/- Copyright (c) 2022 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov -/ import analysis.convex.topology import analysis.normed_space.add_torsor_bases import measure_theory.measure.haar_lebesgue /-! # Convex sets are null-measurable Let `E` be a finite dimensional real vector space, let `μ` be a Haar measure on `E`, let `s` be a convex set in `E`. Then the frontier of `s` has measure zero (see `convex.add_haar_frontier`), hence `s` is a `measure_theory.null_measurable_set` (see `convex.null_measurable_set`). -/ open measure_theory measure_theory.measure set metric filter finite_dimensional (finrank) open_locale topological_space nnreal ennreal variables {E : Type*} [normed_add_comm_group E] [normed_space ℝ E] [measurable_space E] [borel_space E] [finite_dimensional ℝ E] (μ : measure E) [is_add_haar_measure μ] {s : set E} namespace convex /-- Haar measure of the frontier of a convex set is zero. -/ lemma add_haar_frontier (hs : convex ℝ s) : μ (frontier s) = 0 := begin /- If `s` is included in a hyperplane, then `frontier s ⊆ closure s` is included in the same hyperplane, hence it has measure zero. -/ cases ne_or_eq (affine_span ℝ s) ⊤ with hspan hspan, { refine measure_mono_null _ (add_haar_affine_subspace _ _ hspan), exact frontier_subset_closure.trans (closure_minimal (subset_affine_span _ _) (affine_span ℝ s).closed_of_finite_dimensional) }, rw ← hs.interior_nonempty_iff_affine_span_eq_top at hspan, rcases hspan with ⟨x, hx⟩, /- Without loss of generality, `s` is bounded. Indeed, `∂s ⊆ ⋃ n, ∂(s ∩ ball x (n + 1))`, hence it suffices to prove that `∀ n, μ (s ∩ ball x (n + 1)) = 0`; the latter set is bounded. -/ suffices H : ∀ t : set E, convex ℝ t → x ∈ interior t → bounded t → μ (frontier t) = 0, { set B : ℕ → set E := λ n, ball x (n + 1), have : μ (⋃ n : ℕ, frontier (s ∩ B n)) = 0, { refine measure_Union_null (λ n, H _ (hs.inter (convex_ball _ _)) _ (bounded_ball.mono (inter_subset_right _ _))), rw [interior_inter, is_open_ball.interior_eq], exact ⟨hx, mem_ball_self (add_pos_of_nonneg_of_pos n.cast_nonneg zero_lt_one)⟩ }, refine measure_mono_null (λ y hy, _) this, clear this, set N : ℕ := ⌊dist y x⌋₊, refine mem_Union.2 ⟨N, _⟩, have hN : y ∈ B N, by { simp only [B, N], simp [nat.lt_floor_add_one] }, suffices : y ∈ frontier (s ∩ B N) ∩ B N, from this.1, rw [frontier_inter_open_inter is_open_ball], exact ⟨hy, hN⟩ }, clear hx hs s, intros s hs hx hb, /- Since `s` is bounded, we have `μ (interior s) ≠ ∞`, hence it suffices to prove `μ (closure s) ≤ μ (interior s)`. -/ replace hb : μ (interior s) ≠ ∞, from (hb.mono interior_subset).measure_lt_top.ne, suffices : μ (closure s) ≤ μ (interior s), { rwa [frontier, measure_diff interior_subset_closure is_open_interior.measurable_set hb, tsub_eq_zero_iff_le] }, /- Due to `convex.closure_subset_image_homothety_interior_of_one_lt`, for any `r > 1` we have `closure s ⊆ homothety x r '' interior s`, hence `μ (closure s) ≤ r ^ d * μ (interior s)`, where `d = finrank ℝ E`. -/ set d : ℕ := finite_dimensional.finrank ℝ E, have : ∀ r : ℝ≥0, 1 < r → μ (closure s) ≤ ↑(r ^ d) * μ (interior s), { intros r hr, refine (measure_mono $ hs.closure_subset_image_homothety_interior_of_one_lt hx r hr).trans_eq _, rw [add_haar_image_homothety, ← nnreal.coe_pow, nnreal.abs_eq, ennreal.of_real_coe_nnreal] }, have : ∀ᶠ r in 𝓝[>] (1 : ℝ≥0), μ (closure s) ≤ ↑(r ^ d) * μ (interior s), from mem_of_superset self_mem_nhds_within this, /- Taking the limit as `r → 1`, we get `μ (closure s) ≤ μ (interior s)`. -/ refine ge_of_tendsto _ this, refine (((ennreal.continuous_mul_const hb).comp (ennreal.continuous_coe.comp (continuous_pow d))).tendsto' _ _ _).mono_left nhds_within_le_nhds, simp end /-- A convex set in a finite dimensional real vector space is null measurable with respect to an additive Haar measure on this space. -/ protected lemma null_measurable_set (hs : convex ℝ s) : null_measurable_set s μ := null_measurable_set_of_null_frontier (hs.add_haar_frontier μ) end convex