ y hy, ⟨hl.1.2 y hy, λ hxy, hl.2 y ⟨hy, λ z hz, (hl.1.2 z hz).trans hxy⟩⟩⟩, end lemma exposed_points_subset_extreme_points : A.exposed_points 𝕜 ⊆ A.extreme_points 𝕜 := λ x hx, mem_extreme_points_iff_extreme_singleton.2 (mem_exposed_points_iff_exposed_singleton.1 hx).is_extreme