/- Copyright (c) 2020 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov -/ import algebra.quaternion import analysis.inner_product_space.basic /-! # Quaternions as a normed algebra In this file we define the following structures on the space `ℍ := ℍ[ℝ]` of quaternions: * inner product space; * normed ring; * normed space over `ℝ`. ## Notation The following notation is available with `open_locale quaternion`: * `ℍ` : quaternions ## Tags quaternion, normed ring, normed space, normed algebra -/ localized "notation `ℍ` := quaternion ℝ" in quaternion open_locale real_inner_product_space noncomputable theory namespace quaternion instance : has_inner ℝ ℍ := ⟨λ a b, (a * b.conj).re⟩ lemma inner_self (a : ℍ) : ⟪a, a⟫ = norm_sq a := rfl lemma inner_def (a b : ℍ) : ⟪a, b⟫ = (a * b.conj).re := rfl instance : inner_product_space ℝ ℍ := inner_product_space.of_core { inner := has_inner.inner, conj_sym := λ x y, by simp [inner_def, mul_comm], nonneg_re := λ x, norm_sq_nonneg, definite := λ x, norm_sq_eq_zero.1, add_left := λ x y z, by simp only [inner_def, add_mul, add_re], smul_left := λ x y r, by simp [inner_def] } lemma norm_sq_eq_norm_sq (a : ℍ) : norm_sq a = ∥a∥ * ∥a∥ := by rw [← inner_self, real_inner_self_eq_norm_mul_norm] instance : norm_one_class ℍ := ⟨by rw [norm_eq_sqrt_real_inner, inner_self, norm_sq.map_one, real.sqrt_one]⟩ @[simp, norm_cast] lemma norm_coe (a : ℝ) : ∥(a : ℍ)∥ = ∥a∥ := by rw [norm_eq_sqrt_real_inner, inner_self, norm_sq_coe, real.sqrt_sq_eq_abs, real.norm_eq_abs] @[simp, norm_cast] lemma nnnorm_coe (a : ℝ) : ∥(a : ℍ)∥₊ = ∥a∥₊ := subtype.ext $ norm_coe a noncomputable instance : normed_division_ring ℍ := { dist_eq := λ _ _, rfl, norm_mul' := λ a b, by { simp only [norm_eq_sqrt_real_inner, inner_self, norm_sq.map_mul], exact real.sqrt_mul norm_sq_nonneg _ } } noncomputable instance : normed_algebra ℝ ℍ := { norm_smul_le := λ a x, (norm_smul a x).le, to_algebra := quaternion.algebra } instance : has_coe ℂ ℍ := ⟨λ z, ⟨z.re, z.im, 0, 0⟩⟩ @[simp, norm_cast] lemma coe_complex_re (z : ℂ) : (z : ℍ).re = z.re := rfl @[simp, norm_cast] lemma coe_complex_im_i (z : ℂ) : (z : ℍ).im_i = z.im := rfl @[simp, norm_cast] lemma coe_complex_im_j (z : ℂ) : (z : ℍ).im_j = 0 := rfl @[simp, norm_cast] lemma coe_complex_im_k (z : ℂ) : (z : ℍ).im_k = 0 := rfl @[simp, norm_cast] lemma coe_complex_add (z w : ℂ) : ↑(z + w) = (z + w : ℍ) := by ext; simp @[simp, norm_cast] lemma coe_complex_mul (z w : ℂ) : ↑(z * w) = (z * w : ℍ) := by ext; simp @[simp, norm_cast] lemma coe_complex_zero : ((0 : ℂ) : ℍ) = 0 := rfl @[simp, norm_cast] lemma coe_complex_one : ((1 : ℂ) : ℍ) = 1 := rfl @[simp, norm_cast] lemma coe_real_complex_mul (r : ℝ) (z : ℂ) : (r • z : ℍ) = ↑r * ↑z := by ext; simp @[simp, norm_cast] lemma coe_complex_coe (r : ℝ) : ((r : ℂ) : ℍ) = r := rfl /-- Coercion `ℂ →ₐ[ℝ] ℍ` as an algebra homomorphism. -/ def of_complex : ℂ →ₐ[ℝ] ℍ := { to_fun := coe, map_one' := rfl, map_zero' := rfl, map_add' := coe_complex_add, map_mul' := coe_complex_mul, commutes' := λ x, rfl } @[simp] lemma coe_of_complex : ⇑of_complex = coe := rfl end quaternion