/- Copyright (c) 2019 Alexander Bentkamp. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Alexander Bentkamp, FranΓ§ois Dupuis -/ import analysis.convex.basic import tactic.field_simp import tactic.linarith import tactic.ring /-! # Convex and concave functions This file defines convex and concave functions in vector spaces and proves the finite Jensen inequality. The integral version can be found in `analysis.convex.integral`. A function `f : E β†’ Ξ²` is `convex_on` a set `s` if `s` is itself a convex set, and for any two points `x y ∈ s`, the segment joining `(x, f x)` to `(y, f y)` is above the graph of `f`. Equivalently, `convex_on π•œ f s` means that the epigraph `{p : E Γ— Ξ² | p.1 ∈ s ∧ f p.1 ≀ p.2}` is a convex set. ## Main declarations * `convex_on π•œ s f`: The function `f` is convex on `s` with scalars `π•œ`. * `concave_on π•œ s f`: The function `f` is concave on `s` with scalars `π•œ`. * `strict_convex_on π•œ s f`: The function `f` is strictly convex on `s` with scalars `π•œ`. * `strict_concave_on π•œ s f`: The function `f` is strictly concave on `s` with scalars `π•œ`. -/ open finset linear_map set open_locale big_operators classical convex pointwise variables {π•œ E F Ξ² ΞΉ : Type*} section ordered_semiring variables [ordered_semiring π•œ] section add_comm_monoid variables [add_comm_monoid E] [add_comm_monoid F] section ordered_add_comm_monoid variables [ordered_add_comm_monoid Ξ²] section has_smul variables (π•œ) [has_smul π•œ E] [has_smul π•œ Ξ²] (s : set E) (f : E β†’ Ξ²) /-- Convexity of functions -/ def convex_on : Prop := convex π•œ s ∧ βˆ€ ⦃x y : E⦄, x ∈ s β†’ y ∈ s β†’ βˆ€ ⦃a b : π•œβ¦„, 0 ≀ a β†’ 0 ≀ b β†’ a + b = 1 β†’ f (a β€’ x + b β€’ y) ≀ a β€’ f x + b β€’ f y /-- Concavity of functions -/ def concave_on : Prop := convex π•œ s ∧ βˆ€ ⦃x y : E⦄, x ∈ s β†’ y ∈ s β†’ βˆ€ ⦃a b : π•œβ¦„, 0 ≀ a β†’ 0 ≀ b β†’ a + b = 1 β†’ a β€’ f x + b β€’ f y ≀ f (a β€’ x + b β€’ y) /-- Strict convexity of functions -/ def strict_convex_on : Prop := convex π•œ s ∧ βˆ€ ⦃x y : E⦄, x ∈ s β†’ y ∈ s β†’ x β‰  y β†’ βˆ€ ⦃a b : π•œβ¦„, 0 < a β†’ 0 < b β†’ a + b = 1 β†’ f (a β€’ x + b β€’ y) < a β€’ f x + b β€’ f y /-- Strict concavity of functions -/ def strict_concave_on : Prop := convex π•œ s ∧ βˆ€ ⦃x y : E⦄, x ∈ s β†’ y ∈ s β†’ x β‰  y β†’ βˆ€ ⦃a b : π•œβ¦„, 0 < a β†’ 0 < b β†’ a + b = 1 β†’ a β€’ f x + b β€’ f y < f (a β€’ x + b β€’ y) variables {π•œ s f} open order_dual (to_dual of_dual) lemma convex_on.dual (hf : convex_on π•œ s f) : concave_on π•œ s (to_dual ∘ f) := hf lemma concave_on.dual (hf : concave_on π•œ s f) : convex_on π•œ s (to_dual ∘ f) := hf lemma strict_convex_on.dual (hf : strict_convex_on π•œ s f) : strict_concave_on π•œ s (to_dual ∘ f) := hf lemma strict_concave_on.dual (hf : strict_concave_on π•œ s f) : strict_convex_on π•œ s (to_dual ∘ f) := hf lemma convex_on_id {s : set Ξ²} (hs : convex π•œ s) : convex_on π•œ s id := ⟨hs, by { intros, refl }⟩ lemma concave_on_id {s : set Ξ²} (hs : convex π•œ s) : concave_on π•œ s id := ⟨hs, by { intros, refl }⟩ lemma convex_on.subset {t : set E} (hf : convex_on π•œ t f) (hst : s βŠ† t) (hs : convex π•œ s) : convex_on π•œ s f := ⟨hs, Ξ» x y hx hy, hf.2 (hst hx) (hst hy)⟩ lemma concave_on.subset {t : set E} (hf : concave_on π•œ t f) (hst : s βŠ† t) (hs : convex π•œ s) : concave_on π•œ s f := ⟨hs, Ξ» x y hx hy, hf.2 (hst hx) (hst hy)⟩ lemma strict_convex_on.subset {t : set E} (hf : strict_convex_on π•œ t f) (hst : s βŠ† t) (hs : convex π•œ s) : strict_convex_on π•œ s f := ⟨hs, Ξ» x y hx hy, hf.2 (hst hx) (hst hy)⟩ lemma strict_concave_on.subset {t : set E} (hf : strict_concave_on π•œ t f) (hst : s βŠ† t) (hs : convex π•œ s) : strict_concave_on π•œ s f := ⟨hs, Ξ» x y hx hy, hf.2 (hst hx) (hst hy)⟩ end has_smul section distrib_mul_action variables [has_smul π•œ E] [distrib_mul_action π•œ Ξ²] {s : set E} {f g : E β†’ Ξ²} lemma convex_on.add (hf : convex_on π•œ s f) (hg : convex_on π•œ s g) : convex_on π•œ s (f + g) := ⟨hf.1, Ξ» x y hx hy a b ha hb hab, calc f (a β€’ x + b β€’ y) + g (a β€’ x + b β€’ y) ≀ (a β€’ f x + b β€’ f y) + (a β€’ g x + b β€’ g y) : add_le_add (hf.2 hx hy ha hb hab) (hg.2 hx hy ha hb hab) ... = a β€’ (f x + g x) + b β€’ (f y + g y) : by rw [smul_add, smul_add, add_add_add_comm]⟩ lemma concave_on.add (hf : concave_on π•œ s f) (hg : concave_on π•œ s g) : concave_on π•œ s (f + g) := hf.dual.add hg end distrib_mul_action section module variables [has_smul π•œ E] [module π•œ Ξ²] {s : set E} {f : E β†’ Ξ²} lemma convex_on_const (c : Ξ²) (hs : convex π•œ s) : convex_on π•œ s (Ξ» x:E, c) := ⟨hs, Ξ» x y _ _ a b _ _ hab, (convex.combo_self hab c).ge⟩ lemma concave_on_const (c : Ξ²) (hs : convex π•œ s) : concave_on π•œ s (Ξ» x:E, c) := @convex_on_const _ _ Ξ²α΅’α΅ˆ _ _ _ _ _ _ c hs lemma convex_on_of_convex_epigraph (h : convex π•œ {p : E Γ— Ξ² | p.1 ∈ s ∧ f p.1 ≀ p.2}) : convex_on π•œ s f := ⟨λ x y hx hy a b ha hb hab, (@h (x, f x) (y, f y) ⟨hx, le_rfl⟩ ⟨hy, le_rfl⟩ a b ha hb hab).1, Ξ» x y hx hy a b ha hb hab, (@h (x, f x) (y, f y) ⟨hx, le_rfl⟩ ⟨hy, le_rfl⟩ a b ha hb hab).2⟩ lemma concave_on_of_convex_hypograph (h : convex π•œ {p : E Γ— Ξ² | p.1 ∈ s ∧ p.2 ≀ f p.1}) : concave_on π•œ s f := @convex_on_of_convex_epigraph π•œ E Ξ²α΅’α΅ˆ _ _ _ _ _ _ _ h end module section ordered_smul variables [has_smul π•œ E] [module π•œ Ξ²] [ordered_smul π•œ Ξ²] {s : set E} {f : E β†’ Ξ²} lemma convex_on.convex_le (hf : convex_on π•œ s f) (r : Ξ²) : convex π•œ {x ∈ s | f x ≀ r} := Ξ» x y hx hy a b ha hb hab, ⟨hf.1 hx.1 hy.1 ha hb hab, calc f (a β€’ x + b β€’ y) ≀ a β€’ f x + b β€’ f y : hf.2 hx.1 hy.1 ha hb hab ... ≀ a β€’ r + b β€’ r : add_le_add (smul_le_smul_of_nonneg hx.2 ha) (smul_le_smul_of_nonneg hy.2 hb) ... = r : convex.combo_self hab r⟩ lemma concave_on.convex_ge (hf : concave_on π•œ s f) (r : Ξ²) : convex π•œ {x ∈ s | r ≀ f x} := hf.dual.convex_le r lemma convex_on.convex_epigraph (hf : convex_on π•œ s f) : convex π•œ {p : E Γ— Ξ² | p.1 ∈ s ∧ f p.1 ≀ p.2} := begin rintro ⟨x, r⟩ ⟨y, t⟩ ⟨hx, hr⟩ ⟨hy, ht⟩ a b ha hb hab, refine ⟨hf.1 hx hy ha hb hab, _⟩, calc f (a β€’ x + b β€’ y) ≀ a β€’ f x + b β€’ f y : hf.2 hx hy ha hb hab ... ≀ a β€’ r + b β€’ t : add_le_add (smul_le_smul_of_nonneg hr ha) (smul_le_smul_of_nonneg ht hb) end lemma concave_on.convex_hypograph (hf : concave_on π•œ s f) : convex π•œ {p : E Γ— Ξ² | p.1 ∈ s ∧ p.2 ≀ f p.1} := hf.dual.convex_epigraph lemma convex_on_iff_convex_epigraph : convex_on π•œ s f ↔ convex π•œ {p : E Γ— Ξ² | p.1 ∈ s ∧ f p.1 ≀ p.2} := ⟨convex_on.convex_epigraph, convex_on_of_convex_epigraph⟩ lemma concave_on_iff_convex_hypograph : concave_on π•œ s f ↔ convex π•œ {p : E Γ— Ξ² | p.1 ∈ s ∧ p.2 ≀ f p.1} := @convex_on_iff_convex_epigraph π•œ E Ξ²α΅’α΅ˆ _ _ _ _ _ _ _ f end ordered_smul section module variables [module π•œ E] [has_smul π•œ Ξ²] {s : set E} {f : E β†’ Ξ²} /-- Right translation preserves convexity. -/ lemma convex_on.translate_right (hf : convex_on π•œ s f) (c : E) : convex_on π•œ ((Ξ» z, c + z) ⁻¹' s) (f ∘ (Ξ» z, c + z)) := ⟨hf.1.translate_preimage_right _, Ξ» x y hx hy a b ha hb hab, calc f (c + (a β€’ x + b β€’ y)) = f (a β€’ (c + x) + b β€’ (c + y)) : by rw [smul_add, smul_add, add_add_add_comm, convex.combo_self hab] ... ≀ a β€’ f (c + x) + b β€’ f (c + y) : hf.2 hx hy ha hb hab⟩ /-- Right translation preserves concavity. -/ lemma concave_on.translate_right (hf : concave_on π•œ s f) (c : E) : concave_on π•œ ((Ξ» z, c + z) ⁻¹' s) (f ∘ (Ξ» z, c + z)) := hf.dual.translate_right _ /-- Left translation preserves convexity. -/ lemma convex_on.translate_left (hf : convex_on π•œ s f) (c : E) : convex_on π•œ ((Ξ» z, c + z) ⁻¹' s) (f ∘ (Ξ» z, z + c)) := by simpa only [add_comm] using hf.translate_right _ /-- Left translation preserves concavity. -/ lemma concave_on.translate_left (hf : concave_on π•œ s f) (c : E) : concave_on π•œ ((Ξ» z, c + z) ⁻¹' s) (f ∘ (Ξ» z, z + c)) := hf.dual.translate_left _ end module section module variables [module π•œ E] [module π•œ Ξ²] lemma convex_on_iff_forall_pos {s : set E} {f : E β†’ Ξ²} : convex_on π•œ s f ↔ convex π•œ s ∧ βˆ€ ⦃x y : E⦄, x ∈ s β†’ y ∈ s β†’ βˆ€ ⦃a b : π•œβ¦„, 0 < a β†’ 0 < b β†’ a + b = 1 β†’ f (a β€’ x + b β€’ y) ≀ a β€’ f x + b β€’ f y := begin refine and_congr_right' ⟨λ h x y hx hy a b ha hb hab, h hx hy ha.le hb.le hab, Ξ» h x y hx hy a b ha hb hab, _⟩, obtain rfl | ha' := ha.eq_or_lt, { rw [zero_add] at hab, subst b, simp_rw [zero_smul, zero_add, one_smul] }, obtain rfl | hb' := hb.eq_or_lt, { rw [add_zero] at hab, subst a, simp_rw [zero_smul, add_zero, one_smul] }, exact h hx hy ha' hb' hab, end lemma concave_on_iff_forall_pos {s : set E} {f : E β†’ Ξ²} : concave_on π•œ s f ↔ convex π•œ s ∧ βˆ€ ⦃x y : E⦄, x ∈ s β†’ y ∈ s β†’ βˆ€ ⦃a b : π•œβ¦„, 0 < a β†’ 0 < b β†’ a + b = 1 β†’ a β€’ f x + b β€’ f y ≀ f (a β€’ x + b β€’ y) := @convex_on_iff_forall_pos π•œ E Ξ²α΅’α΅ˆ _ _ _ _ _ _ _ lemma convex_on_iff_pairwise_pos {s : set E} {f : E β†’ Ξ²} : convex_on π•œ s f ↔ convex π•œ s ∧ s.pairwise (Ξ» x y, βˆ€ ⦃a b : π•œβ¦„, 0 < a β†’ 0 < b β†’ a + b = 1 β†’ f (a β€’ x + b β€’ y) ≀ a β€’ f x + b β€’ f y) := begin rw convex_on_iff_forall_pos, refine and_congr_right' ⟨λ h x hx y hy _ a b ha hb hab, h hx hy ha hb hab, Ξ» h x y hx hy a b ha hb hab, _⟩, obtain rfl | hxy := eq_or_ne x y, { rw [convex.combo_self hab, convex.combo_self hab] }, exact h hx hy hxy ha hb hab, end lemma concave_on_iff_pairwise_pos {s : set E} {f : E β†’ Ξ²} : concave_on π•œ s f ↔ convex π•œ s ∧ s.pairwise (Ξ» x y, βˆ€ ⦃a b : π•œβ¦„, 0 < a β†’ 0 < b β†’ a + b = 1 β†’ a β€’ f x + b β€’ f y ≀ f (a β€’ x + b β€’ y)) := @convex_on_iff_pairwise_pos π•œ E Ξ²α΅’α΅ˆ _ _ _ _ _ _ _ /-- A linear map is convex. -/ lemma linear_map.convex_on (f : E β†’β‚—[π•œ] Ξ²) {s : set E} (hs : convex π•œ s) : convex_on π•œ s f := ⟨hs, Ξ» _ _ _ _ _ _ _ _ _, by rw [f.map_add, f.map_smul, f.map_smul]⟩ /-- A linear map is concave. -/ lemma linear_map.concave_on (f : E β†’β‚—[π•œ] Ξ²) {s : set E} (hs : convex π•œ s) : concave_on π•œ s f := ⟨hs, Ξ» _ _ _ _ _ _ _ _ _, by rw [f.map_add, f.map_smul, f.map_smul]⟩ lemma strict_convex_on.convex_on {s : set E} {f : E β†’ Ξ²} (hf : strict_convex_on π•œ s f) : convex_on π•œ s f := convex_on_iff_pairwise_pos.mpr ⟨hf.1, Ξ» x hx y hy hxy a b ha hb hab, (hf.2 hx hy hxy ha hb hab).le⟩ lemma strict_concave_on.concave_on {s : set E} {f : E β†’ Ξ²} (hf : strict_concave_on π•œ s f) : concave_on π•œ s f := hf.dual.convex_on section ordered_smul variables [ordered_smul π•œ Ξ²] {s : set E} {f : E β†’ Ξ²} lemma strict_convex_on.convex_lt (hf : strict_convex_on π•œ s f) (r : Ξ²) : convex π•œ {x ∈ s | f x < r} := convex_iff_pairwise_pos.2 $ Ξ» x hx y hy hxy a b ha hb hab, ⟨hf.1 hx.1 hy.1 ha.le hb.le hab, calc f (a β€’ x + b β€’ y) < a β€’ f x + b β€’ f y : hf.2 hx.1 hy.1 hxy ha hb hab ... ≀ a β€’ r + b β€’ r : add_le_add (smul_lt_smul_of_pos hx.2 ha).le (smul_lt_smul_of_pos hy.2 hb).le ... = r : convex.combo_self hab r⟩ lemma strict_concave_on.convex_gt (hf : strict_concave_on π•œ s f) (r : Ξ²) : convex π•œ {x ∈ s | r < f x} := hf.dual.convex_lt r end ordered_smul section linear_order variables [linear_order E] {s : set E} {f : E β†’ Ξ²} /-- For a function on a convex set in a linearly ordered space (where the order and the algebraic structures aren't necessarily compatible), in order to prove that it is convex, it suffices to verify the inequality `f (a β€’ x + b β€’ y) ≀ a β€’ f x + b β€’ f y` only for `x < y` and positive `a`, `b`. The main use case is `E = π•œ` however one can apply it, e.g., to `π•œ^n` with lexicographic order. -/ lemma linear_order.convex_on_of_lt (hs : convex π•œ s) (hf : βˆ€ ⦃x y : E⦄, x ∈ s β†’ y ∈ s β†’ x < y β†’ βˆ€ ⦃a b : π•œβ¦„, 0 < a β†’ 0 < b β†’ a + b = 1 β†’ f (a β€’ x + b β€’ y) ≀ a β€’ f x + b β€’ f y) : convex_on π•œ s f := begin refine convex_on_iff_pairwise_pos.2 ⟨hs, Ξ» x hx y hy hxy a b ha hb hab, _⟩, wlog h : x ≀ y using [x y a b, y x b a], { exact le_total _ _ }, exact hf hx hy (h.lt_of_ne hxy) ha hb hab, end /-- For a function on a convex set in a linearly ordered space (where the order and the algebraic structures aren't necessarily compatible), in order to prove that it is concave it suffices to verify the inequality `a β€’ f x + b β€’ f y ≀ f (a β€’ x + b β€’ y)` for `x < y` and positive `a`, `b`. The main use case is `E = ℝ` however one can apply it, e.g., to `ℝ^n` with lexicographic order. -/ lemma linear_order.concave_on_of_lt (hs : convex π•œ s) (hf : βˆ€ ⦃x y : E⦄, x ∈ s β†’ y ∈ s β†’ x < y β†’ βˆ€ ⦃a b : π•œβ¦„, 0 < a β†’ 0 < b β†’ a + b = 1 β†’ a β€’ f x + b β€’ f y ≀ f (a β€’ x + b β€’ y)) : concave_on π•œ s f := @linear_order.convex_on_of_lt _ _ Ξ²α΅’α΅ˆ _ _ _ _ _ _ s f hs hf /-- For a function on a convex set in a linearly ordered space (where the order and the algebraic structures aren't necessarily compatible), in order to prove that it is strictly convex, it suffices to verify the inequality `f (a β€’ x + b β€’ y) < a β€’ f x + b β€’ f y` for `x < y` and positive `a`, `b`. The main use case is `E = π•œ` however one can apply it, e.g., to `π•œ^n` with lexicographic order. -/ lemma linear_order.strict_convex_on_of_lt (hs : convex π•œ s) (hf : βˆ€ ⦃x y : E⦄, x ∈ s β†’ y ∈ s β†’ x < y β†’ βˆ€ ⦃a b : π•œβ¦„, 0 < a β†’ 0 < b β†’ a + b = 1 β†’ f (a β€’ x + b β€’ y) < a β€’ f x + b β€’ f y) : strict_convex_on π•œ s f := begin refine ⟨hs, Ξ» x y hx hy hxy a b ha hb hab, _⟩, wlog h : x ≀ y using [x y a b, y x b a], { exact le_total _ _ }, exact hf hx hy (h.lt_of_ne hxy) ha hb hab, end /-- For a function on a convex set in a linearly ordered space (where the order and the algebraic structures aren't necessarily compatible), in order to prove that it is strictly concave it suffices to verify the inequality `a β€’ f x + b β€’ f y < f (a β€’ x + b β€’ y)` for `x < y` and positive `a`, `b`. The main use case is `E = π•œ` however one can apply it, e.g., to `π•œ^n` with lexicographic order. -/ lemma linear_order.strict_concave_on_of_lt (hs : convex π•œ s) (hf : βˆ€ ⦃x y : E⦄, x ∈ s β†’ y ∈ s β†’ x < y β†’ βˆ€ ⦃a b : π•œβ¦„, 0 < a β†’ 0 < b β†’ a + b = 1 β†’ a β€’ f x + b β€’ f y < f (a β€’ x + b β€’ y)) : strict_concave_on π•œ s f := @linear_order.strict_convex_on_of_lt _ _ Ξ²α΅’α΅ˆ _ _ _ _ _ _ _ _ hs hf end linear_order end module section module variables [module π•œ E] [module π•œ F] [has_smul π•œ Ξ²] /-- If `g` is convex on `s`, so is `(f ∘ g)` on `f ⁻¹' s` for a linear `f`. -/ lemma convex_on.comp_linear_map {f : F β†’ Ξ²} {s : set F} (hf : convex_on π•œ s f) (g : E β†’β‚—[π•œ] F) : convex_on π•œ (g ⁻¹' s) (f ∘ g) := ⟨hf.1.linear_preimage _, Ξ» x y hx hy a b ha hb hab, calc f (g (a β€’ x + b β€’ y)) = f (a β€’ (g x) + b β€’ (g y)) : by rw [g.map_add, g.map_smul, g.map_smul] ... ≀ a β€’ f (g x) + b β€’ f (g y) : hf.2 hx hy ha hb hab⟩ /-- If `g` is concave on `s`, so is `(g ∘ f)` on `f ⁻¹' s` for a linear `f`. -/ lemma concave_on.comp_linear_map {f : F β†’ Ξ²} {s : set F} (hf : concave_on π•œ s f) (g : E β†’β‚—[π•œ] F) : concave_on π•œ (g ⁻¹' s) (f ∘ g) := hf.dual.comp_linear_map g end module end ordered_add_comm_monoid section ordered_cancel_add_comm_monoid variables [ordered_cancel_add_comm_monoid Ξ²] section distrib_mul_action variables [has_smul π•œ E] [distrib_mul_action π•œ Ξ²] {s : set E} {f g : E β†’ Ξ²} lemma strict_convex_on.add_convex_on (hf : strict_convex_on π•œ s f) (hg : convex_on π•œ s g) : strict_convex_on π•œ s (f + g) := ⟨hf.1, Ξ» x y hx hy hxy a b ha hb hab, calc f (a β€’ x + b β€’ y) + g (a β€’ x + b β€’ y) < (a β€’ f x + b β€’ f y) + (a β€’ g x + b β€’ g y) : add_lt_add_of_lt_of_le (hf.2 hx hy hxy ha hb hab) (hg.2 hx hy ha.le hb.le hab) ... = a β€’ (f x + g x) + b β€’ (f y + g y) : by rw [smul_add, smul_add, add_add_add_comm]⟩ lemma convex_on.add_strict_convex_on (hf : convex_on π•œ s f) (hg : strict_convex_on π•œ s g) : strict_convex_on π•œ s (f + g) := (add_comm g f) β–Έ hg.add_convex_on hf lemma strict_convex_on.add (hf : strict_convex_on π•œ s f) (hg : strict_convex_on π•œ s g) : strict_convex_on π•œ s (f + g) := ⟨hf.1, Ξ» x y hx hy hxy a b ha hb hab, calc f (a β€’ x + b β€’ y) + g (a β€’ x + b β€’ y) < (a β€’ f x + b β€’ f y) + (a β€’ g x + b β€’ g y) : add_lt_add (hf.2 hx hy hxy ha hb hab) (hg.2 hx hy hxy ha hb hab) ... = a β€’ (f x + g x) + b β€’ (f y + g y) : by rw [smul_add, smul_add, add_add_add_comm]⟩ lemma strict_concave_on.add_concave_on (hf : strict_concave_on π•œ s f) (hg : concave_on π•œ s g) : strict_concave_on π•œ s (f + g) := hf.dual.add_convex_on hg.dual lemma concave_on.add_strict_concave_on (hf : concave_on π•œ s f) (hg : strict_concave_on π•œ s g) : strict_concave_on π•œ s (f + g) := hf.dual.add_strict_convex_on hg.dual lemma strict_concave_on.add (hf : strict_concave_on π•œ s f) (hg : strict_concave_on π•œ s g) : strict_concave_on π•œ s (f + g) := hf.dual.add hg end distrib_mul_action section module variables [module π•œ E] [module π•œ Ξ²] [ordered_smul π•œ Ξ²] {s : set E} {f : E β†’ Ξ²} lemma convex_on.convex_lt (hf : convex_on π•œ s f) (r : Ξ²) : convex π•œ {x ∈ s | f x < r} := convex_iff_forall_pos.2 $ Ξ» x y hx hy a b ha hb hab, ⟨hf.1 hx.1 hy.1 ha.le hb.le hab, calc f (a β€’ x + b β€’ y) ≀ a β€’ f x + b β€’ f y : hf.2 hx.1 hy.1 ha.le hb.le hab ... < a β€’ r + b β€’ r : add_lt_add_of_lt_of_le (smul_lt_smul_of_pos hx.2 ha) (smul_le_smul_of_nonneg hy.2.le hb.le) ... = r : convex.combo_self hab _⟩ lemma concave_on.convex_gt (hf : concave_on π•œ s f) (r : Ξ²) : convex π•œ {x ∈ s | r < f x} := hf.dual.convex_lt r lemma convex_on.open_segment_subset_strict_epigraph (hf : convex_on π•œ s f) (p q : E Γ— Ξ²) (hp : p.1 ∈ s ∧ f p.1 < p.2) (hq : q.1 ∈ s ∧ f q.1 ≀ q.2) : open_segment π•œ p q βŠ† {p : E Γ— Ξ² | p.1 ∈ s ∧ f p.1 < p.2} := begin rintro _ ⟨a, b, ha, hb, hab, rfl⟩, refine ⟨hf.1 hp.1 hq.1 ha.le hb.le hab, _⟩, calc f (a β€’ p.1 + b β€’ q.1) ≀ a β€’ f p.1 + b β€’ f q.1 : hf.2 hp.1 hq.1 ha.le hb.le hab ... < a β€’ p.2 + b β€’ q.2 : add_lt_add_of_lt_of_le (smul_lt_smul_of_pos hp.2 ha) (smul_le_smul_of_nonneg hq.2 hb.le) end lemma concave_on.open_segment_subset_strict_hypograph (hf : concave_on π•œ s f) (p q : E Γ— Ξ²) (hp : p.1 ∈ s ∧ p.2 < f p.1) (hq : q.1 ∈ s ∧ q.2 ≀ f q.1) : open_segment π•œ p q βŠ† {p : E Γ— Ξ² | p.1 ∈ s ∧ p.2 < f p.1} := hf.dual.open_segment_subset_strict_epigraph p q hp hq lemma convex_on.convex_strict_epigraph (hf : convex_on π•œ s f) : convex π•œ {p : E Γ— Ξ² | p.1 ∈ s ∧ f p.1 < p.2} := convex_iff_open_segment_subset.mpr $ Ξ» p q hp hq, hf.open_segment_subset_strict_epigraph p q hp ⟨hq.1, hq.2.le⟩ lemma concave_on.convex_strict_hypograph (hf : concave_on π•œ s f) : convex π•œ {p : E Γ— Ξ² | p.1 ∈ s ∧ p.2 < f p.1} := hf.dual.convex_strict_epigraph end module end ordered_cancel_add_comm_monoid section linear_ordered_add_comm_monoid variables [linear_ordered_add_comm_monoid Ξ²] [has_smul π•œ E] [module π•œ Ξ²] [ordered_smul π•œ Ξ²] {s : set E} {f g : E β†’ Ξ²} /-- The pointwise maximum of convex functions is convex. -/ lemma convex_on.sup (hf : convex_on π•œ s f) (hg : convex_on π•œ s g) : convex_on π•œ s (f βŠ” g) := begin refine ⟨hf.left, Ξ» x y hx hy a b ha hb hab, sup_le _ _⟩, { calc f (a β€’ x + b β€’ y) ≀ a β€’ f x + b β€’ f y : hf.right hx hy ha hb hab ... ≀ a β€’ (f x βŠ” g x) + b β€’ (f y βŠ” g y) : add_le_add (smul_le_smul_of_nonneg le_sup_left ha) (smul_le_smul_of_nonneg le_sup_left hb) }, { calc g (a β€’ x + b β€’ y) ≀ a β€’ g x + b β€’ g y : hg.right hx hy ha hb hab ... ≀ a β€’ (f x βŠ” g x) + b β€’ (f y βŠ” g y) : add_le_add (smul_le_smul_of_nonneg le_sup_right ha) (smul_le_smul_of_nonneg le_sup_right hb) } end /-- The pointwise minimum of concave functions is concave. -/ lemma concave_on.inf (hf : concave_on π•œ s f) (hg : concave_on π•œ s g) : concave_on π•œ s (f βŠ“ g) := hf.dual.sup hg /-- The pointwise maximum of strictly convex functions is strictly convex. -/ lemma strict_convex_on.sup (hf : strict_convex_on π•œ s f) (hg : strict_convex_on π•œ s g) : strict_convex_on π•œ s (f βŠ” g) := ⟨hf.left, Ξ» x y hx hy hxy a b ha hb hab, max_lt (calc f (a β€’ x + b β€’ y) < a β€’ f x + b β€’ f y : hf.2 hx hy hxy ha hb hab ... ≀ a β€’ (f x βŠ” g x) + b β€’ (f y βŠ” g y) : add_le_add (smul_le_smul_of_nonneg le_sup_left ha.le) (smul_le_smul_of_nonneg le_sup_left hb.le)) (calc g (a β€’ x + b β€’ y) < a β€’ g x + b β€’ g y : hg.2 hx hy hxy ha hb hab ... ≀ a β€’ (f x βŠ” g x) + b β€’ (f y βŠ” g y) : add_le_add (smul_le_smul_of_nonneg le_sup_right ha.le) (smul_le_smul_of_nonneg le_sup_right hb.le))⟩ /-- The pointwise minimum of strictly concave functions is strictly concave. -/ lemma strict_concave_on.inf (hf : strict_concave_on π•œ s f) (hg : strict_concave_on π•œ s g) : strict_concave_on π•œ s (f βŠ“ g) := hf.dual.sup hg /-- A convex function on a segment is upper-bounded by the max of its endpoints. -/ lemma convex_on.le_on_segment' (hf : convex_on π•œ s f) {x y : E} (hx : x ∈ s) (hy : y ∈ s) {a b : π•œ} (ha : 0 ≀ a) (hb : 0 ≀ b) (hab : a + b = 1) : f (a β€’ x + b β€’ y) ≀ max (f x) (f y) := calc f (a β€’ x + b β€’ y) ≀ a β€’ f x + b β€’ f y : hf.2 hx hy ha hb hab ... ≀ a β€’ max (f x) (f y) + b β€’ max (f x) (f y) : add_le_add (smul_le_smul_of_nonneg (le_max_left _ _) ha) (smul_le_smul_of_nonneg (le_max_right _ _) hb) ... = max (f x) (f y) : convex.combo_self hab _ /-- A concave function on a segment is lower-bounded by the min of its endpoints. -/ lemma concave_on.ge_on_segment' (hf : concave_on π•œ s f) {x y : E} (hx : x ∈ s) (hy : y ∈ s) {a b : π•œ} (ha : 0 ≀ a) (hb : 0 ≀ b) (hab : a + b = 1) : min (f x) (f y) ≀ f (a β€’ x + b β€’ y) := hf.dual.le_on_segment' hx hy ha hb hab /-- A convex function on a segment is upper-bounded by the max of its endpoints. -/ lemma convex_on.le_on_segment (hf : convex_on π•œ s f) {x y z : E} (hx : x ∈ s) (hy : y ∈ s) (hz : z ∈ [x -[π•œ] y]) : f z ≀ max (f x) (f y) := let ⟨a, b, ha, hb, hab, hz⟩ := hz in hz β–Έ hf.le_on_segment' hx hy ha hb hab /-- A concave function on a segment is lower-bounded by the min of its endpoints. -/ lemma concave_on.ge_on_segment (hf : concave_on π•œ s f) {x y z : E} (hx : x ∈ s) (hy : y ∈ s) (hz : z ∈ [x -[π•œ] y]) : min (f x) (f y) ≀ f z := hf.dual.le_on_segment hx hy hz /-- A strictly convex function on an open segment is strictly upper-bounded by the max of its endpoints. -/ lemma strict_convex_on.lt_on_open_segment' (hf : strict_convex_on π•œ s f) {x y : E} (hx : x ∈ s) (hy : y ∈ s) (hxy : x β‰  y) {a b : π•œ} (ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) : f (a β€’ x + b β€’ y) < max (f x) (f y) := calc f (a β€’ x + b β€’ y) < a β€’ f x + b β€’ f y : hf.2 hx hy hxy ha hb hab ... ≀ a β€’ max (f x) (f y) + b β€’ max (f x) (f y) : add_le_add (smul_le_smul_of_nonneg (le_max_left _ _) ha.le) (smul_le_smul_of_nonneg (le_max_right _ _) hb.le) ... = max (f x) (f y) : convex.combo_self hab _ /-- A strictly concave function on an open segment is strictly lower-bounded by the min of its endpoints. -/ lemma strict_concave_on.lt_on_open_segment' (hf : strict_concave_on π•œ s f) {x y : E} (hx : x ∈ s) (hy : y ∈ s) (hxy : x β‰  y) {a b : π•œ} (ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) : min (f x) (f y) < f (a β€’ x + b β€’ y) := hf.dual.lt_on_open_segment' hx hy hxy ha hb hab /-- A strictly convex function on an open segment is strictly upper-bounded by the max of its endpoints. -/ lemma strict_convex_on.lt_on_open_segment (hf : strict_convex_on π•œ s f) {x y z : E} (hx : x ∈ s) (hy : y ∈ s) (hxy : x β‰  y) (hz : z ∈ open_segment π•œ x y) : f z < max (f x) (f y) := let ⟨a, b, ha, hb, hab, hz⟩ := hz in hz β–Έ hf.lt_on_open_segment' hx hy hxy ha hb hab /-- A strictly concave function on an open segment is strictly lower-bounded by the min of its endpoints. -/ lemma strict_concave_on.lt_on_open_segment (hf : strict_concave_on π•œ s f) {x y z : E} (hx : x ∈ s) (hy : y ∈ s) (hxy : x β‰  y) (hz : z ∈ open_segment π•œ x y) : min (f x) (f y) < f z := hf.dual.lt_on_open_segment hx hy hxy hz end linear_ordered_add_comm_monoid section linear_ordered_cancel_add_comm_monoid variables [linear_ordered_cancel_add_comm_monoid Ξ²] section ordered_smul variables [has_smul π•œ E] [module π•œ Ξ²] [ordered_smul π•œ Ξ²] {s : set E} {f g : E β†’ Ξ²} lemma convex_on.le_left_of_right_le' (hf : convex_on π•œ s f) {x y : E} (hx : x ∈ s) (hy : y ∈ s) {a b : π•œ} (ha : 0 < a) (hb : 0 ≀ b) (hab : a + b = 1) (hfy : f y ≀ f (a β€’ x + b β€’ y)) : f (a β€’ x + b β€’ y) ≀ f x := le_of_not_lt $ Ξ» h, lt_irrefl (f (a β€’ x + b β€’ y)) $ calc f (a β€’ x + b β€’ y) ≀ a β€’ f x + b β€’ f y : hf.2 hx hy ha.le hb hab ... < a β€’ f (a β€’ x + b β€’ y) + b β€’ f (a β€’ x + b β€’ y) : add_lt_add_of_lt_of_le (smul_lt_smul_of_pos h ha) (smul_le_smul_of_nonneg hfy hb) ... = f (a β€’ x + b β€’ y) : convex.combo_self hab _ lemma concave_on.left_le_of_le_right' (hf : concave_on π•œ s f) {x y : E} (hx : x ∈ s) (hy : y ∈ s) {a b : π•œ} (ha : 0 < a) (hb : 0 ≀ b) (hab : a + b = 1) (hfy : f (a β€’ x + b β€’ y) ≀ f y) : f x ≀ f (a β€’ x + b β€’ y) := hf.dual.le_left_of_right_le' hx hy ha hb hab hfy lemma convex_on.le_right_of_left_le' (hf : convex_on π•œ s f) {x y : E} {a b : π•œ} (hx : x ∈ s) (hy : y ∈ s) (ha : 0 ≀ a) (hb : 0 < b) (hab : a + b = 1) (hfx : f x ≀ f (a β€’ x + b β€’ y)) : f (a β€’ x + b β€’ y) ≀ f y := begin rw add_comm at ⊒ hab hfx, exact hf.le_left_of_right_le' hy hx hb ha hab hfx, end lemma concave_on.right_le_of_le_left' (hf : concave_on π•œ s f) {x y : E} {a b : π•œ} (hx : x ∈ s) (hy : y ∈ s) (ha : 0 ≀ a) (hb : 0 < b) (hab : a + b = 1) (hfx : f (a β€’ x + b β€’ y) ≀ f x) : f y ≀ f (a β€’ x + b β€’ y) := hf.dual.le_right_of_left_le' hx hy ha hb hab hfx lemma convex_on.le_left_of_right_le (hf : convex_on π•œ s f) {x y z : E} (hx : x ∈ s) (hy : y ∈ s) (hz : z ∈ open_segment π•œ x y) (hyz : f y ≀ f z) : f z ≀ f x := begin obtain ⟨a, b, ha, hb, hab, rfl⟩ := hz, exact hf.le_left_of_right_le' hx hy ha hb.le hab hyz, end lemma concave_on.left_le_of_le_right (hf : concave_on π•œ s f) {x y z : E} (hx : x ∈ s) (hy : y ∈ s) (hz : z ∈ open_segment π•œ x y) (hyz : f z ≀ f y) : f x ≀ f z := hf.dual.le_left_of_right_le hx hy hz hyz lemma convex_on.le_right_of_left_le (hf : convex_on π•œ s f) {x y z : E} (hx : x ∈ s) (hy : y ∈ s) (hz : z ∈ open_segment π•œ x y) (hxz : f x ≀ f z) : f z ≀ f y := begin obtain ⟨a, b, ha, hb, hab, rfl⟩ := hz, exact hf.le_right_of_left_le' hx hy ha.le hb hab hxz, end lemma concave_on.right_le_of_le_left (hf : concave_on π•œ s f) {x y z : E} (hx : x ∈ s) (hy : y ∈ s) (hz : z ∈ open_segment π•œ x y) (hxz : f z ≀ f x) : f y ≀ f z := hf.dual.le_right_of_left_le hx hy hz hxz end ordered_smul section module variables [module π•œ E] [module π•œ Ξ²] [ordered_smul π•œ Ξ²] {s : set E} {f g : E β†’ Ξ²} /- The following lemmas don't require `module π•œ E` if you add the hypothesis `x β‰  y`. At the time of the writing, we decided the resulting lemmas wouldn't be useful. Feel free to reintroduce them. -/ lemma strict_convex_on.lt_left_of_right_lt' (hf : strict_convex_on π•œ s f) {x y : E} (hx : x ∈ s) (hy : y ∈ s) {a b : π•œ} (ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (hfy : f y < f (a β€’ x + b β€’ y)) : f (a β€’ x + b β€’ y) < f x := not_le.1 $ Ξ» h, lt_irrefl (f (a β€’ x + b β€’ y)) $ calc f (a β€’ x + b β€’ y) < a β€’ f x + b β€’ f y : hf.2 hx hy begin rintro rfl, rw convex.combo_self hab at hfy, exact lt_irrefl _ hfy, end ha hb hab ... < a β€’ f (a β€’ x + b β€’ y) + b β€’ f (a β€’ x + b β€’ y) : add_lt_add_of_le_of_lt (smul_le_smul_of_nonneg h ha.le) (smul_lt_smul_of_pos hfy hb) ... = f (a β€’ x + b β€’ y) : convex.combo_self hab _ lemma strict_concave_on.left_lt_of_lt_right' (hf : strict_concave_on π•œ s f) {x y : E} (hx : x ∈ s) (hy : y ∈ s) {a b : π•œ} (ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (hfy : f (a β€’ x + b β€’ y) < f y) : f x < f (a β€’ x + b β€’ y) := hf.dual.lt_left_of_right_lt' hx hy ha hb hab hfy lemma strict_convex_on.lt_right_of_left_lt' (hf : strict_convex_on π•œ s f) {x y : E} {a b : π•œ} (hx : x ∈ s) (hy : y ∈ s) (ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (hfx : f x < f (a β€’ x + b β€’ y)) : f (a β€’ x + b β€’ y) < f y := begin rw add_comm at ⊒ hab hfx, exact hf.lt_left_of_right_lt' hy hx hb ha hab hfx, end lemma strict_concave_on.lt_right_of_left_lt' (hf : strict_concave_on π•œ s f) {x y : E} {a b : π•œ} (hx : x ∈ s) (hy : y ∈ s) (ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (hfx : f (a β€’ x + b β€’ y) < f x) : f y < f (a β€’ x + b β€’ y) := hf.dual.lt_right_of_left_lt' hx hy ha hb hab hfx lemma strict_convex_on.lt_left_of_right_lt (hf : strict_convex_on π•œ s f) {x y z : E} (hx : x ∈ s) (hy : y ∈ s) (hz : z ∈ open_segment π•œ x y) (hyz : f y < f z) : f z < f x := begin obtain ⟨a, b, ha, hb, hab, rfl⟩ := hz, exact hf.lt_left_of_right_lt' hx hy ha hb hab hyz, end lemma strict_concave_on.left_lt_of_lt_right (hf : strict_concave_on π•œ s f) {x y z : E} (hx : x ∈ s) (hy : y ∈ s) (hz : z ∈ open_segment π•œ x y) (hyz : f z < f y) : f x < f z := hf.dual.lt_left_of_right_lt hx hy hz hyz lemma strict_convex_on.lt_right_of_left_lt (hf : strict_convex_on π•œ s f) {x y z : E} (hx : x ∈ s) (hy : y ∈ s) (hz : z ∈ open_segment π•œ x y) (hxz : f x < f z) : f z < f y := begin obtain ⟨a, b, ha, hb, hab, rfl⟩ := hz, exact hf.lt_right_of_left_lt' hx hy ha hb hab hxz, end lemma strict_concave_on.lt_right_of_left_lt (hf : strict_concave_on π•œ s f) {x y z : E} (hx : x ∈ s) (hy : y ∈ s) (hz : z ∈ open_segment π•œ x y) (hxz : f z < f x) : f y < f z := hf.dual.lt_right_of_left_lt hx hy hz hxz end module end linear_ordered_cancel_add_comm_monoid section ordered_add_comm_group variables [ordered_add_comm_group Ξ²] [has_smul π•œ E] [module π•œ Ξ²] {s : set E} {f g : E β†’ Ξ²} /-- A function `-f` is convex iff `f` is concave. -/ @[simp] lemma neg_convex_on_iff : convex_on π•œ s (-f) ↔ concave_on π•œ s f := begin split, { rintro ⟨hconv, h⟩, refine ⟨hconv, Ξ» x y hx hy a b ha hb hab, _⟩, simp [neg_apply, neg_le, add_comm] at h, exact h hx hy ha hb hab }, { rintro ⟨hconv, h⟩, refine ⟨hconv, Ξ» x y hx hy a b ha hb hab, _⟩, rw ←neg_le_neg_iff, simp_rw [neg_add, pi.neg_apply, smul_neg, neg_neg], exact h hx hy ha hb hab } end /-- A function `-f` is concave iff `f` is convex. -/ @[simp] lemma neg_concave_on_iff : concave_on π•œ s (-f) ↔ convex_on π•œ s f:= by rw [← neg_convex_on_iff, neg_neg f] /-- A function `-f` is strictly convex iff `f` is strictly concave. -/ @[simp] lemma neg_strict_convex_on_iff : strict_convex_on π•œ s (-f) ↔ strict_concave_on π•œ s f := begin split, { rintro ⟨hconv, h⟩, refine ⟨hconv, Ξ» x y hx hy hxy a b ha hb hab, _⟩, simp [neg_apply, neg_lt, add_comm] at h, exact h hx hy hxy ha hb hab }, { rintro ⟨hconv, h⟩, refine ⟨hconv, Ξ» x y hx hy hxy a b ha hb hab, _⟩, rw ←neg_lt_neg_iff, simp_rw [neg_add, pi.neg_apply, smul_neg, neg_neg], exact h hx hy hxy ha hb hab } end /-- A function `-f` is strictly concave iff `f` is strictly convex. -/ @[simp] lemma neg_strict_concave_on_iff : strict_concave_on π•œ s (-f) ↔ strict_convex_on π•œ s f := by rw [← neg_strict_convex_on_iff, neg_neg f] alias neg_convex_on_iff ↔ _ concave_on.neg alias neg_concave_on_iff ↔ _ convex_on.neg alias neg_strict_convex_on_iff ↔ _ strict_concave_on.neg alias neg_strict_concave_on_iff ↔ _ strict_convex_on.neg lemma convex_on.sub (hf : convex_on π•œ s f) (hg : concave_on π•œ s g) : convex_on π•œ s (f - g) := (sub_eq_add_neg f g).symm β–Έ hf.add hg.neg lemma concave_on.sub (hf : concave_on π•œ s f) (hg : convex_on π•œ s g) : concave_on π•œ s (f - g) := (sub_eq_add_neg f g).symm β–Έ hf.add hg.neg lemma strict_convex_on.sub (hf : strict_convex_on π•œ s f) (hg : strict_concave_on π•œ s g) : strict_convex_on π•œ s (f - g) := (sub_eq_add_neg f g).symm β–Έ hf.add hg.neg lemma strict_concave_on.sub (hf : strict_concave_on π•œ s f) (hg : strict_convex_on π•œ s g) : strict_concave_on π•œ s (f - g) := (sub_eq_add_neg f g).symm β–Έ hf.add hg.neg lemma convex_on.sub_strict_concave_on (hf : convex_on π•œ s f) (hg : strict_concave_on π•œ s g) : strict_convex_on π•œ s (f - g) := (sub_eq_add_neg f g).symm β–Έ hf.add_strict_convex_on hg.neg lemma concave_on.sub_strict_convex_on (hf : concave_on π•œ s f) (hg : strict_convex_on π•œ s g) : strict_concave_on π•œ s (f - g) := (sub_eq_add_neg f g).symm β–Έ hf.add_strict_concave_on hg.neg lemma strict_convex_on.sub_concave_on (hf : strict_convex_on π•œ s f) (hg : concave_on π•œ s g) : strict_convex_on π•œ s (f - g) := (sub_eq_add_neg f g).symm β–Έ hf.add_convex_on hg.neg lemma strict_concave_on.sub_convex_on (hf : strict_concave_on π•œ s f) (hg : convex_on π•œ s g) : strict_concave_on π•œ s (f - g) := (sub_eq_add_neg f g).symm β–Έ hf.add_concave_on hg.neg end ordered_add_comm_group end add_comm_monoid section add_cancel_comm_monoid variables [add_cancel_comm_monoid E] [ordered_add_comm_monoid Ξ²] [module π•œ E] [has_smul π•œ Ξ²] {s : set E} {f : E β†’ Ξ²} /-- Right translation preserves strict convexity. -/ lemma strict_convex_on.translate_right (hf : strict_convex_on π•œ s f) (c : E) : strict_convex_on π•œ ((Ξ» z, c + z) ⁻¹' s) (f ∘ (Ξ» z, c + z)) := ⟨hf.1.translate_preimage_right _, Ξ» x y hx hy hxy a b ha hb hab, calc f (c + (a β€’ x + b β€’ y)) = f (a β€’ (c + x) + b β€’ (c + y)) : by rw [smul_add, smul_add, add_add_add_comm, convex.combo_self hab] ... < a β€’ f (c + x) + b β€’ f (c + y) : hf.2 hx hy ((add_right_injective c).ne hxy) ha hb hab⟩ /-- Right translation preserves strict concavity. -/ lemma strict_concave_on.translate_right (hf : strict_concave_on π•œ s f) (c : E) : strict_concave_on π•œ ((Ξ» z, c + z) ⁻¹' s) (f ∘ (Ξ» z, c + z)) := hf.dual.translate_right _ /-- Left translation preserves strict convexity. -/ lemma strict_convex_on.translate_left (hf : strict_convex_on π•œ s f) (c : E) : strict_convex_on π•œ ((Ξ» z, c + z) ⁻¹' s) (f ∘ (Ξ» z, z + c)) := by simpa only [add_comm] using hf.translate_right _ /-- Left translation preserves strict concavity. -/ lemma strict_concave_on.translate_left (hf : strict_concave_on π•œ s f) (c : E) : strict_concave_on π•œ ((Ξ» z, c + z) ⁻¹' s) (f ∘ (Ξ» z, z + c)) := by simpa only [add_comm] using hf.translate_right _ end add_cancel_comm_monoid end ordered_semiring section ordered_comm_semiring variables [ordered_comm_semiring π•œ] [add_comm_monoid E] section ordered_add_comm_monoid variables [ordered_add_comm_monoid Ξ²] section module variables [has_smul π•œ E] [module π•œ Ξ²] [ordered_smul π•œ Ξ²] {s : set E} {f : E β†’ Ξ²} lemma convex_on.smul {c : π•œ} (hc : 0 ≀ c) (hf : convex_on π•œ s f) : convex_on π•œ s (Ξ» x, c β€’ f x) := ⟨hf.1, Ξ» x y hx hy a b ha hb hab, calc c β€’ f (a β€’ x + b β€’ y) ≀ c β€’ (a β€’ f x + b β€’ f y) : smul_le_smul_of_nonneg (hf.2 hx hy ha hb hab) hc ... = a β€’ (c β€’ f x) + b β€’ (c β€’ f y) : by rw [smul_add, smul_comm c, smul_comm c]; apply_instance⟩ lemma concave_on.smul {c : π•œ} (hc : 0 ≀ c) (hf : concave_on π•œ s f) : concave_on π•œ s (Ξ» x, c β€’ f x) := hf.dual.smul hc end module end ordered_add_comm_monoid end ordered_comm_semiring section ordered_ring variables [linear_ordered_field π•œ] [add_comm_group E] [add_comm_group F] section ordered_add_comm_monoid variables [ordered_add_comm_monoid Ξ²] section module variables [module π•œ E] [module π•œ F] [has_smul π•œ Ξ²] /-- If a function is convex on `s`, it remains convex when precomposed by an affine map. -/ lemma convex_on.comp_affine_map {f : F β†’ Ξ²} (g : E →ᡃ[π•œ] F) {s : set F} (hf : convex_on π•œ s f) : convex_on π•œ (g ⁻¹' s) (f ∘ g) := ⟨hf.1.affine_preimage _, Ξ» x y hx hy a b ha hb hab, calc (f ∘ g) (a β€’ x + b β€’ y) = f (g (a β€’ x + b β€’ y)) : rfl ... = f (a β€’ (g x) + b β€’ (g y)) : by rw [convex.combo_affine_apply hab] ... ≀ a β€’ f (g x) + b β€’ f (g y) : hf.2 hx hy ha hb hab⟩ /-- If a function is concave on `s`, it remains concave when precomposed by an affine map. -/ lemma concave_on.comp_affine_map {f : F β†’ Ξ²} (g : E →ᡃ[π•œ] F) {s : set F} (hf : concave_on π•œ s f) : concave_on π•œ (g ⁻¹' s) (f ∘ g) := hf.dual.comp_affine_map g end module end ordered_add_comm_monoid end ordered_ring section linear_ordered_field variables [linear_ordered_field π•œ] [add_comm_monoid E] section ordered_add_comm_monoid variables [ordered_add_comm_monoid Ξ²] section has_smul variables [has_smul π•œ E] [has_smul π•œ Ξ²] {s : set E} lemma convex_on_iff_div {f : E β†’ Ξ²} : convex_on π•œ s f ↔ convex π•œ s ∧ βˆ€ ⦃x y : E⦄, x ∈ s β†’ y ∈ s β†’ βˆ€ ⦃a b : π•œβ¦„, 0 ≀ a β†’ 0 ≀ b β†’ 0 < a + b β†’ f ((a/(a+b)) β€’ x + (b/(a+b)) β€’ y) ≀ (a/(a+b)) β€’ f x + (b/(a+b)) β€’ f y := and_congr iff.rfl ⟨begin intros h x y hx hy a b ha hb hab, apply h hx hy (div_nonneg ha hab.le) (div_nonneg hb hab.le), rw [←add_div, div_self hab.ne'], end, begin intros h x y hx hy a b ha hb hab, simpa [hab, zero_lt_one] using h hx hy ha hb, end⟩ lemma concave_on_iff_div {f : E β†’ Ξ²} : concave_on π•œ s f ↔ convex π•œ s ∧ βˆ€ ⦃x y : E⦄, x ∈ s β†’ y ∈ s β†’ βˆ€ ⦃a b : π•œβ¦„, 0 ≀ a β†’ 0 ≀ b β†’ 0 < a + b β†’ (a/(a+b)) β€’ f x + (b/(a+b)) β€’ f y ≀ f ((a/(a+b)) β€’ x + (b/(a+b)) β€’ y) := @convex_on_iff_div _ _ Ξ²α΅’α΅ˆ _ _ _ _ _ _ _ lemma strict_convex_on_iff_div {f : E β†’ Ξ²} : strict_convex_on π•œ s f ↔ convex π•œ s ∧ βˆ€ ⦃x y : E⦄, x ∈ s β†’ y ∈ s β†’ x β‰  y β†’ βˆ€ ⦃a b : π•œβ¦„, 0 < a β†’ 0 < b β†’ f ((a/(a+b)) β€’ x + (b/(a+b)) β€’ y) < (a/(a+b)) β€’ f x + (b/(a+b)) β€’ f y := and_congr iff.rfl ⟨begin intros h x y hx hy hxy a b ha hb, have hab := add_pos ha hb, apply h hx hy hxy (div_pos ha hab) (div_pos hb hab), rw [←add_div, div_self hab.ne'], end, begin intros h x y hx hy hxy a b ha hb hab, simpa [hab, zero_lt_one] using h hx hy hxy ha hb, end⟩ lemma strict_concave_on_iff_div {f : E β†’ Ξ²} : strict_concave_on π•œ s f ↔ convex π•œ s ∧ βˆ€ ⦃x y : E⦄, x ∈ s β†’ y ∈ s β†’ x β‰  y β†’ βˆ€ ⦃a b : π•œβ¦„, 0 < a β†’ 0 < b β†’ (a/(a+b)) β€’ f x + (b/(a+b)) β€’ f y < f ((a/(a+b)) β€’ x + (b/(a+b)) β€’ y) := @strict_convex_on_iff_div _ _ Ξ²α΅’α΅ˆ _ _ _ _ _ _ _ end has_smul end ordered_add_comm_monoid end linear_ordered_field section variables [linear_ordered_field π•œ] [linear_ordered_cancel_add_comm_monoid Ξ²] [module π•œ Ξ²] [ordered_smul π•œ Ξ²] {x y z : π•œ} {s : set π•œ} {f : π•œ β†’ Ξ²} lemma convex_on.le_right_of_left_le'' (hf : convex_on π•œ s f) (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y ≀ z) (h : f x ≀ f y) : f y ≀ f z := hyz.eq_or_lt.elim (Ξ» hyz, (congr_arg f hyz).le) (Ξ» hyz, hf.le_right_of_left_le hx hz (Ioo_subset_open_segment ⟨hxy, hyz⟩) h) lemma convex_on.le_left_of_right_le'' (hf : convex_on π•œ s f) (hx : x ∈ s) (hz : z ∈ s) (hxy : x ≀ y) (hyz : y < z) (h : f z ≀ f y) : f y ≀ f x := hxy.eq_or_lt.elim (Ξ» hxy, (congr_arg f hxy).ge) (Ξ» hxy, hf.le_left_of_right_le hx hz (Ioo_subset_open_segment ⟨hxy, hyz⟩) h) lemma concave_on.right_le_of_le_left'' (hf : concave_on π•œ s f) (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y ≀ z) (h : f y ≀ f x) : f z ≀ f y := hf.dual.le_right_of_left_le'' hx hz hxy hyz h lemma concave_on.left_le_of_le_right'' (hf : concave_on π•œ s f) (hx : x ∈ s) (hz : z ∈ s) (hxy : x ≀ y) (hyz : y < z) (h : f y ≀ f z) : f x ≀ f y := hf.dual.le_left_of_right_le'' hx hz hxy hyz h end