/- Copyright (c) 2020 Jean Lo. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jean Lo -/ import topology.algebra.group import logic.function.iterate /-! # Flows and invariant sets This file defines a flow on a topological space `α` by a topological monoid `τ` as a continuous monoid-act of `τ` on `α`. Anticipating the cases where `τ` is one of `ℕ`, `ℤ`, `ℝ⁺`, or `ℝ`, we use additive notation for the monoids, though the definition does not require commutativity. A subset `s` of `α` is invariant under a family of maps `ϕₜ : α → α` if `ϕₜ s ⊆ s` for all `t`. In many cases `ϕ` will be a flow on `α`. For the cases where `ϕ` is a flow by an ordered (additive, commutative) monoid, we additionally define forward invariance, where `t` ranges over those elements which are nonnegative. Additionally, we define such constructions as the restriction of a flow onto an invariant subset, and the time-reveral of a flow by a group. -/ open set function filter /-! ### Invariant sets -/ section invariant variables {τ : Type*} {α : Type*} /-- A set `s ⊆ α` is invariant under `ϕ : τ → α → α` if `ϕ t s ⊆ s` for all `t` in `τ`. -/ def is_invariant (ϕ : τ → α → α) (s : set α): Prop := ∀ t, maps_to (ϕ t) s s variables (ϕ : τ → α → α) (s : set α) lemma is_invariant_iff_image : is_invariant ϕ s ↔ ∀ t, ϕ t '' s ⊆ s := by simp_rw [is_invariant, maps_to'] /-- A set `s ⊆ α` is forward-invariant under `ϕ : τ → α → α` if `ϕ t s ⊆ s` for all `t ≥ 0`. -/ def is_fw_invariant [preorder τ] [has_zero τ] (ϕ : τ → α → α) (s : set α): Prop := ∀ ⦃t⦄, 0 ≤ t → maps_to (ϕ t) s s lemma is_invariant.is_fw_invariant [preorder τ] [has_zero τ] {ϕ : τ → α → α} {s : set α} (h : is_invariant ϕ s) : is_fw_invariant ϕ s := λ t ht, h t /-- If `τ` is a `canonically_ordered_add_monoid` (e.g., `ℕ` or `ℝ≥0`), then the notions `is_fw_invariant` and `is_invariant` are equivalent. -/ lemma is_fw_invariant.is_invariant [canonically_ordered_add_monoid τ] {ϕ : τ → α → α} {s : set α} (h : is_fw_invariant ϕ s) : is_invariant ϕ s := λ t, h (zero_le t) /-- If `τ` is a `canonically_ordered_add_monoid` (e.g., `ℕ` or `ℝ≥0`), then the notions `is_fw_invariant` and `is_invariant` are equivalent. -/ lemma is_fw_invariant_iff_is_invariant [canonically_ordered_add_monoid τ] {ϕ : τ → α → α} {s : set α} : is_fw_invariant ϕ s ↔ is_invariant ϕ s := ⟨is_fw_invariant.is_invariant, is_invariant.is_fw_invariant⟩ end invariant /-! ### Flows -/ /-- A flow on a topological space `α` by an a additive topological monoid `τ` is a continuous monoid action of `τ` on `α`.-/ structure flow (τ : Type*) [topological_space τ] [add_monoid τ] [has_continuous_add τ] (α : Type*) [topological_space α] := (to_fun : τ → α → α) (cont' : continuous (uncurry to_fun)) (map_add' : ∀ t₁ t₂ x, to_fun (t₁ + t₂) x = to_fun t₁ (to_fun t₂ x)) (map_zero' : ∀ x, to_fun 0 x = x) namespace flow variables {τ : Type*} [add_monoid τ] [topological_space τ] [has_continuous_add τ] {α : Type*} [topological_space α] (ϕ : flow τ α) instance : inhabited (flow τ α) := ⟨{ to_fun := λ _ x, x, cont' := continuous_snd, map_add' := λ _ _ _, rfl, map_zero' := λ _, rfl }⟩ instance : has_coe_to_fun (flow τ α) (λ _, τ → α → α) := ⟨flow.to_fun⟩ @[ext] lemma ext : ∀ {ϕ₁ ϕ₂ : flow τ α}, (∀ t x, ϕ₁ t x = ϕ₂ t x) → ϕ₁ = ϕ₂ | ⟨f₁, _, _, _⟩ ⟨f₂, _, _, _⟩ h := by { congr, funext, exact h _ _ } @[continuity] protected lemma continuous {β : Type*} [topological_space β] {t : β → τ} (ht : continuous t) {f : β → α} (hf : continuous f) : continuous (λ x, ϕ (t x) (f x)) := ϕ.cont'.comp (ht.prod_mk hf) alias flow.continuous ← _root_.continuous.flow lemma map_add (t₁ t₂ : τ) (x : α) : ϕ (t₁ + t₂) x = ϕ t₁ (ϕ t₂ x) := ϕ.map_add' _ _ _ @[simp] lemma map_zero : ϕ 0 = id := funext ϕ.map_zero' lemma map_zero_apply (x : α) : ϕ 0 x = x := ϕ.map_zero' x /-- Iterations of a continuous function from a topological space `α` to itself defines a semiflow by `ℕ` on `α`. -/ def from_iter {g : α → α} (h : continuous g) : flow ℕ α := { to_fun := λ n x, g^[n] x, cont' := continuous_uncurry_of_discrete_topology_left (continuous.iterate h), map_add' := iterate_add_apply _, map_zero' := λ x, rfl } /-- Restriction of a flow onto an invariant set. -/ def restrict {s : set α} (h : is_invariant ϕ s) : flow τ ↥s := { to_fun := λ t, (h t).restrict _ _ _, cont' := continuous_subtype_mk _ (ϕ.continuous continuous_fst (continuous_subtype_coe.comp continuous_snd)), map_add' := λ _ _ _, subtype.ext (map_add _ _ _ _), map_zero' := λ _, subtype.ext (map_zero_apply _ _)} end flow namespace flow variables {τ : Type*} [add_comm_group τ] [topological_space τ] [topological_add_group τ] {α : Type*} [topological_space α] (ϕ : flow τ α) lemma is_invariant_iff_image_eq (s : set α) : is_invariant ϕ s ↔ ∀ t, ϕ t '' s = s := (is_invariant_iff_image _ _).trans (iff.intro (λ h t, subset.antisymm (h t) (λ _ hx, ⟨_, h (-t) ⟨_, hx, rfl⟩, by simp [← map_add]⟩)) (λ h t, by rw h t)) /-- The time-reversal of a flow `ϕ` by a (commutative, additive) group is defined `ϕ.reverse t x = ϕ (-t) x`. -/ def reverse : flow τ α := { to_fun := λ t, ϕ (-t), cont' := ϕ.continuous continuous_fst.neg continuous_snd, map_add' := λ _ _ _, by rw [neg_add, map_add], map_zero' := λ _, by rw [neg_zero, map_zero_apply] } /-- The map `ϕ t` as a homeomorphism. -/ def to_homeomorph (t : τ) : α ≃ₜ α := { to_fun := ϕ t, inv_fun := ϕ (-t), left_inv := λ x, by rw [← map_add, neg_add_self, map_zero_apply], right_inv := λ x, by rw [← map_add, add_neg_self, map_zero_apply] } lemma image_eq_preimage (t : τ) (s : set α) : ϕ t '' s = ϕ (-t) ⁻¹' s := (ϕ.to_homeomorph t).to_equiv.image_eq_preimage s end flow