/- Copyright (c) 2020 Yury G. Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury G. Kudryashov -/ import algebra.hom.iterate import data.list.cycle import data.nat.prime import dynamics.fixed_points.basic /-! # Periodic points A point `x : α` is a periodic point of `f : α → α` of period `n` if `f^[n] x = x`. ## Main definitions * `is_periodic_pt f n x` : `x` is a periodic point of `f` of period `n`, i.e. `f^[n] x = x`. We do not require `n > 0` in the definition. * `pts_of_period f n` : the set `{x | is_periodic_pt f n x}`. Note that `n` is not required to be the minimal period of `x`. * `periodic_pts f` : the set of all periodic points of `f`. * `minimal_period f x` : the minimal period of a point `x` under an endomorphism `f` or zero if `x` is not a periodic point of `f`. * `orbit f x`: the cycle `[x, f x, f (f x), ...]` for a periodic point. ## Main statements We provide “dot syntax”-style operations on terms of the form `h : is_periodic_pt f n x` including arithmetic operations on `n` and `h.map (hg : semiconj_by g f f')`. We also prove that `f` is bijective on each set `pts_of_period f n` and on `periodic_pts f`. Finally, we prove that `x` is a periodic point of `f` of period `n` if and only if `minimal_period f x | n`. ## References * https://en.wikipedia.org/wiki/Periodic_point -/ open set namespace function variables {α : Type*} {β : Type*} {f fa : α → α} {fb : β → β} {x y : α} {m n : ℕ} /-- A point `x` is a periodic point of `f : α → α` of period `n` if `f^[n] x = x`. Note that we do not require `0 < n` in this definition. Many theorems about periodic points need this assumption. -/ def is_periodic_pt (f : α → α) (n : ℕ) (x : α) := is_fixed_pt (f^[n]) x /-- A fixed point of `f` is a periodic point of `f` of any prescribed period. -/ lemma is_fixed_pt.is_periodic_pt (hf : is_fixed_pt f x) (n : ℕ) : is_periodic_pt f n x := hf.iterate n /-- For the identity map, all points are periodic. -/ lemma is_periodic_id (n : ℕ) (x : α) : is_periodic_pt id n x := (is_fixed_pt_id x).is_periodic_pt n /-- Any point is a periodic point of period `0`. -/ lemma is_periodic_pt_zero (f : α → α) (x : α) : is_periodic_pt f 0 x := is_fixed_pt_id x namespace is_periodic_pt instance [decidable_eq α] {f : α → α} {n : ℕ} {x : α} : decidable (is_periodic_pt f n x) := is_fixed_pt.decidable protected lemma is_fixed_pt (hf : is_periodic_pt f n x) : is_fixed_pt (f^[n]) x := hf protected lemma map (hx : is_periodic_pt fa n x) {g : α → β} (hg : semiconj g fa fb) : is_periodic_pt fb n (g x) := hx.map (hg.iterate_right n) lemma apply_iterate (hx : is_periodic_pt f n x) (m : ℕ) : is_periodic_pt f n (f^[m] x) := hx.map $ commute.iterate_self f m protected lemma apply (hx : is_periodic_pt f n x) : is_periodic_pt f n (f x) := hx.apply_iterate 1 protected lemma add (hn : is_periodic_pt f n x) (hm : is_periodic_pt f m x) : is_periodic_pt f (n + m) x := by { rw [is_periodic_pt, iterate_add], exact hn.comp hm } lemma left_of_add (hn : is_periodic_pt f (n + m) x) (hm : is_periodic_pt f m x) : is_periodic_pt f n x := by { rw [is_periodic_pt, iterate_add] at hn, exact hn.left_of_comp hm } lemma right_of_add (hn : is_periodic_pt f (n + m) x) (hm : is_periodic_pt f n x) : is_periodic_pt f m x := by { rw add_comm at hn, exact hn.left_of_add hm } protected lemma sub (hm : is_periodic_pt f m x) (hn : is_periodic_pt f n x) : is_periodic_pt f (m - n) x := begin cases le_total n m with h h, { refine left_of_add _ hn, rwa [tsub_add_cancel_of_le h] }, { rw [tsub_eq_zero_iff_le.mpr h], apply is_periodic_pt_zero } end protected lemma mul_const (hm : is_periodic_pt f m x) (n : ℕ) : is_periodic_pt f (m * n) x := by simp only [is_periodic_pt, iterate_mul, hm.is_fixed_pt.iterate n] protected lemma const_mul (hm : is_periodic_pt f m x) (n : ℕ) : is_periodic_pt f (n * m) x := by simp only [mul_comm n, hm.mul_const n] lemma trans_dvd (hm : is_periodic_pt f m x) {n : ℕ} (hn : m ∣ n) : is_periodic_pt f n x := let ⟨k, hk⟩ := hn in hk.symm ▸ hm.mul_const k protected lemma iterate (hf : is_periodic_pt f n x) (m : ℕ) : is_periodic_pt (f^[m]) n x := begin rw [is_periodic_pt, ← iterate_mul, mul_comm, iterate_mul], exact hf.is_fixed_pt.iterate m end lemma comp {g : α → α} (hco : commute f g) (hf : is_periodic_pt f n x) (hg : is_periodic_pt g n x) : is_periodic_pt (f ∘ g) n x := by { rw [is_periodic_pt, hco.comp_iterate], exact hf.comp hg } lemma comp_lcm {g : α → α} (hco : commute f g) (hf : is_periodic_pt f m x) (hg : is_periodic_pt g n x) : is_periodic_pt (f ∘ g) (nat.lcm m n) x := (hf.trans_dvd $ nat.dvd_lcm_left _ _).comp hco (hg.trans_dvd $ nat.dvd_lcm_right _ _) lemma left_of_comp {g : α → α} (hco : commute f g) (hfg : is_periodic_pt (f ∘ g) n x) (hg : is_periodic_pt g n x) : is_periodic_pt f n x := begin rw [is_periodic_pt, hco.comp_iterate] at hfg, exact hfg.left_of_comp hg end lemma iterate_mod_apply (h : is_periodic_pt f n x) (m : ℕ) : f^[m % n] x = (f^[m] x) := by conv_rhs { rw [← nat.mod_add_div m n, iterate_add_apply, (h.mul_const _).eq] } protected lemma mod (hm : is_periodic_pt f m x) (hn : is_periodic_pt f n x) : is_periodic_pt f (m % n) x := (hn.iterate_mod_apply m).trans hm protected lemma gcd (hm : is_periodic_pt f m x) (hn : is_periodic_pt f n x) : is_periodic_pt f (m.gcd n) x := begin revert hm hn, refine nat.gcd.induction m n (λ n h0 hn, _) (λ m n hm ih hm hn, _), { rwa [nat.gcd_zero_left], }, { rw [nat.gcd_rec], exact ih (hn.mod hm) hm } end /-- If `f` sends two periodic points `x` and `y` of the same positive period to the same point, then `x = y`. For a similar statement about points of different periods see `eq_of_apply_eq`. -/ lemma eq_of_apply_eq_same (hx : is_periodic_pt f n x) (hy : is_periodic_pt f n y) (hn : 0 < n) (h : f x = f y) : x = y := by rw [← hx.eq, ← hy.eq, ← iterate_pred_comp_of_pos f hn, comp_app, h] /-- If `f` sends two periodic points `x` and `y` of positive periods to the same point, then `x = y`. -/ lemma eq_of_apply_eq (hx : is_periodic_pt f m x) (hy : is_periodic_pt f n y) (hm : 0 < m) (hn : 0 < n) (h : f x = f y) : x = y := (hx.mul_const n).eq_of_apply_eq_same (hy.const_mul m) (mul_pos hm hn) h end is_periodic_pt /-- The set of periodic points of a given (possibly non-minimal) period. -/ def pts_of_period (f : α → α) (n : ℕ) : set α := {x : α | is_periodic_pt f n x} @[simp] lemma mem_pts_of_period : x ∈ pts_of_period f n ↔ is_periodic_pt f n x := iff.rfl lemma semiconj.maps_to_pts_of_period {g : α → β} (h : semiconj g fa fb) (n : ℕ) : maps_to g (pts_of_period fa n) (pts_of_period fb n) := (h.iterate_right n).maps_to_fixed_pts lemma bij_on_pts_of_period (f : α → α) {n : ℕ} (hn : 0 < n) : bij_on f (pts_of_period f n) (pts_of_period f n) := ⟨(commute.refl f).maps_to_pts_of_period n, λ x hx y hy hxy, hx.eq_of_apply_eq_same hy hn hxy, λ x hx, ⟨f^[n.pred] x, hx.apply_iterate _, by rw [← comp_app f, comp_iterate_pred_of_pos f hn, hx.eq]⟩⟩ lemma directed_pts_of_period_pnat (f : α → α) : directed (⊆) (λ n : ℕ+, pts_of_period f n) := λ m n, ⟨m * n, λ x hx, hx.mul_const n, λ x hx, hx.const_mul m⟩ /-- The set of periodic points of a map `f : α → α`. -/ def periodic_pts (f : α → α) : set α := {x : α | ∃ n > 0, is_periodic_pt f n x} lemma mk_mem_periodic_pts (hn : 0 < n) (hx : is_periodic_pt f n x) : x ∈ periodic_pts f := ⟨n, hn, hx⟩ lemma mem_periodic_pts : x ∈ periodic_pts f ↔ ∃ n > 0, is_periodic_pt f n x := iff.rfl lemma is_periodic_pt_of_mem_periodic_pts_of_is_periodic_pt_iterate (hx : x ∈ periodic_pts f) (hm : is_periodic_pt f m (f^[n] x)) : is_periodic_pt f m x := begin rcases hx with ⟨r, hr, hr'⟩, convert (hm.apply_iterate ((n / r + 1) * r - n)).eq, suffices : n ≤ (n / r + 1) * r, { rw [←iterate_add_apply, nat.sub_add_cancel this, iterate_mul, (hr'.iterate _).eq] }, rw [add_mul, one_mul], exact (nat.lt_div_mul_add hr).le end variable (f) lemma bUnion_pts_of_period : (⋃ n > 0, pts_of_period f n) = periodic_pts f := set.ext $ λ x, by simp [mem_periodic_pts] lemma Union_pnat_pts_of_period : (⋃ n : ℕ+, pts_of_period f n) = periodic_pts f := supr_subtype.trans $ bUnion_pts_of_period f lemma bij_on_periodic_pts : bij_on f (periodic_pts f) (periodic_pts f) := Union_pnat_pts_of_period f ▸ bij_on_Union_of_directed (directed_pts_of_period_pnat f) (λ i, bij_on_pts_of_period f i.pos) variable {f} lemma semiconj.maps_to_periodic_pts {g : α → β} (h : semiconj g fa fb) : maps_to g (periodic_pts fa) (periodic_pts fb) := λ x ⟨n, hn, hx⟩, ⟨n, hn, hx.map h⟩ open_locale classical noncomputable theory /-- Minimal period of a point `x` under an endomorphism `f`. If `x` is not a periodic point of `f`, then `minimal_period f x = 0`. -/ def minimal_period (f : α → α) (x : α) := if h : x ∈ periodic_pts f then nat.find h else 0 lemma is_periodic_pt_minimal_period (f : α → α) (x : α) : is_periodic_pt f (minimal_period f x) x := begin delta minimal_period, split_ifs with hx, { exact (nat.find_spec hx).snd }, { exact is_periodic_pt_zero f x } end @[simp] lemma iterate_minimal_period : f^[minimal_period f x] x = x := is_periodic_pt_minimal_period f x @[simp] lemma iterate_add_minimal_period_eq : f^[n + minimal_period f x] x = (f^[n] x) := by { rw iterate_add_apply, congr, exact is_periodic_pt_minimal_period f x } @[simp] lemma iterate_mod_minimal_period_eq : f^[n % minimal_period f x] x = (f^[n] x) := (is_periodic_pt_minimal_period f x).iterate_mod_apply n lemma minimal_period_pos_of_mem_periodic_pts (hx : x ∈ periodic_pts f) : 0 < minimal_period f x := by simp only [minimal_period, dif_pos hx, (nat.find_spec hx).fst.lt] lemma minimal_period_eq_zero_of_nmem_periodic_pts (hx : x ∉ periodic_pts f) : minimal_period f x = 0 := by simp only [minimal_period, dif_neg hx] lemma is_periodic_pt.minimal_period_pos (hn : 0 < n) (hx : is_periodic_pt f n x) : 0 < minimal_period f x := minimal_period_pos_of_mem_periodic_pts $ mk_mem_periodic_pts hn hx lemma minimal_period_pos_iff_mem_periodic_pts : 0 < minimal_period f x ↔ x ∈ periodic_pts f := ⟨not_imp_not.1 $ λ h, by simp only [minimal_period, dif_neg h, lt_irrefl 0, not_false_iff], minimal_period_pos_of_mem_periodic_pts⟩ lemma minimal_period_eq_zero_iff_nmem_periodic_pts : minimal_period f x = 0 ↔ x ∉ periodic_pts f := by rw [←minimal_period_pos_iff_mem_periodic_pts, not_lt, nonpos_iff_eq_zero] lemma is_periodic_pt.minimal_period_le (hn : 0 < n) (hx : is_periodic_pt f n x) : minimal_period f x ≤ n := begin rw [minimal_period, dif_pos (mk_mem_periodic_pts hn hx)], exact nat.find_min' (mk_mem_periodic_pts hn hx) ⟨hn, hx⟩ end lemma minimal_period_apply_iterate (hx : x ∈ periodic_pts f) (n : ℕ) : minimal_period f (f^[n] x) = minimal_period f x := begin apply (is_periodic_pt.minimal_period_le (minimal_period_pos_of_mem_periodic_pts hx) _).antisymm ((is_periodic_pt_of_mem_periodic_pts_of_is_periodic_pt_iterate hx (is_periodic_pt_minimal_period f _)).minimal_period_le (minimal_period_pos_of_mem_periodic_pts _)), { exact (is_periodic_pt_minimal_period f x).apply_iterate n, }, { rcases hx with ⟨m, hm, hx⟩, exact ⟨m, hm, hx.apply_iterate n⟩ } end lemma minimal_period_apply (hx : x ∈ periodic_pts f) : minimal_period f (f x) = minimal_period f x := minimal_period_apply_iterate hx 1 lemma le_of_lt_minimal_period_of_iterate_eq {m n : ℕ} (hm : m < minimal_period f x) (hmn : f^[m] x = (f^[n] x)) : m ≤ n := begin by_contra' hmn', rw [←nat.add_sub_of_le hmn'.le, add_comm, iterate_add_apply] at hmn, exact ((is_periodic_pt.minimal_period_le (tsub_pos_of_lt hmn') (is_periodic_pt_of_mem_periodic_pts_of_is_periodic_pt_iterate (minimal_period_pos_iff_mem_periodic_pts.1 ((zero_le m).trans_lt hm)) hmn)).trans (nat.sub_le m n)).not_lt hm end lemma eq_of_lt_minimal_period_of_iterate_eq {m n : ℕ} (hm : m < minimal_period f x) (hn : n < minimal_period f x) (hmn : f^[m] x = (f^[n] x)) : m = n := (le_of_lt_minimal_period_of_iterate_eq hm hmn).antisymm (le_of_lt_minimal_period_of_iterate_eq hn hmn.symm) lemma eq_iff_lt_minimal_period_of_iterate_eq {m n : ℕ} (hm : m < minimal_period f x) (hn : n < minimal_period f x) : f^[m] x = (f^[n] x) ↔ m = n := ⟨eq_of_lt_minimal_period_of_iterate_eq hm hn, congr_arg _⟩ lemma minimal_period_id : minimal_period id x = 1 := ((is_periodic_id _ _ ).minimal_period_le nat.one_pos).antisymm (nat.succ_le_of_lt ((is_periodic_id _ _ ).minimal_period_pos nat.one_pos)) lemma is_fixed_point_iff_minimal_period_eq_one : minimal_period f x = 1 ↔ is_fixed_pt f x := begin refine ⟨λ h, _, λ h, _⟩, { rw ← iterate_one f, refine function.is_periodic_pt.is_fixed_pt _, rw ← h, exact is_periodic_pt_minimal_period f x }, { exact ((h.is_periodic_pt 1).minimal_period_le nat.one_pos).antisymm (nat.succ_le_of_lt ((h.is_periodic_pt 1).minimal_period_pos nat.one_pos)) } end lemma is_periodic_pt.eq_zero_of_lt_minimal_period (hx : is_periodic_pt f n x) (hn : n < minimal_period f x) : n = 0 := eq.symm $ (eq_or_lt_of_le $ n.zero_le).resolve_right $ λ hn0, not_lt.2 (hx.minimal_period_le hn0) hn lemma not_is_periodic_pt_of_pos_of_lt_minimal_period : ∀ {n : ℕ} (n0 : n ≠ 0) (hn : n < minimal_period f x), ¬ is_periodic_pt f n x | 0 n0 _ := (n0 rfl).elim | (n + 1) _ hn := λ hp, nat.succ_ne_zero _ (hp.eq_zero_of_lt_minimal_period hn) lemma is_periodic_pt.minimal_period_dvd (hx : is_periodic_pt f n x) : minimal_period f x ∣ n := (eq_or_lt_of_le $ n.zero_le).elim (λ hn0, hn0 ▸ dvd_zero _) $ λ hn0, nat.dvd_iff_mod_eq_zero.2 $ (hx.mod $ is_periodic_pt_minimal_period f x).eq_zero_of_lt_minimal_period $ nat.mod_lt _ $ hx.minimal_period_pos hn0 lemma is_periodic_pt_iff_minimal_period_dvd : is_periodic_pt f n x ↔ minimal_period f x ∣ n := ⟨is_periodic_pt.minimal_period_dvd, λ h, (is_periodic_pt_minimal_period f x).trans_dvd h⟩ open nat lemma minimal_period_eq_minimal_period_iff {g : β → β} {y : β} : minimal_period f x = minimal_period g y ↔ ∀ n, is_periodic_pt f n x ↔ is_periodic_pt g n y := by simp_rw [is_periodic_pt_iff_minimal_period_dvd, dvd_right_iff_eq] lemma minimal_period_eq_prime {p : ℕ} [hp : fact p.prime] (hper : is_periodic_pt f p x) (hfix : ¬ is_fixed_pt f x) : minimal_period f x = p := (hp.out.eq_one_or_self_of_dvd _ (hper.minimal_period_dvd)).resolve_left (mt is_fixed_point_iff_minimal_period_eq_one.1 hfix) lemma minimal_period_eq_prime_pow {p k : ℕ} [hp : fact p.prime] (hk : ¬ is_periodic_pt f (p ^ k) x) (hk1 : is_periodic_pt f (p ^ (k + 1)) x) : minimal_period f x = p ^ (k + 1) := begin apply nat.eq_prime_pow_of_dvd_least_prime_pow hp.out; rwa ← is_periodic_pt_iff_minimal_period_dvd end lemma commute.minimal_period_of_comp_dvd_lcm {g : α → α} (h : function.commute f g) : minimal_period (f ∘ g) x ∣ nat.lcm (minimal_period f x) (minimal_period g x) := begin rw [← is_periodic_pt_iff_minimal_period_dvd], exact (is_periodic_pt_minimal_period f x).comp_lcm h (is_periodic_pt_minimal_period g x) end lemma commute.minimal_period_of_comp_dvd_mul {g : α → α} (h : function.commute f g) : minimal_period (f ∘ g) x ∣ (minimal_period f x) * (minimal_period g x) := dvd_trans h.minimal_period_of_comp_dvd_lcm (lcm_dvd_mul _ _) lemma commute.minimal_period_of_comp_eq_mul_of_coprime {g : α → α} (h : function.commute f g) (hco : coprime (minimal_period f x) (minimal_period g x)) : minimal_period (f ∘ g) x = (minimal_period f x) * (minimal_period g x) := begin apply dvd_antisymm (h.minimal_period_of_comp_dvd_mul), suffices : ∀ {f g : α → α}, commute f g → coprime (minimal_period f x) (minimal_period g x) → minimal_period f x ∣ minimal_period (f ∘ g) x, from hco.mul_dvd_of_dvd_of_dvd (this h hco) (h.comp_eq.symm ▸ this h.symm hco.symm), clear hco h f g, intros f g h hco, refine hco.dvd_of_dvd_mul_left (is_periodic_pt.left_of_comp h _ _).minimal_period_dvd, { exact (is_periodic_pt_minimal_period _ _).const_mul _ }, { exact (is_periodic_pt_minimal_period _ _).mul_const _ } end private lemma minimal_period_iterate_eq_div_gcd_aux (h : 0 < gcd (minimal_period f x) n) : minimal_period (f ^[n]) x = minimal_period f x / nat.gcd (minimal_period f x) n := begin apply nat.dvd_antisymm, { apply is_periodic_pt.minimal_period_dvd, rw [is_periodic_pt, is_fixed_pt, ← iterate_mul, ← nat.mul_div_assoc _ (gcd_dvd_left _ _), mul_comm, nat.mul_div_assoc _ (gcd_dvd_right _ _), mul_comm, iterate_mul], exact (is_periodic_pt_minimal_period f x).iterate _ }, { apply coprime.dvd_of_dvd_mul_right (coprime_div_gcd_div_gcd h), apply dvd_of_mul_dvd_mul_right h, rw [nat.div_mul_cancel (gcd_dvd_left _ _), mul_assoc, nat.div_mul_cancel (gcd_dvd_right _ _), mul_comm], apply is_periodic_pt.minimal_period_dvd, rw [is_periodic_pt, is_fixed_pt, iterate_mul], exact is_periodic_pt_minimal_period _ _ } end lemma minimal_period_iterate_eq_div_gcd (h : n ≠ 0) : minimal_period (f ^[n]) x = minimal_period f x / nat.gcd (minimal_period f x) n := minimal_period_iterate_eq_div_gcd_aux $ gcd_pos_of_pos_right _ (nat.pos_of_ne_zero h) lemma minimal_period_iterate_eq_div_gcd' (h : x ∈ periodic_pts f) : minimal_period (f ^[n]) x = minimal_period f x / nat.gcd (minimal_period f x) n := minimal_period_iterate_eq_div_gcd_aux $ gcd_pos_of_pos_left n (minimal_period_pos_iff_mem_periodic_pts.mpr h) /-- The orbit of a periodic point `x` of `f` is the cycle `[x, f x, f (f x), ...]`. Its length is the minimal period of `x`. If `x` is not a periodic point, then this is the empty (aka nil) cycle. -/ def periodic_orbit (f : α → α) (x : α) : cycle α := (list.range (minimal_period f x)).map (λ n, f^[n] x) /-- The definition of a periodic orbit, in terms of `list.map`. -/ lemma periodic_orbit_def (f : α → α) (x : α) : periodic_orbit f x = (list.range (minimal_period f x)).map (λ n, f^[n] x) := rfl /-- The definition of a periodic orbit, in terms of `cycle.map`. -/ lemma periodic_orbit_eq_cycle_map (f : α → α) (x : α) : periodic_orbit f x = (list.range (minimal_period f x) : cycle ℕ).map (λ n, f^[n] x) := rfl @[simp] lemma periodic_orbit_length : (periodic_orbit f x).length = minimal_period f x := by rw [periodic_orbit, cycle.length_coe, list.length_map, list.length_range] @[simp] lemma periodic_orbit_eq_nil_iff_not_periodic_pt : periodic_orbit f x = cycle.nil ↔ x ∉ periodic_pts f := by { simp [periodic_orbit], exact minimal_period_eq_zero_iff_nmem_periodic_pts } lemma periodic_orbit_eq_nil_of_not_periodic_pt (h : x ∉ periodic_pts f) : periodic_orbit f x = cycle.nil := periodic_orbit_eq_nil_iff_not_periodic_pt.2 h @[simp] lemma mem_periodic_orbit_iff (hx : x ∈ periodic_pts f) : y ∈ periodic_orbit f x ↔ ∃ n, f^[n] x = y := begin simp only [periodic_orbit, cycle.mem_coe_iff, list.mem_map, list.mem_range], use λ ⟨a, ha, ha'⟩, ⟨a, ha'⟩, rintro ⟨n, rfl⟩, use [n % minimal_period f x, mod_lt _ (minimal_period_pos_of_mem_periodic_pts hx)], rw iterate_mod_minimal_period_eq end @[simp] lemma iterate_mem_periodic_orbit (hx : x ∈ periodic_pts f) (n : ℕ) : f^[n] x ∈ periodic_orbit f x := (mem_periodic_orbit_iff hx).2 ⟨n, rfl⟩ @[simp] lemma self_mem_periodic_orbit (hx : x ∈ periodic_pts f) : x ∈ periodic_orbit f x := iterate_mem_periodic_orbit hx 0 lemma nodup_periodic_orbit : (periodic_orbit f x).nodup := begin rw [periodic_orbit, cycle.nodup_coe_iff, list.nodup_map_iff_inj_on (list.nodup_range _)], intros m hm n hn hmn, rw list.mem_range at hm hn, rwa eq_iff_lt_minimal_period_of_iterate_eq hm hn at hmn end lemma periodic_orbit_apply_iterate_eq (hx : x ∈ periodic_pts f) (n : ℕ) : periodic_orbit f (f^[n] x) = periodic_orbit f x := eq.symm $ cycle.coe_eq_coe.2 $ ⟨n, begin apply list.ext_le _ (λ m _ _, _), { simp [minimal_period_apply_iterate hx] }, { rw list.nth_le_rotate _ n m, simp [iterate_add_apply] } end⟩ lemma periodic_orbit_apply_eq (hx : x ∈ periodic_pts f) : periodic_orbit f (f x) = periodic_orbit f x := periodic_orbit_apply_iterate_eq hx 1 theorem periodic_orbit_chain (r : α → α → Prop) {f : α → α} {x : α} : (periodic_orbit f x).chain r ↔ ∀ n < minimal_period f x, r (f^[n] x) (f^[n+1] x) := begin by_cases hx : x ∈ periodic_pts f, { have hx' := minimal_period_pos_of_mem_periodic_pts hx, have hM := nat.sub_add_cancel (succ_le_iff.2 hx'), rw [periodic_orbit, ←cycle.map_coe, cycle.chain_map, ←hM, cycle.chain_range_succ], refine ⟨_, λ H, ⟨_, λ m hm, H _ (hm.trans (nat.lt_succ_self _))⟩⟩, { rintro ⟨hr, H⟩ n hn, cases eq_or_lt_of_le (lt_succ_iff.1 hn) with hM' hM', { rwa [hM', hM, iterate_minimal_period] }, { exact H _ hM' } }, { rw iterate_zero_apply, nth_rewrite 2 ←@iterate_minimal_period α f x, nth_rewrite 1 ←hM, exact H _ (nat.lt_succ_self _) } }, { rw [periodic_orbit_eq_nil_of_not_periodic_pt hx, minimal_period_eq_zero_of_nmem_periodic_pts hx], simp } end theorem periodic_orbit_chain' (r : α → α → Prop) {f : α → α} {x : α} (hx : x ∈ periodic_pts f) : (periodic_orbit f x).chain r ↔ ∀ n, r (f^[n] x) (f^[n+1] x) := begin rw periodic_orbit_chain r, refine ⟨λ H n, _, λ H n _, H n⟩, rw [iterate_succ_apply, ←iterate_mod_minimal_period_eq], nth_rewrite 1 ←iterate_mod_minimal_period_eq, rw [←iterate_succ_apply, minimal_period_apply hx], exact H _ (mod_lt _ (minimal_period_pos_of_mem_periodic_pts hx)) end end function namespace mul_action open function variables {α β : Type*} [group α] [mul_action α β] {a : α} {b : β} @[to_additive] lemma pow_smul_eq_iff_minimal_period_dvd {n : ℕ} : a ^ n • b = b ↔ function.minimal_period ((•) a) b ∣ n := by rw [←is_periodic_pt_iff_minimal_period_dvd, is_periodic_pt, is_fixed_pt, smul_iterate] @[to_additive] lemma zpow_smul_eq_iff_minimal_period_dvd {n : ℤ} : a ^ n • b = b ↔ (function.minimal_period ((•) a) b : ℤ) ∣ n := begin cases n, { rw [int.of_nat_eq_coe, zpow_coe_nat, int.coe_nat_dvd, pow_smul_eq_iff_minimal_period_dvd] }, { rw [int.neg_succ_of_nat_coe, zpow_neg, zpow_coe_nat, inv_smul_eq_iff, eq_comm, dvd_neg, int.coe_nat_dvd, pow_smul_eq_iff_minimal_period_dvd] }, end variables (a b) @[simp, to_additive] lemma pow_smul_mod_minimal_period (n : ℕ) : a ^ (n % function.minimal_period ((•) a) b) • b = a ^ n • b := by conv_rhs { rw [← nat.mod_add_div n (minimal_period ((•) a) b), pow_add, mul_smul, pow_smul_eq_iff_minimal_period_dvd.mpr (dvd_mul_right _ _)] } @[simp, to_additive] lemma zpow_smul_mod_minimal_period (n : ℤ) : a ^ (n % (function.minimal_period ((•) a) b : ℤ)) • b = a ^ n • b := by conv_rhs { rw [← int.mod_add_div n (minimal_period ((•) a) b), zpow_add, mul_smul, zpow_smul_eq_iff_minimal_period_dvd.mpr (dvd_mul_right _ _)] } end mul_action