/- Copyright (c) 2020 Yury Kudriashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudriashov, YaΓ«l Dillies -/ import analysis.convex.basic import order.closure /-! # Convex hull This file defines the convex hull of a set `s` in a module. `convex_hull π•œ s` is the smallest convex set containing `s`. In order theory speak, this is a closure operator. ## Implementation notes `convex_hull` is defined as a closure operator. This gives access to the `closure_operator` API while the impact on writing code is minimal as `convex_hull π•œ s` is automatically elaborated as `⇑(convex_hull π•œ) s`. -/ open set open_locale pointwise variables {π•œ E F : Type*} section convex_hull section ordered_semiring variables [ordered_semiring π•œ] section add_comm_monoid variables (π•œ) [add_comm_monoid E] [add_comm_monoid F] [module π•œ E] [module π•œ F] /-- The convex hull of a set `s` is the minimal convex set that includes `s`. -/ def convex_hull : closure_operator (set E) := closure_operator.mk₃ (Ξ» s, β‹‚ (t : set E) (hst : s βŠ† t) (ht : convex π•œ t), t) (convex π•œ) (Ξ» s, set.subset_Inter (Ξ» t, set.subset_Inter $ Ξ» hst, set.subset_Inter $ Ξ» ht, hst)) (Ξ» s, convex_Inter $ Ξ» t, convex_Inter $ Ξ» ht, convex_Inter id) (Ξ» s t hst ht, set.Inter_subset_of_subset t $ set.Inter_subset_of_subset hst $ set.Inter_subset _ ht) variables (s : set E) lemma subset_convex_hull : s βŠ† convex_hull π•œ s := (convex_hull π•œ).le_closure s lemma convex_convex_hull : convex π•œ (convex_hull π•œ s) := closure_operator.closure_mem_mk₃ s lemma convex_hull_eq_Inter : convex_hull π•œ s = β‹‚ (t : set E) (hst : s βŠ† t) (ht : convex π•œ t), t := rfl variables {π•œ s} {t : set E} {x y : E} lemma mem_convex_hull_iff : x ∈ convex_hull π•œ s ↔ βˆ€ t, s βŠ† t β†’ convex π•œ t β†’ x ∈ t := by simp_rw [convex_hull_eq_Inter, mem_Inter] lemma convex_hull_min (hst : s βŠ† t) (ht : convex π•œ t) : convex_hull π•œ s βŠ† t := closure_operator.closure_le_mk₃_iff (show s ≀ t, from hst) ht lemma convex.convex_hull_subset_iff (ht : convex π•œ t) : convex_hull π•œ s βŠ† t ↔ s βŠ† t := ⟨(subset_convex_hull _ _).trans, Ξ» h, convex_hull_min h ht⟩ @[mono] lemma convex_hull_mono (hst : s βŠ† t) : convex_hull π•œ s βŠ† convex_hull π•œ t := (convex_hull π•œ).monotone hst lemma convex.convex_hull_eq (hs : convex π•œ s) : convex_hull π•œ s = s := closure_operator.mem_mk₃_closed hs @[simp] lemma convex_hull_univ : convex_hull π•œ (univ : set E) = univ := closure_operator.closure_top (convex_hull π•œ) @[simp] lemma convex_hull_empty : convex_hull π•œ (βˆ… : set E) = βˆ… := convex_empty.convex_hull_eq @[simp] lemma convex_hull_empty_iff : convex_hull π•œ s = βˆ… ↔ s = βˆ… := begin split, { intro h, rw [←set.subset_empty_iff, ←h], exact subset_convex_hull π•œ _ }, { rintro rfl, exact convex_hull_empty } end @[simp] lemma convex_hull_nonempty_iff : (convex_hull π•œ s).nonempty ↔ s.nonempty := begin rw [←ne_empty_iff_nonempty, ←ne_empty_iff_nonempty, ne.def, ne.def], exact not_congr convex_hull_empty_iff, end alias convex_hull_nonempty_iff ↔ _ set.nonempty.convex_hull attribute [protected] set.nonempty.convex_hull lemma segment_subset_convex_hull (hx : x ∈ s) (hy : y ∈ s) : segment π•œ x y βŠ† convex_hull π•œ s := (convex_convex_hull _ _).segment_subset (subset_convex_hull _ _ hx) (subset_convex_hull _ _ hy) @[simp] lemma convex_hull_singleton (x : E) : convex_hull π•œ ({x} : set E) = {x} := (convex_singleton x).convex_hull_eq @[simp] lemma convex_hull_pair (x y : E) : convex_hull π•œ {x, y} = segment π•œ x y := begin refine (convex_hull_min _ $ convex_segment _ _).antisymm (segment_subset_convex_hull (mem_insert _ _) $ mem_insert_of_mem _ $ mem_singleton _), rw [insert_subset, singleton_subset_iff], exact ⟨left_mem_segment _ _ _, right_mem_segment _ _ _⟩, end lemma convex_hull_convex_hull_union_left (s t : set E) : convex_hull π•œ (convex_hull π•œ s βˆͺ t) = convex_hull π•œ (s βˆͺ t) := closure_operator.closure_sup_closure_left _ _ _ lemma convex_hull_convex_hull_union_right (s t : set E) : convex_hull π•œ (s βˆͺ convex_hull π•œ t) = convex_hull π•œ (s βˆͺ t) := closure_operator.closure_sup_closure_right _ _ _ lemma convex.convex_remove_iff_not_mem_convex_hull_remove {s : set E} (hs : convex π•œ s) (x : E) : convex π•œ (s \ {x}) ↔ x βˆ‰ convex_hull π•œ (s \ {x}) := begin split, { rintro hsx hx, rw hsx.convex_hull_eq at hx, exact hx.2 (mem_singleton _) }, rintro hx, suffices h : s \ {x} = convex_hull π•œ (s \ {x}), { convert convex_convex_hull π•œ _ }, exact subset.antisymm (subset_convex_hull π•œ _) (Ξ» y hy, ⟨convex_hull_min (diff_subset _ _) hs hy, by { rintro (rfl : y = x), exact hx hy }⟩), end lemma is_linear_map.convex_hull_image {f : E β†’ F} (hf : is_linear_map π•œ f) (s : set E) : convex_hull π•œ (f '' s) = f '' convex_hull π•œ s := set.subset.antisymm (convex_hull_min (image_subset _ (subset_convex_hull π•œ s)) $ (convex_convex_hull π•œ s).is_linear_image hf) (image_subset_iff.2 $ convex_hull_min (image_subset_iff.1 $ subset_convex_hull π•œ _) ((convex_convex_hull π•œ _).is_linear_preimage hf)) lemma linear_map.convex_hull_image (f : E β†’β‚—[π•œ] F) (s : set E) : convex_hull π•œ (f '' s) = f '' convex_hull π•œ s := f.is_linear.convex_hull_image s end add_comm_monoid end ordered_semiring section ordered_comm_semiring variables [ordered_comm_semiring π•œ] [add_comm_monoid E] [module π•œ E] lemma convex_hull_smul (a : π•œ) (s : set E) : convex_hull π•œ (a β€’ s) = a β€’ convex_hull π•œ s := (linear_map.lsmul _ _ a).convex_hull_image _ end ordered_comm_semiring section ordered_ring variables [ordered_ring π•œ] section add_comm_group variables [add_comm_group E] [add_comm_group F] [module π•œ E] [module π•œ F] (s : set E) lemma affine_map.image_convex_hull (f : E →ᡃ[π•œ] F) : f '' convex_hull π•œ s = convex_hull π•œ (f '' s) := begin apply set.subset.antisymm, { rw set.image_subset_iff, refine convex_hull_min _ ((convex_convex_hull π•œ (⇑f '' s)).affine_preimage f), rw ← set.image_subset_iff, exact subset_convex_hull π•œ (f '' s) }, { exact convex_hull_min (set.image_subset _ (subset_convex_hull π•œ s)) ((convex_convex_hull π•œ s).affine_image f) } end lemma convex_hull_subset_affine_span : convex_hull π•œ s βŠ† (affine_span π•œ s : set E) := convex_hull_min (subset_affine_span π•œ s) (affine_span π•œ s).convex @[simp] lemma affine_span_convex_hull : affine_span π•œ (convex_hull π•œ s) = affine_span π•œ s := begin refine le_antisymm _ (affine_span_mono π•œ (subset_convex_hull π•œ s)), rw affine_span_le, exact convex_hull_subset_affine_span s, end lemma convex_hull_neg (s : set E) : convex_hull π•œ (-s) = -convex_hull π•œ s := by { simp_rw ←image_neg, exact (affine_map.image_convex_hull _ $ -1).symm } end add_comm_group end ordered_ring end convex_hull