/- Copyright (c) 2020 Yury G. Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury G. Kudryashov -/ import analysis.convex.function import analysis.convex.strict_convex_space import measure_theory.function.ae_eq_of_integral import measure_theory.integral.average /-! # Jensen's inequality for integrals In this file we prove several forms of Jensen's inequality for integrals. - for convex sets: `convex.average_mem`, `convex.set_average_mem`, `convex.integral_mem`; - for convex functions: `convex.on.average_mem_epigraph`, `convex_on.map_average_le`, `convex_on.set_average_mem_epigraph`, `convex_on.map_set_average_le`, `convex_on.map_integral_le`; - for strictly convex sets: `strict_convex.ae_eq_const_or_average_mem_interior`; - for a closed ball in a strictly convex normed space: `ae_eq_const_or_norm_integral_lt_of_norm_le_const`; - for strictly convex functions: `strict_convex_on.ae_eq_const_or_map_average_lt`. ## TODO - Use a typeclass for strict convexity of a closed ball. ## Tags convex, integral, center mass, average value, Jensen's inequality -/ open measure_theory measure_theory.measure metric set filter topological_space function open_locale topological_space big_operators ennreal convex variables {α E F : Type*} {m0 : measurable_space α} [normed_add_comm_group E] [normed_space ℝ E] [complete_space E] [normed_add_comm_group F] [normed_space ℝ F] [complete_space F] {μ : measure α} {s : set E} {t : set α} {f : α → E} {g : E → ℝ} {C : ℝ} /-! ### Non-strict Jensen's inequality -/ /-- If `μ` is a probability measure on `α`, `s` is a convex closed set in `E`, and `f` is an integrable function sending `μ`-a.e. points to `s`, then the expected value of `f` belongs to `s`: `∫ x, f x ∂μ ∈ s`. See also `convex.sum_mem` for a finite sum version of this lemma. -/ lemma convex.integral_mem [is_probability_measure μ] (hs : convex ℝ s) (hsc : is_closed s) (hf : ∀ᵐ x ∂μ, f x ∈ s) (hfi : integrable f μ) : ∫ x, f x ∂μ ∈ s := begin borelize E, rcases hfi.ae_strongly_measurable with ⟨g, hgm, hfg⟩, haveI : separable_space (range g ∩ s : set E) := (hgm.is_separable_range.mono (inter_subset_left _ _)).separable_space, obtain ⟨y₀, h₀⟩ : (range g ∩ s).nonempty, { rcases (hf.and hfg).exists with ⟨x₀, h₀⟩, exact ⟨f x₀, by simp only [h₀.2, mem_range_self], h₀.1⟩ }, rw [integral_congr_ae hfg], rw [integrable_congr hfg] at hfi, have hg : ∀ᵐ x ∂μ, g x ∈ closure (range g ∩ s), { filter_upwards [hfg.rw (λ x y, y ∈ s) hf] with x hx, apply subset_closure, exact ⟨mem_range_self _, hx⟩ }, set G : ℕ → simple_func α E := simple_func.approx_on _ hgm.measurable (range g ∩ s) y₀ h₀, have : tendsto (λ n, (G n).integral μ) at_top (𝓝 $ ∫ x, g x ∂μ), from tendsto_integral_approx_on_of_measurable hfi _ hg _ (integrable_const _), refine hsc.mem_of_tendsto this (eventually_of_forall $ λ n, hs.sum_mem _ _ _), { exact λ _ _, ennreal.to_real_nonneg }, { rw [← ennreal.to_real_sum, (G n).sum_range_measure_preimage_singleton, measure_univ, ennreal.one_to_real], exact λ _ _, measure_ne_top _ _ }, { simp only [simple_func.mem_range, forall_range_iff], assume x, apply inter_subset_right (range g), exact simple_func.approx_on_mem hgm.measurable _ _ _ }, end /-- If `μ` is a non-zero finite measure on `α`, `s` is a convex closed set in `E`, and `f` is an integrable function sending `μ`-a.e. points to `s`, then the average value of `f` belongs to `s`: `⨍ x, f x ∂μ ∈ s`. See also `convex.center_mass_mem` for a finite sum version of this lemma. -/ lemma convex.average_mem [is_finite_measure μ] (hs : convex ℝ s) (hsc : is_closed s) (hμ : μ ≠ 0) (hfs : ∀ᵐ x ∂μ, f x ∈ s) (hfi : integrable f μ) : ⨍ x, f x ∂μ ∈ s := begin haveI : is_probability_measure ((μ univ)⁻¹ • μ), from is_probability_measure_smul hμ, refine hs.integral_mem hsc (ae_mono' _ hfs) hfi.to_average, exact absolutely_continuous.smul (refl _) _ end /-- If `μ` is a non-zero finite measure on `α`, `s` is a convex closed set in `E`, and `f` is an integrable function sending `μ`-a.e. points to `s`, then the average value of `f` belongs to `s`: `⨍ x, f x ∂μ ∈ s`. See also `convex.center_mass_mem` for a finite sum version of this lemma. -/ lemma convex.set_average_mem (hs : convex ℝ s) (hsc : is_closed s) (h0 : μ t ≠ 0) (ht : μ t ≠ ∞) (hfs : ∀ᵐ x ∂μ.restrict t, f x ∈ s) (hfi : integrable_on f t μ) : ⨍ x in t, f x ∂μ ∈ s := begin haveI : fact (μ t < ∞) := ⟨ht.lt_top⟩, refine hs.average_mem hsc _ hfs hfi, rwa [ne.def, restrict_eq_zero] end /-- If `μ` is a non-zero finite measure on `α`, `s` is a convex set in `E`, and `f` is an integrable function sending `μ`-a.e. points to `s`, then the average value of `f` belongs to `closure s`: `⨍ x, f x ∂μ ∈ s`. See also `convex.center_mass_mem` for a finite sum version of this lemma. -/ lemma convex.set_average_mem_closure (hs : convex ℝ s) (h0 : μ t ≠ 0) (ht : μ t ≠ ∞) (hfs : ∀ᵐ x ∂μ.restrict t, f x ∈ s) (hfi : integrable_on f t μ) : ⨍ x in t, f x ∂μ ∈ closure s := hs.closure.set_average_mem is_closed_closure h0 ht (hfs.mono $ λ x hx, subset_closure hx) hfi lemma convex_on.average_mem_epigraph [is_finite_measure μ] (hg : convex_on ℝ s g) (hgc : continuous_on g s) (hsc : is_closed s) (hμ : μ ≠ 0) (hfs : ∀ᵐ x ∂μ, f x ∈ s) (hfi : integrable f μ) (hgi : integrable (g ∘ f) μ) : (⨍ x, f x ∂μ, ⨍ x, g (f x) ∂μ) ∈ {p : E × ℝ | p.1 ∈ s ∧ g p.1 ≤ p.2} := have ht_mem : ∀ᵐ x ∂μ, (f x, g (f x)) ∈ {p : E × ℝ | p.1 ∈ s ∧ g p.1 ≤ p.2}, from hfs.mono (λ x hx, ⟨hx, le_rfl⟩), by simpa only [average_pair hfi hgi] using hg.convex_epigraph.average_mem (hsc.epigraph hgc) hμ ht_mem (hfi.prod_mk hgi) lemma concave_on.average_mem_hypograph [is_finite_measure μ] (hg : concave_on ℝ s g) (hgc : continuous_on g s) (hsc : is_closed s) (hμ : μ ≠ 0) (hfs : ∀ᵐ x ∂μ, f x ∈ s) (hfi : integrable f μ) (hgi : integrable (g ∘ f) μ) : (⨍ x, f x ∂μ, ⨍ x, g (f x) ∂μ) ∈ {p : E × ℝ | p.1 ∈ s ∧ p.2 ≤ g p.1} := by simpa only [mem_set_of_eq, pi.neg_apply, average_neg, neg_le_neg_iff] using hg.neg.average_mem_epigraph hgc.neg hsc hμ hfs hfi hgi.neg /-- **Jensen's inequality**: if a function `g : E → ℝ` is convex and continuous on a convex closed set `s`, `μ` is a finite non-zero measure on `α`, and `f : α → E` is a function sending `μ`-a.e. points to `s`, then the value of `g` at the average value of `f` is less than or equal to the average value of `g ∘ f` provided that both `f` and `g ∘ f` are integrable. See also `convex_on.map_center_mass_le` for a finite sum version of this lemma. -/ lemma convex_on.map_average_le [is_finite_measure μ] (hg : convex_on ℝ s g) (hgc : continuous_on g s) (hsc : is_closed s) (hμ : μ ≠ 0) (hfs : ∀ᵐ x ∂μ, f x ∈ s) (hfi : integrable f μ) (hgi : integrable (g ∘ f) μ) : g (⨍ x, f x ∂μ) ≤ ⨍ x, g (f x) ∂μ := (hg.average_mem_epigraph hgc hsc hμ hfs hfi hgi).2 /-- **Jensen's inequality**: if a function `g : E → ℝ` is concave and continuous on a convex closed set `s`, `μ` is a finite non-zero measure on `α`, and `f : α → E` is a function sending `μ`-a.e. points to `s`, then the average value of `g ∘ f` is less than or equal to the value of `g` at the average value of `f` provided that both `f` and `g ∘ f` are integrable. See also `concave_on.le_map_center_mass` for a finite sum version of this lemma. -/ lemma concave_on.le_map_average [is_finite_measure μ] (hg : concave_on ℝ s g) (hgc : continuous_on g s) (hsc : is_closed s) (hμ : μ ≠ 0) (hfs : ∀ᵐ x ∂μ, f x ∈ s) (hfi : integrable f μ) (hgi : integrable (g ∘ f) μ) : ⨍ x, g (f x) ∂μ ≤ g (⨍ x, f x ∂μ) := (hg.average_mem_hypograph hgc hsc hμ hfs hfi hgi).2 /-- **Jensen's inequality**: if a function `g : E → ℝ` is convex and continuous on a convex closed set `s`, `μ` is a finite non-zero measure on `α`, and `f : α → E` is a function sending `μ`-a.e. points of a set `t` to `s`, then the value of `g` at the average value of `f` over `t` is less than or equal to the average value of `g ∘ f` over `t` provided that both `f` and `g ∘ f` are integrable. -/ lemma convex_on.set_average_mem_epigraph (hg : convex_on ℝ s g) (hgc : continuous_on g s) (hsc : is_closed s) (h0 : μ t ≠ 0) (ht : μ t ≠ ∞) (hfs : ∀ᵐ x ∂μ.restrict t, f x ∈ s) (hfi : integrable_on f t μ) (hgi : integrable_on (g ∘ f) t μ) : (⨍ x in t, f x ∂μ, ⨍ x in t, g (f x) ∂μ) ∈ {p : E × ℝ | p.1 ∈ s ∧ g p.1 ≤ p.2} := begin haveI : fact (μ t < ∞) := ⟨ht.lt_top⟩, refine hg.average_mem_epigraph hgc hsc _ hfs hfi hgi, rwa [ne.def, restrict_eq_zero] end /-- **Jensen's inequality**: if a function `g : E → ℝ` is concave and continuous on a convex closed set `s`, `μ` is a finite non-zero measure on `α`, and `f : α → E` is a function sending `μ`-a.e. points of a set `t` to `s`, then the average value of `g ∘ f` over `t` is less than or equal to the value of `g` at the average value of `f` over `t` provided that both `f` and `g ∘ f` are integrable. -/ lemma concave_on.set_average_mem_hypograph (hg : concave_on ℝ s g) (hgc : continuous_on g s) (hsc : is_closed s) (h0 : μ t ≠ 0) (ht : μ t ≠ ∞) (hfs : ∀ᵐ x ∂μ.restrict t, f x ∈ s) (hfi : integrable_on f t μ) (hgi : integrable_on (g ∘ f) t μ) : (⨍ x in t, f x ∂μ, ⨍ x in t, g (f x) ∂μ) ∈ {p : E × ℝ | p.1 ∈ s ∧ p.2 ≤ g p.1} := by simpa only [mem_set_of_eq, pi.neg_apply, average_neg, neg_le_neg_iff] using hg.neg.set_average_mem_epigraph hgc.neg hsc h0 ht hfs hfi hgi.neg /-- **Jensen's inequality**: if a function `g : E → ℝ` is convex and continuous on a convex closed set `s`, `μ` is a finite non-zero measure on `α`, and `f : α → E` is a function sending `μ`-a.e. points of a set `t` to `s`, then the value of `g` at the average value of `f` over `t` is less than or equal to the average value of `g ∘ f` over `t` provided that both `f` and `g ∘ f` are integrable. -/ lemma convex_on.map_set_average_le (hg : convex_on ℝ s g) (hgc : continuous_on g s) (hsc : is_closed s) (h0 : μ t ≠ 0) (ht : μ t ≠ ∞) (hfs : ∀ᵐ x ∂μ.restrict t, f x ∈ s) (hfi : integrable_on f t μ) (hgi : integrable_on (g ∘ f) t μ) : g (⨍ x in t, f x ∂μ) ≤ ⨍ x in t, g (f x) ∂μ := (hg.set_average_mem_epigraph hgc hsc h0 ht hfs hfi hgi).2 /-- **Jensen's inequality**: if a function `g : E → ℝ` is concave and continuous on a convex closed set `s`, `μ` is a finite non-zero measure on `α`, and `f : α → E` is a function sending `μ`-a.e. points of a set `t` to `s`, then the average value of `g ∘ f` over `t` is less than or equal to the value of `g` at the average value of `f` over `t` provided that both `f` and `g ∘ f` are integrable. -/ lemma concave_on.le_map_set_average (hg : concave_on ℝ s g) (hgc : continuous_on g s) (hsc : is_closed s) (h0 : μ t ≠ 0) (ht : μ t ≠ ∞) (hfs : ∀ᵐ x ∂μ.restrict t, f x ∈ s) (hfi : integrable_on f t μ) (hgi : integrable_on (g ∘ f) t μ) : ⨍ x in t, g (f x) ∂μ ≤ g (⨍ x in t, f x ∂μ) := (hg.set_average_mem_hypograph hgc hsc h0 ht hfs hfi hgi).2 /-- **Jensen's inequality**: if a function `g : E → ℝ` is convex and continuous on a convex closed set `s`, `μ` is a probability measure on `α`, and `f : α → E` is a function sending `μ`-a.e. points to `s`, then the value of `g` at the expected value of `f` is less than or equal to the expected value of `g ∘ f` provided that both `f` and `g ∘ f` are integrable. See also `convex_on.map_center_mass_le` for a finite sum version of this lemma. -/ lemma convex_on.map_integral_le [is_probability_measure μ] (hg : convex_on ℝ s g) (hgc : continuous_on g s) (hsc : is_closed s) (hfs : ∀ᵐ x ∂μ, f x ∈ s) (hfi : integrable f μ) (hgi : integrable (g ∘ f) μ) : g (∫ x, f x ∂μ) ≤ ∫ x, g (f x) ∂μ := by simpa only [average_eq_integral] using hg.map_average_le hgc hsc (is_probability_measure.ne_zero μ) hfs hfi hgi /-- **Jensen's inequality**: if a function `g : E → ℝ` is concave and continuous on a convex closed set `s`, `μ` is a probability measure on `α`, and `f : α → E` is a function sending `μ`-a.e. points to `s`, then the expected value of `g ∘ f` is less than or equal to the value of `g` at the expected value of `f` provided that both `f` and `g ∘ f` are integrable. -/ lemma concave_on.le_map_integral [is_probability_measure μ] (hg : concave_on ℝ s g) (hgc : continuous_on g s) (hsc : is_closed s) (hfs : ∀ᵐ x ∂μ, f x ∈ s) (hfi : integrable f μ) (hgi : integrable (g ∘ f) μ) : ∫ x, g (f x) ∂μ ≤ g (∫ x, f x ∂μ) := by simpa only [average_eq_integral] using hg.le_map_average hgc hsc (is_probability_measure.ne_zero μ) hfs hfi hgi /-! ### Strict Jensen's inequality -/ /-- If `f : α → E` is an integrable function, then either it is a.e. equal to the constant `⨍ x, f x ∂μ` or there exists a measurable set such that `μ t ≠ 0`, `μ tᶜ ≠ 0`, and the average values of `f` over `t` and `tᶜ` are different. -/ lemma ae_eq_const_or_exists_average_ne_compl [is_finite_measure μ] (hfi : integrable f μ) : (f =ᵐ[μ] const α (⨍ x, f x ∂μ)) ∨ ∃ t, measurable_set t ∧ μ t ≠ 0 ∧ μ tᶜ ≠ 0 ∧ ⨍ x in t, f x ∂μ ≠ ⨍ x in tᶜ, f x ∂μ := begin refine or_iff_not_imp_right.mpr (λ H, _), push_neg at H, refine hfi.ae_eq_of_forall_set_integral_eq _ _ (integrable_const _) (λ t ht ht', _), clear ht', simp only [const_apply, set_integral_const], by_cases h₀ : μ t = 0, { rw [restrict_eq_zero.2 h₀, integral_zero_measure, h₀, ennreal.zero_to_real, zero_smul] }, by_cases h₀' : μ tᶜ = 0, { rw ← ae_eq_univ at h₀', rw [restrict_congr_set h₀', restrict_univ, measure_congr h₀', measure_smul_average] }, have := average_mem_open_segment_compl_self ht.null_measurable_set h₀ h₀' hfi, rw [← H t ht h₀ h₀', open_segment_same, mem_singleton_iff] at this, rw [this, measure_smul_set_average _ (measure_ne_top μ _)] end /-- If an integrable function `f : α → E` takes values in a convex set `s` and for some set `t` of positive measure, the average value of `f` over `t` belongs to the interior of `s`, then the average of `f` over the whole space belongs to the interior of `s`. -/ lemma convex.average_mem_interior_of_set [is_finite_measure μ] (hs : convex ℝ s) (h0 : μ t ≠ 0) (hfs : ∀ᵐ x ∂μ, f x ∈ s) (hfi : integrable f μ) (ht : ⨍ x in t, f x ∂μ ∈ interior s) : ⨍ x, f x ∂μ ∈ interior s := begin rw ← measure_to_measurable at h0, rw ← restrict_to_measurable (measure_ne_top μ t) at ht, by_cases h0' : μ (to_measurable μ t)ᶜ = 0, { rw ← ae_eq_univ at h0', rwa [restrict_congr_set h0', restrict_univ] at ht }, exact hs.open_segment_interior_closure_subset_interior ht (hs.set_average_mem_closure h0' (measure_ne_top _ _) (ae_restrict_of_ae hfs) hfi.integrable_on) (average_mem_open_segment_compl_self (measurable_set_to_measurable μ t).null_measurable_set h0 h0' hfi) end /-- If an integrable function `f : α → E` takes values in a strictly convex closed set `s`, then either it is a.e. equal to its average value, or its average value belongs to the interior of `s`. -/ lemma strict_convex.ae_eq_const_or_average_mem_interior [is_finite_measure μ] (hs : strict_convex ℝ s) (hsc : is_closed s) (hfs : ∀ᵐ x ∂μ, f x ∈ s) (hfi : integrable f μ) : f =ᵐ[μ] const α (⨍ x, f x ∂μ) ∨ ⨍ x, f x ∂μ ∈ interior s := begin have : ∀ {t}, μ t ≠ 0 → ⨍ x in t, f x ∂μ ∈ s, from λ t ht, hs.convex.set_average_mem hsc ht (measure_ne_top _ _) (ae_restrict_of_ae hfs) hfi.integrable_on, refine (ae_eq_const_or_exists_average_ne_compl hfi).imp_right _, rintro ⟨t, hm, h₀, h₀', hne⟩, exact hs.open_segment_subset (this h₀) (this h₀') hne (average_mem_open_segment_compl_self hm.null_measurable_set h₀ h₀' hfi) end /-- **Jensen's inequality**, strict version: if an integrable function `f : α → E` takes values in a convex closed set `s`, and `g : E → ℝ` is continuous and strictly convex on `s`, then either `f` is a.e. equal to its average value, or `g (⨍ x, f x ∂μ) < ⨍ x, g (f x) ∂μ`. -/ lemma strict_convex_on.ae_eq_const_or_map_average_lt [is_finite_measure μ] (hg : strict_convex_on ℝ s g) (hgc : continuous_on g s) (hsc : is_closed s) (hfs : ∀ᵐ x ∂μ, f x ∈ s) (hfi : integrable f μ) (hgi : integrable (g ∘ f) μ) : f =ᵐ[μ] const α (⨍ x, f x ∂μ) ∨ g (⨍ x, f x ∂μ) < ⨍ x, g (f x) ∂μ := begin have : ∀ {t}, μ t ≠ 0 → ⨍ x in t, f x ∂μ ∈ s ∧ g (⨍ x in t, f x ∂μ) ≤ ⨍ x in t, g (f x) ∂μ, from λ t ht, hg.convex_on.set_average_mem_epigraph hgc hsc ht (measure_ne_top _ _) (ae_restrict_of_ae hfs) hfi.integrable_on hgi.integrable_on, refine (ae_eq_const_or_exists_average_ne_compl hfi).imp_right _, rintro ⟨t, hm, h₀, h₀', hne⟩, rcases average_mem_open_segment_compl_self hm.null_measurable_set h₀ h₀' (hfi.prod_mk hgi) with ⟨a, b, ha, hb, hab, h_avg⟩, simp only [average_pair hfi hgi, average_pair hfi.integrable_on hgi.integrable_on, prod.smul_mk, prod.mk_add_mk, prod.mk.inj_iff, (∘)] at h_avg, rw [← h_avg.1, ← h_avg.2], calc g (a • ⨍ x in t, f x ∂μ + b • ⨍ x in tᶜ, f x ∂μ) < a * g (⨍ x in t, f x ∂μ) + b * g (⨍ x in tᶜ, f x ∂μ) : hg.2 (this h₀).1 (this h₀').1 hne ha hb hab ... ≤ a * ⨍ x in t, g (f x) ∂μ + b * ⨍ x in tᶜ, g (f x) ∂μ : add_le_add (mul_le_mul_of_nonneg_left (this h₀).2 ha.le) (mul_le_mul_of_nonneg_left (this h₀').2 hb.le) end /-- **Jensen's inequality**, strict version: if an integrable function `f : α → E` takes values in a convex closed set `s`, and `g : E → ℝ` is continuous and strictly concave on `s`, then either `f` is a.e. equal to its average value, or `⨍ x, g (f x) ∂μ < g (⨍ x, f x ∂μ)`. -/ lemma strict_concave_on.ae_eq_const_or_lt_map_average [is_finite_measure μ] (hg : strict_concave_on ℝ s g) (hgc : continuous_on g s) (hsc : is_closed s) (hfs : ∀ᵐ x ∂μ, f x ∈ s) (hfi : integrable f μ) (hgi : integrable (g ∘ f) μ) : f =ᵐ[μ] const α (⨍ x, f x ∂μ) ∨ ⨍ x, g (f x) ∂μ < g (⨍ x, f x ∂μ) := by simpa only [pi.neg_apply, average_neg, neg_lt_neg_iff] using hg.neg.ae_eq_const_or_map_average_lt hgc.neg hsc hfs hfi hgi.neg /-- If `E` is a strictly convex normed space and `f : α → E` is a function such that `∥f x∥ ≤ C` a.e., then either this function is a.e. equal to its average value, or the norm of its average value is strictly less than `C`. -/ lemma ae_eq_const_or_norm_average_lt_of_norm_le_const [strict_convex_space ℝ E] (h_le : ∀ᵐ x ∂μ, ∥f x∥ ≤ C) : (f =ᵐ[μ] const α ⨍ x, f x ∂μ) ∨ ∥⨍ x, f x ∂μ∥ < C := begin cases le_or_lt C 0 with hC0 hC0, { have : f =ᵐ[μ] 0, from h_le.mono (λ x hx, norm_le_zero_iff.1 (hx.trans hC0)), simp only [average_congr this, pi.zero_apply, average_zero], exact or.inl this }, by_cases hfi : integrable f μ, swap, by simp [average_def', integral_undef hfi, hC0, ennreal.to_real_pos_iff], cases (le_top : μ univ ≤ ∞).eq_or_lt with hμt hμt, { simp [average_def', hμt, hC0] }, haveI : is_finite_measure μ := ⟨hμt⟩, replace h_le : ∀ᵐ x ∂μ, f x ∈ closed_ball (0 : E) C, by simpa only [mem_closed_ball_zero_iff], simpa only [interior_closed_ball _ hC0.ne', mem_ball_zero_iff] using (strict_convex_closed_ball ℝ (0 : E) C).ae_eq_const_or_average_mem_interior is_closed_ball h_le hfi end /-- If `E` is a strictly convex normed space and `f : α → E` is a function such that `∥f x∥ ≤ C` a.e., then either this function is a.e. equal to its average value, or the norm of its integral is strictly less than `(μ univ).to_real * C`. -/ lemma ae_eq_const_or_norm_integral_lt_of_norm_le_const [strict_convex_space ℝ E] [is_finite_measure μ] (h_le : ∀ᵐ x ∂μ, ∥f x∥ ≤ C) : (f =ᵐ[μ] const α ⨍ x, f x ∂μ) ∨ ∥∫ x, f x ∂μ∥ < (μ univ).to_real * C := begin cases eq_or_ne μ 0 with h₀ h₀, { left, simp [h₀] }, have hμ : 0 < (μ univ).to_real, by simp [ennreal.to_real_pos_iff, pos_iff_ne_zero, h₀, measure_lt_top], refine (ae_eq_const_or_norm_average_lt_of_norm_le_const h_le).imp_right (λ H, _), rwa [average_def', norm_smul, norm_inv, real.norm_eq_abs, abs_of_pos hμ, ← div_eq_inv_mul, div_lt_iff' hμ] at H end /-- If `E` is a strictly convex normed space and `f : α → E` is a function such that `∥f x∥ ≤ C` a.e. on a set `t` of finite measure, then either this function is a.e. equal to its average value on `t`, or the norm of its integral over `t` is strictly less than `(μ t).to_real * C`. -/ lemma ae_eq_const_or_norm_set_integral_lt_of_norm_le_const [strict_convex_space ℝ E] (ht : μ t ≠ ∞) (h_le : ∀ᵐ x ∂μ.restrict t, ∥f x∥ ≤ C) : (f =ᵐ[μ.restrict t] const α ⨍ x in t, f x ∂μ) ∨ ∥∫ x in t, f x ∂μ∥ < (μ t).to_real * C := begin haveI := fact.mk ht.lt_top, rw [← restrict_apply_univ], exact ae_eq_const_or_norm_integral_lt_of_norm_le_const h_le end