/- Copyright (c) 2020 Zhangir Azerbayev. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Eric Wieser, Zhangir Azerbayev -/ import group_theory.group_action.quotient import group_theory.perm.sign import group_theory.perm.subgroup import linear_algebra.linear_independent import linear_algebra.multilinear.basis import linear_algebra.multilinear.tensor_product import logic.equiv.fin /-! # Alternating Maps We construct the bundled function `alternating_map`, which extends `multilinear_map` with all the arguments of the same type. ## Main definitions * `alternating_map R M N ι` is the space of `R`-linear alternating maps from `ι → M` to `N`. * `f.map_eq_zero_of_eq` expresses that `f` is zero when two inputs are equal. * `f.map_swap` expresses that `f` is negated when two inputs are swapped. * `f.map_perm` expresses how `f` varies by a sign change under a permutation of its inputs. * An `add_comm_monoid`, `add_comm_group`, and `module` structure over `alternating_map`s that matches the definitions over `multilinear_map`s. * `multilinear_map.dom_dom_congr`, for permutating the elements within a family. * `multilinear_map.alternatization`, which makes an alternating map out of a non-alternating one. * `alternating_map.dom_coprod`, which behaves as a product between two alternating maps. * `alternating_map.curry_left`, for binding the leftmost argument of an alternating map indexed by `fin n.succ`. ## Implementation notes `alternating_map` is defined in terms of `map_eq_zero_of_eq`, as this is easier to work with than using `map_swap` as a definition, and does not require `has_neg N`. `alternating_map`s are provided with a coercion to `multilinear_map`, along with a set of `norm_cast` lemmas that act on the algebraic structure: * `alternating_map.coe_add` * `alternating_map.coe_zero` * `alternating_map.coe_sub` * `alternating_map.coe_neg` * `alternating_map.coe_smul` -/ -- semiring / add_comm_monoid variables {R : Type*} [semiring R] variables {M : Type*} [add_comm_monoid M] [module R M] variables {N : Type*} [add_comm_monoid N] [module R N] -- semiring / add_comm_group variables {M' : Type*} [add_comm_group M'] [module R M'] variables {N' : Type*} [add_comm_group N'] [module R N'] variables {ι ι' ι'' : Type*} [decidable_eq ι] [decidable_eq ι'] [decidable_eq ι''] set_option old_structure_cmd true section variables (R M N ι) /-- An alternating map is a multilinear map that vanishes when two of its arguments are equal. -/ structure alternating_map extends multilinear_map R (λ i : ι, M) N := (map_eq_zero_of_eq' : ∀ (v : ι → M) (i j : ι) (h : v i = v j) (hij : i ≠ j), to_fun v = 0) end /-- The multilinear map associated to an alternating map -/ add_decl_doc alternating_map.to_multilinear_map namespace alternating_map variables (f f' : alternating_map R M N ι) variables (g g₂ : alternating_map R M N' ι) variables (g' : alternating_map R M' N' ι) variables (v : ι → M) (v' : ι → M') open function /-! Basic coercion simp lemmas, largely copied from `ring_hom` and `multilinear_map` -/ section coercions instance : has_coe_to_fun (alternating_map R M N ι) (λ _, (ι → M) → N) := ⟨λ x, x.to_fun⟩ initialize_simps_projections alternating_map (to_fun → apply) @[simp] lemma to_fun_eq_coe : f.to_fun = f := rfl @[simp] lemma coe_mk (f : (ι → M) → N) (h₁ h₂ h₃) : ⇑(⟨f, h₁, h₂, h₃⟩ : alternating_map R M N ι) = f := rfl theorem congr_fun {f g : alternating_map R M N ι} (h : f = g) (x : ι → M) : f x = g x := congr_arg (λ h : alternating_map R M N ι, h x) h theorem congr_arg (f : alternating_map R M N ι) {x y : ι → M} (h : x = y) : f x = f y := congr_arg (λ x : ι → M, f x) h theorem coe_injective : injective (coe_fn : alternating_map R M N ι → ((ι → M) → N)) := λ f g h, by { cases f, cases g, cases h, refl } @[simp, norm_cast] theorem coe_inj {f g : alternating_map R M N ι} : (f : (ι → M) → N) = g ↔ f = g := coe_injective.eq_iff @[ext] theorem ext {f f' : alternating_map R M N ι} (H : ∀ x, f x = f' x) : f = f' := coe_injective (funext H) theorem ext_iff {f g : alternating_map R M N ι} : f = g ↔ ∀ x, f x = g x := ⟨λ h x, h ▸ rfl, λ h, ext h⟩ instance : has_coe (alternating_map R M N ι) (multilinear_map R (λ i : ι, M) N) := ⟨λ x, x.to_multilinear_map⟩ @[simp, norm_cast] lemma coe_multilinear_map : ⇑(f : multilinear_map R (λ i : ι, M) N) = f := rfl lemma coe_multilinear_map_injective : function.injective (coe : alternating_map R M N ι → multilinear_map R (λ i : ι, M) N) := λ x y h, ext $ multilinear_map.congr_fun h @[simp] lemma to_multilinear_map_eq_coe : f.to_multilinear_map = f := rfl @[simp] lemma coe_multilinear_map_mk (f : (ι → M) → N) (h₁ h₂ h₃) : ((⟨f, h₁, h₂, h₃⟩ : alternating_map R M N ι) : multilinear_map R (λ i : ι, M) N) = ⟨f, h₁, h₂⟩ := rfl end coercions /-! ### Simp-normal forms of the structure fields These are expressed in terms of `⇑f` instead of `f.to_fun`. -/ @[simp] lemma map_add (i : ι) (x y : M) : f (update v i (x + y)) = f (update v i x) + f (update v i y) := f.to_multilinear_map.map_add' v i x y @[simp] lemma map_sub (i : ι) (x y : M') : g' (update v' i (x - y)) = g' (update v' i x) - g' (update v' i y) := g'.to_multilinear_map.map_sub v' i x y @[simp] lemma map_neg (i : ι) (x : M') : g' (update v' i (-x)) = -g' (update v' i x) := g'.to_multilinear_map.map_neg v' i x @[simp] lemma map_smul (i : ι) (r : R) (x : M) : f (update v i (r • x)) = r • f (update v i x) := f.to_multilinear_map.map_smul' v i r x @[simp] lemma map_eq_zero_of_eq (v : ι → M) {i j : ι} (h : v i = v j) (hij : i ≠ j) : f v = 0 := f.map_eq_zero_of_eq' v i j h hij lemma map_coord_zero {m : ι → M} (i : ι) (h : m i = 0) : f m = 0 := f.to_multilinear_map.map_coord_zero i h @[simp] lemma map_update_zero (m : ι → M) (i : ι) : f (update m i 0) = 0 := f.to_multilinear_map.map_update_zero m i @[simp] lemma map_zero [nonempty ι] : f 0 = 0 := f.to_multilinear_map.map_zero lemma map_eq_zero_of_not_injective (v : ι → M) (hv : ¬function.injective v) : f v = 0 := begin rw function.injective at hv, push_neg at hv, rcases hv with ⟨i₁, i₂, heq, hne⟩, exact f.map_eq_zero_of_eq v heq hne end /-! ### Algebraic structure inherited from `multilinear_map` `alternating_map` carries the same `add_comm_monoid`, `add_comm_group`, and `module` structure as `multilinear_map` -/ section has_smul variables {S : Type*} [monoid S] [distrib_mul_action S N] [smul_comm_class R S N] instance : has_smul S (alternating_map R M N ι) := ⟨λ c f, { map_eq_zero_of_eq' := λ v i j h hij, by simp [f.map_eq_zero_of_eq v h hij], ..((c • f : multilinear_map R (λ i : ι, M) N)) }⟩ @[simp] lemma smul_apply (c : S) (m : ι → M) : (c • f) m = c • f m := rfl @[norm_cast] lemma coe_smul (c : S): ((c • f : alternating_map R M N ι) : multilinear_map R (λ i : ι, M) N) = c • f := rfl lemma coe_fn_smul (c : S) (f : alternating_map R M N ι) : ⇑(c • f) = c • f := rfl instance [distrib_mul_action Sᵐᵒᵖ N] [is_central_scalar S N] : is_central_scalar S (alternating_map R M N ι) := ⟨λ c f, ext $ λ x, op_smul_eq_smul _ _⟩ end has_smul instance : has_add (alternating_map R M N ι) := ⟨λ a b, { map_eq_zero_of_eq' := λ v i j h hij, by simp [a.map_eq_zero_of_eq v h hij, b.map_eq_zero_of_eq v h hij], ..(a + b : multilinear_map R (λ i : ι, M) N)}⟩ @[simp] lemma add_apply : (f + f') v = f v + f' v := rfl @[norm_cast] lemma coe_add : (↑(f + f') : multilinear_map R (λ i : ι, M) N) = f + f' := rfl instance : has_zero (alternating_map R M N ι) := ⟨{map_eq_zero_of_eq' := λ v i j h hij, by simp, ..(0 : multilinear_map R (λ i : ι, M) N)}⟩ @[simp] lemma zero_apply : (0 : alternating_map R M N ι) v = 0 := rfl @[norm_cast] lemma coe_zero : ((0 : alternating_map R M N ι) : multilinear_map R (λ i : ι, M) N) = 0 := rfl instance : inhabited (alternating_map R M N ι) := ⟨0⟩ instance : add_comm_monoid (alternating_map R M N ι) := coe_injective.add_comm_monoid _ rfl (λ _ _, rfl) (λ _ _, coe_fn_smul _ _) instance : has_neg (alternating_map R M N' ι) := ⟨λ f, { map_eq_zero_of_eq' := λ v i j h hij, by simp [f.map_eq_zero_of_eq v h hij], ..(-(f : multilinear_map R (λ i : ι, M) N')) }⟩ @[simp] lemma neg_apply (m : ι → M) : (-g) m = -(g m) := rfl @[norm_cast] lemma coe_neg : ((-g : alternating_map R M N' ι) : multilinear_map R (λ i : ι, M) N') = -g := rfl instance : has_sub (alternating_map R M N' ι) := ⟨λ f g, { map_eq_zero_of_eq' := λ v i j h hij, by simp [f.map_eq_zero_of_eq v h hij, g.map_eq_zero_of_eq v h hij], ..(f - g : multilinear_map R (λ i : ι, M) N') }⟩ @[simp] lemma sub_apply (m : ι → M) : (g - g₂) m = g m - g₂ m := rfl @[norm_cast] lemma coe_sub : (↑(g - g₂) : multilinear_map R (λ i : ι, M) N') = g - g₂ := rfl instance : add_comm_group (alternating_map R M N' ι) := coe_injective.add_comm_group _ rfl (λ _ _, rfl) (λ _, rfl) (λ _ _, rfl) (λ _ _, coe_fn_smul _ _) (λ _ _, coe_fn_smul _ _) section distrib_mul_action variables {S : Type*} [monoid S] [distrib_mul_action S N] [smul_comm_class R S N] instance : distrib_mul_action S (alternating_map R M N ι) := { one_smul := λ f, ext $ λ x, one_smul _ _, mul_smul := λ c₁ c₂ f, ext $ λ x, mul_smul _ _ _, smul_zero := λ r, ext $ λ x, smul_zero _, smul_add := λ r f₁ f₂, ext $ λ x, smul_add _ _ _ } end distrib_mul_action section module variables {S : Type*} [semiring S] [module S N] [smul_comm_class R S N] /-- The space of multilinear maps over an algebra over `R` is a module over `R`, for the pointwise addition and scalar multiplication. -/ instance : module S (alternating_map R M N ι) := { add_smul := λ r₁ r₂ f, ext $ λ x, add_smul _ _ _, zero_smul := λ f, ext $ λ x, zero_smul _ _ } instance [no_zero_smul_divisors S N] : no_zero_smul_divisors S (alternating_map R M N ι) := coe_injective.no_zero_smul_divisors _ rfl coe_fn_smul end module section variables (R M) /-- The evaluation map from `ι → M` to `M` at a given `i` is alternating when `ι` is subsingleton. -/ @[simps] def of_subsingleton [subsingleton ι] (i : ι) : alternating_map R M M ι := { to_fun := function.eval i, map_eq_zero_of_eq' := λ v i j hv hij, (hij $ subsingleton.elim _ _).elim, ..multilinear_map.of_subsingleton R M i } /-- The constant map is alternating when `ι` is empty. -/ @[simps {fully_applied := ff}] def const_of_is_empty [is_empty ι] (m : N) : alternating_map R M N ι := { to_fun := function.const _ m, map_eq_zero_of_eq' := λ v, is_empty_elim, ..multilinear_map.const_of_is_empty R m } end /-- Restrict the codomain of an alternating map to a submodule. -/ @[simps] def cod_restrict (f : alternating_map R M N ι) (p : submodule R N) (h : ∀ v, f v ∈ p) : alternating_map R M p ι := { to_fun := λ v, ⟨f v, h v⟩, map_eq_zero_of_eq' := λ v i j hv hij, subtype.ext $ map_eq_zero_of_eq _ _ hv hij, ..f.to_multilinear_map.cod_restrict p h } end alternating_map /-! ### Composition with linear maps -/ namespace linear_map variables {N₂ : Type*} [add_comm_monoid N₂] [module R N₂] /-- Composing a alternating map with a linear map on the left gives again an alternating map. -/ def comp_alternating_map (g : N →ₗ[R] N₂) : alternating_map R M N ι →+ alternating_map R M N₂ ι := { to_fun := λ f, { map_eq_zero_of_eq' := λ v i j h hij, by simp [f.map_eq_zero_of_eq v h hij], ..(g.comp_multilinear_map (f : multilinear_map R (λ _ : ι, M) N)) }, map_zero' := by { ext, simp }, map_add' := λ a b, by { ext, simp } } @[simp] lemma coe_comp_alternating_map (g : N →ₗ[R] N₂) (f : alternating_map R M N ι) : ⇑(g.comp_alternating_map f) = g ∘ f := rfl @[simp] lemma comp_alternating_map_apply (g : N →ₗ[R] N₂) (f : alternating_map R M N ι) (m : ι → M) : g.comp_alternating_map f m = g (f m) := rfl @[simp] lemma subtype_comp_alternating_map_cod_restrict (f : alternating_map R M N ι) (p : submodule R N) (h) : p.subtype.comp_alternating_map (f.cod_restrict p h) = f := alternating_map.ext $ λ v, rfl @[simp] lemma comp_alternating_map_cod_restrict (g : N →ₗ[R] N₂) (f : alternating_map R M N ι) (p : submodule R N₂) (h) : (g.cod_restrict p h).comp_alternating_map f = (g.comp_alternating_map f).cod_restrict p (λ v, h (f v)):= alternating_map.ext $ λ v, rfl end linear_map namespace alternating_map variables {M₂ : Type*} [add_comm_monoid M₂] [module R M₂] variables {M₃ : Type*} [add_comm_monoid M₃] [module R M₃] /-- Composing a alternating map with the same linear map on each argument gives again an alternating map. -/ def comp_linear_map (f : alternating_map R M N ι) (g : M₂ →ₗ[R] M) : alternating_map R M₂ N ι := { map_eq_zero_of_eq' := λ v i j h hij, f.map_eq_zero_of_eq _ (linear_map.congr_arg h) hij, .. (f : multilinear_map R (λ _ : ι, M) N).comp_linear_map (λ _, g) } lemma coe_comp_linear_map (f : alternating_map R M N ι) (g : M₂ →ₗ[R] M) : ⇑(f.comp_linear_map g) = f ∘ ((∘) g) := rfl @[simp] lemma comp_linear_map_apply (f : alternating_map R M N ι) (g : M₂ →ₗ[R] M) (v : ι → M₂) : f.comp_linear_map g v = f (λ i, g (v i)) := rfl /-- Composing an alternating map twice with the same linear map in each argument is the same as composing with their composition. -/ lemma comp_linear_map_assoc (f : alternating_map R M N ι) (g₁ : M₂ →ₗ[R] M) (g₂ : M₃ →ₗ[R] M₂) : (f.comp_linear_map g₁).comp_linear_map g₂ = f.comp_linear_map (g₁ ∘ₗ g₂) := rfl @[simp] lemma zero_comp_linear_map (g : M₂ →ₗ[R] M) : (0 : alternating_map R M N ι).comp_linear_map g = 0 := by { ext, simp only [comp_linear_map_apply, zero_apply] } @[simp] lemma add_comp_linear_map (f₁ f₂ : alternating_map R M N ι) (g : M₂ →ₗ[R] M) : (f₁ + f₂).comp_linear_map g = f₁.comp_linear_map g + f₂.comp_linear_map g := by { ext, simp only [comp_linear_map_apply, add_apply] } @[simp] lemma comp_linear_map_zero [nonempty ι] (f : alternating_map R M N ι) : f.comp_linear_map (0 : M₂ →ₗ[R] M) = 0 := begin ext, simp_rw [comp_linear_map_apply, linear_map.zero_apply, ←pi.zero_def, map_zero, zero_apply], end /-- Composing an alternating map with the identity linear map in each argument. -/ @[simp] lemma comp_linear_map_id (f : alternating_map R M N ι) : f.comp_linear_map linear_map.id = f := ext $ λ _, rfl /-- Composing with a surjective linear map is injective. -/ lemma comp_linear_map_injective (f : M₂ →ₗ[R] M) (hf : function.surjective f) : function.injective (λ g : alternating_map R M N ι, g.comp_linear_map f) := λ g₁ g₂ h, ext $ λ x, by simpa [function.surj_inv_eq hf] using ext_iff.mp h (function.surj_inv hf ∘ x) lemma comp_linear_map_inj (f : M₂ →ₗ[R] M) (hf : function.surjective f) (g₁ g₂ : alternating_map R M N ι) : g₁.comp_linear_map f = g₂.comp_linear_map f ↔ g₁ = g₂ := (comp_linear_map_injective _ hf).eq_iff section dom_lcongr variables (ι R N) (S : Type*) [semiring S] [module S N] [smul_comm_class R S N] /-- Construct a linear equivalence between maps from a linear equivalence between domains. -/ @[simps apply] def dom_lcongr (e : M ≃ₗ[R] M₂) : alternating_map R M N ι ≃ₗ[S] alternating_map R M₂ N ι := { to_fun := λ f, f.comp_linear_map e.symm, inv_fun := λ g, g.comp_linear_map e, map_add' := λ _ _, rfl, map_smul' := λ _ _, rfl, left_inv := λ f, alternating_map.ext $ λ v, f.congr_arg $ funext $ λ i, e.symm_apply_apply _, right_inv := λ f, alternating_map.ext $ λ v, f.congr_arg $ funext $ λ i, e.apply_symm_apply _ } @[simp] lemma dom_lcongr_refl : dom_lcongr R N ι S (linear_equiv.refl R M) = linear_equiv.refl S _ := linear_equiv.ext $ λ _, alternating_map.ext $ λ v, rfl @[simp] lemma dom_lcongr_symm (e : M ≃ₗ[R] M₂) : (dom_lcongr R N ι S e).symm = dom_lcongr R N ι S e.symm := rfl lemma dom_lcongr_trans (e : M ≃ₗ[R] M₂) (f : M₂ ≃ₗ[R] M₃): (dom_lcongr R N ι S e).trans (dom_lcongr R N ι S f) = dom_lcongr R N ι S (e.trans f) := rfl end dom_lcongr /-- Composing an alternating map with the same linear equiv on each argument gives the zero map if and only if the alternating map is the zero map. -/ @[simp] lemma comp_linear_equiv_eq_zero_iff (f : alternating_map R M N ι) (g : M₂ ≃ₗ[R] M) : f.comp_linear_map (g : M₂ →ₗ[R] M) = 0 ↔ f = 0 := (dom_lcongr R N ι ℕ g.symm).map_eq_zero_iff variables (f f' : alternating_map R M N ι) variables (g g₂ : alternating_map R M N' ι) variables (g' : alternating_map R M' N' ι) variables (v : ι → M) (v' : ι → M') open function /-! ### Other lemmas from `multilinear_map` -/ section open_locale big_operators lemma map_update_sum {α : Type*} (t : finset α) (i : ι) (g : α → M) (m : ι → M): f (update m i (∑ a in t, g a)) = ∑ a in t, f (update m i (g a)) := f.to_multilinear_map.map_update_sum t i g m end /-! ### Theorems specific to alternating maps Various properties of reordered and repeated inputs which follow from `alternating_map.map_eq_zero_of_eq`. -/ lemma map_update_self {i j : ι} (hij : i ≠ j) : f (function.update v i (v j)) = 0 := f.map_eq_zero_of_eq _ (by rw [function.update_same, function.update_noteq hij.symm]) hij lemma map_update_update {i j : ι} (hij : i ≠ j) (m : M) : f (function.update (function.update v i m) j m) = 0 := f.map_eq_zero_of_eq _ (by rw [function.update_same, function.update_noteq hij, function.update_same]) hij lemma map_swap_add {i j : ι} (hij : i ≠ j) : f (v ∘ equiv.swap i j) + f v = 0 := begin rw equiv.comp_swap_eq_update, convert f.map_update_update v hij (v i + v j), simp [f.map_update_self _ hij, f.map_update_self _ hij.symm, function.update_comm hij (v i + v j) (v _) v, function.update_comm hij.symm (v i) (v i) v], end lemma map_add_swap {i j : ι} (hij : i ≠ j) : f v + f (v ∘ equiv.swap i j) = 0 := by { rw add_comm, exact f.map_swap_add v hij } lemma map_swap {i j : ι} (hij : i ≠ j) : g (v ∘ equiv.swap i j) = - g v := eq_neg_of_add_eq_zero_left $ g.map_swap_add v hij lemma map_perm [fintype ι] (v : ι → M) (σ : equiv.perm ι) : g (v ∘ σ) = σ.sign • g v := begin apply equiv.perm.swap_induction_on' σ, { simp }, { intros s x y hxy hI, simpa [g.map_swap (v ∘ s) hxy, equiv.perm.sign_swap hxy] using hI, } end lemma map_congr_perm [fintype ι] (σ : equiv.perm ι) : g v = σ.sign • g (v ∘ σ) := by { rw [g.map_perm, smul_smul], simp } section dom_dom_congr /-- Transfer the arguments to a map along an equivalence between argument indices. This is the alternating version of `multilinear_map.dom_dom_congr`. -/ @[simps] def dom_dom_congr (σ : ι ≃ ι') (f : alternating_map R M N ι) : alternating_map R M N ι' := { to_fun := λ v, f (v ∘ σ), map_eq_zero_of_eq' := λ v i j hv hij, f.map_eq_zero_of_eq (v ∘ σ) (by simpa using hv) (σ.symm.injective.ne hij), .. f.to_multilinear_map.dom_dom_congr σ } @[simp] lemma dom_dom_congr_refl (f : alternating_map R M N ι) : f.dom_dom_congr (equiv.refl ι) = f := ext $ λ v, rfl lemma dom_dom_congr_trans (σ₁ : ι ≃ ι') (σ₂ : ι' ≃ ι'') (f : alternating_map R M N ι) : f.dom_dom_congr (σ₁.trans σ₂) = (f.dom_dom_congr σ₁).dom_dom_congr σ₂ := rfl @[simp] lemma dom_dom_congr_zero (σ : ι ≃ ι') : (0 : alternating_map R M N ι).dom_dom_congr σ = 0 := rfl @[simp] lemma dom_dom_congr_add (σ : ι ≃ ι') (f g : alternating_map R M N ι) : (f + g).dom_dom_congr σ = f.dom_dom_congr σ + g.dom_dom_congr σ := rfl /-- `alternating_map.dom_dom_congr` as an equivalence. This is declared separately because it does not work with dot notation. -/ @[simps apply symm_apply] def dom_dom_congr_equiv (σ : ι ≃ ι') : alternating_map R M N ι ≃+ alternating_map R M N ι' := { to_fun := dom_dom_congr σ, inv_fun := dom_dom_congr σ.symm, left_inv := λ f, by { ext, simp [function.comp] }, right_inv := λ m, by { ext, simp [function.comp] }, map_add' := dom_dom_congr_add σ } /-- The results of applying `dom_dom_congr` to two maps are equal if and only if those maps are. -/ @[simp] lemma dom_dom_congr_eq_iff (σ : ι ≃ ι') (f g : alternating_map R M N ι) : f.dom_dom_congr σ = g.dom_dom_congr σ ↔ f = g := (dom_dom_congr_equiv σ : _ ≃+ alternating_map R M N ι').apply_eq_iff_eq @[simp] lemma dom_dom_congr_eq_zero_iff (σ : ι ≃ ι') (f : alternating_map R M N ι) : f.dom_dom_congr σ = 0 ↔ f = 0 := (dom_dom_congr_equiv σ : alternating_map R M N ι ≃+ alternating_map R M N ι').map_eq_zero_iff lemma dom_dom_congr_perm [fintype ι] (σ : equiv.perm ι) : g.dom_dom_congr σ = σ.sign • g := alternating_map.ext $ λ v, g.map_perm v σ @[norm_cast] lemma coe_dom_dom_congr (σ : ι ≃ ι') : ↑(f.dom_dom_congr σ) = (f : multilinear_map R (λ _ : ι, M) N).dom_dom_congr σ := multilinear_map.ext $ λ v, rfl end dom_dom_congr /-- If the arguments are linearly dependent then the result is `0`. -/ lemma map_linear_dependent {K : Type*} [ring K] {M : Type*} [add_comm_group M] [module K M] {N : Type*} [add_comm_group N] [module K N] [no_zero_smul_divisors K N] (f : alternating_map K M N ι) (v : ι → M) (h : ¬linear_independent K v) : f v = 0 := begin obtain ⟨s, g, h, i, hi, hz⟩ := not_linear_independent_iff.mp h, suffices : f (update v i (g i • v i)) = 0, { rw [f.map_smul, function.update_eq_self, smul_eq_zero] at this, exact or.resolve_left this hz, }, conv at h in (g _ • v _) { rw ←if_t_t (i = x) (g _ • v _), }, rw [finset.sum_ite, finset.filter_eq, finset.filter_ne, if_pos hi, finset.sum_singleton, add_eq_zero_iff_eq_neg] at h, rw [h, f.map_neg, f.map_update_sum, neg_eq_zero, finset.sum_eq_zero], intros j hj, obtain ⟨hij, _⟩ := finset.mem_erase.mp hj, rw [f.map_smul, f.map_update_self _ hij.symm, smul_zero], end section fin open fin /-- A version of `multilinear_map.cons_add` for `alternating_map`. -/ lemma map_vec_cons_add {n : ℕ} (f : alternating_map R M N (fin n.succ)) (m : fin n → M) (x y : M) : f (matrix.vec_cons (x+y) m) = f (matrix.vec_cons x m) + f (matrix.vec_cons y m) := f.to_multilinear_map.cons_add _ _ _ /-- A version of `multilinear_map.cons_smul` for `alternating_map`. -/ lemma map_vec_cons_smul {n : ℕ} (f : alternating_map R M N (fin n.succ)) (m : fin n → M) (c : R) (x : M) : f (matrix.vec_cons (c • x) m) = c • f (matrix.vec_cons x m) := f.to_multilinear_map.cons_smul _ _ _ end fin end alternating_map open_locale big_operators namespace multilinear_map open equiv variables [fintype ι] private lemma alternization_map_eq_zero_of_eq_aux (m : multilinear_map R (λ i : ι, M) N') (v : ι → M) (i j : ι) (i_ne_j : i ≠ j) (hv : v i = v j) : (∑ (σ : perm ι), σ.sign • m.dom_dom_congr σ) v = 0 := begin rw sum_apply, exact finset.sum_involution (λ σ _, swap i j * σ) (λ σ _, by simp [perm.sign_swap i_ne_j, apply_swap_eq_self hv]) (λ σ _ _, (not_congr swap_mul_eq_iff).mpr i_ne_j) (λ σ _, finset.mem_univ _) (λ σ _, swap_mul_involutive i j σ) end /-- Produce an `alternating_map` out of a `multilinear_map`, by summing over all argument permutations. -/ def alternatization : multilinear_map R (λ i : ι, M) N' →+ alternating_map R M N' ι := { to_fun := λ m, { to_fun := ⇑(∑ (σ : perm ι), σ.sign • m.dom_dom_congr σ), map_eq_zero_of_eq' := λ v i j hvij hij, alternization_map_eq_zero_of_eq_aux m v i j hij hvij, .. (∑ (σ : perm ι), σ.sign • m.dom_dom_congr σ)}, map_add' := λ a b, begin ext, simp only [ finset.sum_add_distrib, smul_add, add_apply, dom_dom_congr_apply, alternating_map.add_apply, alternating_map.coe_mk, smul_apply, sum_apply], end, map_zero' := begin ext, simp only [ finset.sum_const_zero, smul_zero, zero_apply, dom_dom_congr_apply, alternating_map.zero_apply, alternating_map.coe_mk, smul_apply, sum_apply], end } lemma alternatization_def (m : multilinear_map R (λ i : ι, M) N') : ⇑(alternatization m) = (∑ (σ : perm ι), σ.sign • m.dom_dom_congr σ : _) := rfl lemma alternatization_coe (m : multilinear_map R (λ i : ι, M) N') : ↑m.alternatization = (∑ (σ : perm ι), σ.sign • m.dom_dom_congr σ : _) := coe_injective rfl lemma alternatization_apply (m : multilinear_map R (λ i : ι, M) N') (v : ι → M) : alternatization m v = ∑ (σ : perm ι), σ.sign • m.dom_dom_congr σ v := by simp only [alternatization_def, smul_apply, sum_apply] end multilinear_map namespace alternating_map /-- Alternatizing a multilinear map that is already alternating results in a scale factor of `n!`, where `n` is the number of inputs. -/ lemma coe_alternatization [fintype ι] (a : alternating_map R M N' ι) : (↑a : multilinear_map R (λ ι, M) N').alternatization = nat.factorial (fintype.card ι) • a := begin apply alternating_map.coe_injective, simp_rw [multilinear_map.alternatization_def, ←coe_dom_dom_congr, dom_dom_congr_perm, coe_smul, smul_smul, int.units_mul_self, one_smul, finset.sum_const, finset.card_univ, fintype.card_perm, ←coe_multilinear_map, coe_smul], end end alternating_map namespace linear_map variables {N'₂ : Type*} [add_comm_group N'₂] [module R N'₂] [fintype ι] /-- Composition with a linear map before and after alternatization are equivalent. -/ lemma comp_multilinear_map_alternatization (g : N' →ₗ[R] N'₂) (f : multilinear_map R (λ _ : ι, M) N') : (g.comp_multilinear_map f).alternatization = g.comp_alternating_map (f.alternatization) := by { ext, simp [multilinear_map.alternatization_def] } end linear_map section coprod open_locale big_operators open_locale tensor_product variables {ιa ιb : Type*} [decidable_eq ιa] [decidable_eq ιb] [fintype ιa] [fintype ιb] variables {R' : Type*} {Mᵢ N₁ N₂ : Type*} [comm_semiring R'] [add_comm_group N₁] [module R' N₁] [add_comm_group N₂] [module R' N₂] [add_comm_monoid Mᵢ] [module R' Mᵢ] namespace equiv.perm /-- Elements which are considered equivalent if they differ only by swaps within α or β -/ abbreviation mod_sum_congr (α β : Type*) := _ ⧸ (equiv.perm.sum_congr_hom α β).range lemma mod_sum_congr.swap_smul_involutive {α β : Type*} [decidable_eq (α ⊕ β)] (i j : α ⊕ β) : function.involutive (has_smul.smul (equiv.swap i j) : mod_sum_congr α β → mod_sum_congr α β) := λ σ, begin apply σ.induction_on' (λ σ, _), exact _root_.congr_arg quotient.mk' (equiv.swap_mul_involutive i j σ) end end equiv.perm namespace alternating_map open equiv /-- summand used in `alternating_map.dom_coprod` -/ def dom_coprod.summand (a : alternating_map R' Mᵢ N₁ ιa) (b : alternating_map R' Mᵢ N₂ ιb) (σ : perm.mod_sum_congr ιa ιb) : multilinear_map R' (λ _ : ιa ⊕ ιb, Mᵢ) (N₁ ⊗[R'] N₂) := quotient.lift_on' σ (λ σ, σ.sign • (multilinear_map.dom_coprod ↑a ↑b : multilinear_map R' (λ _, Mᵢ) (N₁ ⊗ N₂)).dom_dom_congr σ) (λ σ₁ σ₂ H, begin rw quotient_group.left_rel_apply at H, obtain ⟨⟨sl, sr⟩, h⟩ := H, ext v, simp only [multilinear_map.dom_dom_congr_apply, multilinear_map.dom_coprod_apply, coe_multilinear_map, multilinear_map.smul_apply], replace h := inv_mul_eq_iff_eq_mul.mp (h.symm), have : (σ₁ * perm.sum_congr_hom _ _ (sl, sr)).sign = σ₁.sign * (sl.sign * sr.sign) := by simp, rw [h, this, mul_smul, mul_smul, smul_left_cancel_iff, ←tensor_product.tmul_smul, tensor_product.smul_tmul'], simp only [sum.map_inr, perm.sum_congr_hom_apply, perm.sum_congr_apply, sum.map_inl, function.comp_app, perm.coe_mul], rw [←a.map_congr_perm (λ i, v (σ₁ _)), ←b.map_congr_perm (λ i, v (σ₁ _))], end) lemma dom_coprod.summand_mk' (a : alternating_map R' Mᵢ N₁ ιa) (b : alternating_map R' Mᵢ N₂ ιb) (σ : equiv.perm (ιa ⊕ ιb)) : dom_coprod.summand a b (quotient.mk' σ) = σ.sign • (multilinear_map.dom_coprod ↑a ↑b : multilinear_map R' (λ _, Mᵢ) (N₁ ⊗ N₂)).dom_dom_congr σ := rfl /-- Swapping elements in `σ` with equal values in `v` results in an addition that cancels -/ lemma dom_coprod.summand_add_swap_smul_eq_zero (a : alternating_map R' Mᵢ N₁ ιa) (b : alternating_map R' Mᵢ N₂ ιb) (σ : perm.mod_sum_congr ιa ιb) {v : ιa ⊕ ιb → Mᵢ} {i j : ιa ⊕ ιb} (hv : v i = v j) (hij : i ≠ j) : dom_coprod.summand a b σ v + dom_coprod.summand a b (swap i j • σ) v = 0 := begin apply σ.induction_on' (λ σ, _), dsimp only [quotient.lift_on'_mk', quotient.map'_mk', mul_action.quotient.smul_mk, dom_coprod.summand], rw [smul_eq_mul, perm.sign_mul, perm.sign_swap hij], simp only [one_mul, neg_mul, function.comp_app, units.neg_smul, perm.coe_mul, units.coe_neg, multilinear_map.smul_apply, multilinear_map.neg_apply, multilinear_map.dom_dom_congr_apply, multilinear_map.dom_coprod_apply], convert add_right_neg _; { ext k, rw equiv.apply_swap_eq_self hv }, end /-- Swapping elements in `σ` with equal values in `v` result in zero if the swap has no effect on the quotient. -/ lemma dom_coprod.summand_eq_zero_of_smul_invariant (a : alternating_map R' Mᵢ N₁ ιa) (b : alternating_map R' Mᵢ N₂ ιb) (σ : perm.mod_sum_congr ιa ιb) {v : ιa ⊕ ιb → Mᵢ} {i j : ιa ⊕ ιb} (hv : v i = v j) (hij : i ≠ j) : swap i j • σ = σ → dom_coprod.summand a b σ v = 0 := begin apply σ.induction_on' (λ σ, _), dsimp only [quotient.lift_on'_mk', quotient.map'_mk', multilinear_map.smul_apply, multilinear_map.dom_dom_congr_apply, multilinear_map.dom_coprod_apply, dom_coprod.summand], intro hσ, with_cases { cases hi : σ⁻¹ i; cases hj : σ⁻¹ j; rw perm.inv_eq_iff_eq at hi hj; substs hi hj, }, case [sum.inl sum.inr : i' j', sum.inr sum.inl : i' j'] { -- the term pairs with and cancels another term all_goals { obtain ⟨⟨sl, sr⟩, hσ⟩ := quotient_group.left_rel_apply.mp (quotient.exact' hσ), }, work_on_goal 1 { replace hσ := equiv.congr_fun hσ (sum.inl i'), }, work_on_goal 2 { replace hσ := equiv.congr_fun hσ (sum.inr i'), }, all_goals { rw [smul_eq_mul, ←mul_swap_eq_swap_mul, mul_inv_rev, swap_inv, inv_mul_cancel_right] at hσ, simpa using hσ, }, }, case [sum.inr sum.inr : i' j', sum.inl sum.inl : i' j'] { -- the term does not pair but is zero all_goals { convert smul_zero _, }, work_on_goal 1 { convert tensor_product.tmul_zero _ _, }, work_on_goal 2 { convert tensor_product.zero_tmul _ _, }, all_goals { exact alternating_map.map_eq_zero_of_eq _ _ hv (λ hij', hij (hij' ▸ rfl)), } }, end /-- Like `multilinear_map.dom_coprod`, but ensures the result is also alternating. Note that this is usually defined (for instance, as used in Proposition 22.24 in [Gallier2011Notes]) over integer indices `ιa = fin n` and `ιb = fin m`, as $$ (f \wedge g)(u_1, \ldots, u_{m+n}) = \sum_{\operatorname{shuffle}(m, n)} \operatorname{sign}(\sigma) f(u_{\sigma(1)}, \ldots, u_{\sigma(m)}) g(u_{\sigma(m+1)}, \ldots, u_{\sigma(m+n)}), $$ where $\operatorname{shuffle}(m, n)$ consists of all permutations of $[1, m+n]$ such that $\sigma(1) < \cdots < \sigma(m)$ and $\sigma(m+1) < \cdots < \sigma(m+n)$. Here, we generalize this by replacing: * the product in the sum with a tensor product * the filtering of $[1, m+n]$ to shuffles with an isomorphic quotient * the additions in the subscripts of $\sigma$ with an index of type `sum` The specialized version can be obtained by combining this definition with `fin_sum_fin_equiv` and `algebra.lmul'`. -/ @[simps] def dom_coprod (a : alternating_map R' Mᵢ N₁ ιa) (b : alternating_map R' Mᵢ N₂ ιb) : alternating_map R' Mᵢ (N₁ ⊗[R'] N₂) (ιa ⊕ ιb) := { to_fun := λ v, ⇑(∑ σ : perm.mod_sum_congr ιa ιb, dom_coprod.summand a b σ) v, map_eq_zero_of_eq' := λ v i j hv hij, begin dsimp only, rw multilinear_map.sum_apply, exact finset.sum_involution (λ σ _, equiv.swap i j • σ) (λ σ _, dom_coprod.summand_add_swap_smul_eq_zero a b σ hv hij) (λ σ _, mt $ dom_coprod.summand_eq_zero_of_smul_invariant a b σ hv hij) (λ σ _, finset.mem_univ _) (λ σ _, equiv.perm.mod_sum_congr.swap_smul_involutive i j σ), end, ..(∑ σ : perm.mod_sum_congr ιa ιb, dom_coprod.summand a b σ) } lemma dom_coprod_coe (a : alternating_map R' Mᵢ N₁ ιa) (b : alternating_map R' Mᵢ N₂ ιb) : (↑(a.dom_coprod b) : multilinear_map R' (λ _, Mᵢ) _) = ∑ σ : perm.mod_sum_congr ιa ιb, dom_coprod.summand a b σ := multilinear_map.ext $ λ _, rfl /-- A more bundled version of `alternating_map.dom_coprod` that maps `((ι₁ → N) → N₁) ⊗ ((ι₂ → N) → N₂)` to `(ι₁ ⊕ ι₂ → N) → N₁ ⊗ N₂`. -/ def dom_coprod' : (alternating_map R' Mᵢ N₁ ιa ⊗[R'] alternating_map R' Mᵢ N₂ ιb) →ₗ[R'] alternating_map R' Mᵢ (N₁ ⊗[R'] N₂) (ιa ⊕ ιb) := tensor_product.lift $ by refine linear_map.mk₂ R' (dom_coprod) (λ m₁ m₂ n, _) (λ c m n, _) (λ m n₁ n₂, _) (λ c m n, _); { ext, simp only [dom_coprod_apply, add_apply, smul_apply, ←finset.sum_add_distrib, finset.smul_sum, multilinear_map.sum_apply, dom_coprod.summand], congr, ext σ, apply σ.induction_on' (λ σ, _), simp only [quotient.lift_on'_mk', coe_add, coe_smul, multilinear_map.smul_apply, ←multilinear_map.dom_coprod'_apply], simp only [tensor_product.add_tmul, ←tensor_product.smul_tmul', tensor_product.tmul_add, tensor_product.tmul_smul, linear_map.map_add, linear_map.map_smul], rw ←smul_add <|> rw smul_comm, congr } @[simp] lemma dom_coprod'_apply (a : alternating_map R' Mᵢ N₁ ιa) (b : alternating_map R' Mᵢ N₂ ιb) : dom_coprod' (a ⊗ₜ[R'] b) = dom_coprod a b := by simp only [dom_coprod', tensor_product.lift.tmul, linear_map.mk₂_apply] end alternating_map open equiv /-- A helper lemma for `multilinear_map.dom_coprod_alternization`. -/ lemma multilinear_map.dom_coprod_alternization_coe (a : multilinear_map R' (λ _ : ιa, Mᵢ) N₁) (b : multilinear_map R' (λ _ : ιb, Mᵢ) N₂) : multilinear_map.dom_coprod ↑a.alternatization ↑b.alternatization = ∑ (σa : perm ιa) (σb : perm ιb), σa.sign • σb.sign • multilinear_map.dom_coprod (a.dom_dom_congr σa) (b.dom_dom_congr σb) := begin simp_rw [←multilinear_map.dom_coprod'_apply, multilinear_map.alternatization_coe], simp_rw [tensor_product.sum_tmul, tensor_product.tmul_sum, linear_map.map_sum, ←tensor_product.smul_tmul', tensor_product.tmul_smul, linear_map.map_smul_of_tower], end open alternating_map /-- Computing the `multilinear_map.alternatization` of the `multilinear_map.dom_coprod` is the same as computing the `alternating_map.dom_coprod` of the `multilinear_map.alternatization`s. -/ lemma multilinear_map.dom_coprod_alternization (a : multilinear_map R' (λ _ : ιa, Mᵢ) N₁) (b : multilinear_map R' (λ _ : ιb, Mᵢ) N₂) : (multilinear_map.dom_coprod a b).alternatization = a.alternatization.dom_coprod b.alternatization := begin apply coe_multilinear_map_injective, rw [dom_coprod_coe, multilinear_map.alternatization_coe, finset.sum_partition (quotient_group.left_rel (perm.sum_congr_hom ιa ιb).range)], congr' 1, ext1 σ, apply σ.induction_on' (λ σ, _), -- unfold the quotient mess left by `finset.sum_partition` conv in (_ = quotient.mk' _) { change quotient.mk' _ = quotient.mk' _, rw quotient_group.eq' }, -- eliminate a multiplication have : @finset.univ (perm (ιa ⊕ ιb)) _ = finset.univ.image ((*) σ) := (finset.eq_univ_iff_forall.mpr $ λ a, let ⟨a', ha'⟩ := mul_left_surjective σ a in finset.mem_image.mpr ⟨a', finset.mem_univ _, ha'⟩).symm, rw [this, finset.image_filter], simp only [function.comp, mul_inv_rev, inv_mul_cancel_right, subgroup.inv_mem_iff], simp only [monoid_hom.mem_range], -- needs to be separate from the above `simp only` rw [finset.filter_congr_decidable, finset.univ_filter_exists (perm.sum_congr_hom ιa ιb), finset.sum_image (λ x _ y _ (h : _ = _), mul_right_injective _ h), finset.sum_image (λ x _ y _ (h : _ = _), perm.sum_congr_hom_injective h)], dsimp only, -- now we're ready to clean up the RHS, pulling out the summation rw [dom_coprod.summand_mk', multilinear_map.dom_coprod_alternization_coe, ←finset.sum_product', finset.univ_product_univ, ←multilinear_map.dom_dom_congr_equiv_apply, add_equiv.map_sum, finset.smul_sum], congr' 1, ext1 ⟨al, ar⟩, dsimp only, -- pull out the pair of smuls on the RHS, by rewriting to `_ →ₗ[ℤ] _` and back rw [←add_equiv.coe_to_add_monoid_hom, ←add_monoid_hom.coe_to_int_linear_map, linear_map.map_smul_of_tower, linear_map.map_smul_of_tower, add_monoid_hom.coe_to_int_linear_map, add_equiv.coe_to_add_monoid_hom, multilinear_map.dom_dom_congr_equiv_apply], -- pick up the pieces rw [multilinear_map.dom_dom_congr_mul, perm.sign_mul, perm.sum_congr_hom_apply, multilinear_map.dom_coprod_dom_dom_congr_sum_congr, perm.sign_sum_congr, mul_smul, mul_smul], end /-- Taking the `multilinear_map.alternatization` of the `multilinear_map.dom_coprod` of two `alternating_map`s gives a scaled version of the `alternating_map.coprod` of those maps. -/ lemma multilinear_map.dom_coprod_alternization_eq (a : alternating_map R' Mᵢ N₁ ιa) (b : alternating_map R' Mᵢ N₂ ιb) : (multilinear_map.dom_coprod a b : multilinear_map R' (λ _ : ιa ⊕ ιb, Mᵢ) (N₁ ⊗ N₂)) .alternatization = ((fintype.card ιa).factorial * (fintype.card ιb).factorial) • a.dom_coprod b := begin rw [multilinear_map.dom_coprod_alternization, coe_alternatization, coe_alternatization, mul_smul, ←dom_coprod'_apply, ←dom_coprod'_apply, ←tensor_product.smul_tmul', tensor_product.tmul_smul, linear_map.map_smul_of_tower dom_coprod', linear_map.map_smul_of_tower dom_coprod'], -- typeclass resolution is a little confused here apply_instance, apply_instance, end end coprod section basis open alternating_map variables {ι₁ : Type*} [fintype ι] variables {R' : Type*} {N₁ N₂ : Type*} [comm_semiring R'] [add_comm_monoid N₁] [add_comm_monoid N₂] variables [module R' N₁] [module R' N₂] /-- Two alternating maps indexed by a `fintype` are equal if they are equal when all arguments are distinct basis vectors. -/ lemma basis.ext_alternating {f g : alternating_map R' N₁ N₂ ι} (e : basis ι₁ R' N₁) (h : ∀ v : ι → ι₁, function.injective v → f (λ i, e (v i)) = g (λ i, e (v i))) : f = g := begin refine alternating_map.coe_multilinear_map_injective (basis.ext_multilinear e $ λ v, _), by_cases hi : function.injective v, { exact h v hi }, { have : ¬function.injective (λ i, e (v i)) := hi.imp function.injective.of_comp, rw [coe_multilinear_map, coe_multilinear_map, f.map_eq_zero_of_not_injective _ this, g.map_eq_zero_of_not_injective _ this], } end end basis /-! ### Currying -/ section currying variables {R' : Type*} {M'' M₂'' N'' N₂'': Type*} [comm_semiring R'] [add_comm_monoid M''] [add_comm_monoid M₂''] [add_comm_monoid N''] [add_comm_monoid N₂''] [module R' M''] [module R' M₂''] [module R' N''] [module R' N₂''] namespace alternating_map /-- Given an alternating map `f` in `n+1` variables, split the first variable to obtain a linear map into alternating maps in `n` variables, given by `x ↦ (m ↦ f (matrix.vec_cons x m))`. It can be thought of as a map $Hom(\bigwedge^{n+1} M, N) \to Hom(M, Hom(\bigwedge^n M, N))$. This is `multilinear_map.curry_left` for `alternating_map`. See also `alternating_map.curry_left_linear_map`. -/ @[simps] def curry_left {n : ℕ} (f : alternating_map R' M'' N'' (fin n.succ)) : M'' →ₗ[R'] alternating_map R' M'' N'' (fin n) := { to_fun := λ m, { to_fun := λ v, f (matrix.vec_cons m v), map_eq_zero_of_eq' := λ v i j hv hij, f.map_eq_zero_of_eq _ (by rwa [matrix.cons_val_succ, matrix.cons_val_succ]) ((fin.succ_injective _).ne hij), .. f.to_multilinear_map.curry_left m }, map_add' := λ m₁ m₂, ext $ λ v, f.map_vec_cons_add _ _ _, map_smul' := λ r m, ext $ λ v, f.map_vec_cons_smul _ _ _ } @[simp] lemma curry_left_zero {n : ℕ} : curry_left (0 : alternating_map R' M'' N'' (fin n.succ)) = 0 := rfl @[simp] lemma curry_left_add {n : ℕ} (f g : alternating_map R' M'' N'' (fin n.succ)) : curry_left (f + g) = curry_left f + curry_left g := rfl @[simp] lemma curry_left_smul {n : ℕ} (r : R') (f : alternating_map R' M'' N'' (fin n.succ)) : curry_left (r • f) = r • curry_left f := rfl /-- `alternating_map.curry_left` as a `linear_map`. This is a separate definition as dot notation does not work for this version. -/ @[simps] def curry_left_linear_map {n : ℕ} : alternating_map R' M'' N'' (fin n.succ) →ₗ[R'] M'' →ₗ[R'] alternating_map R' M'' N'' (fin n) := { to_fun := λ f, f.curry_left, map_add' := curry_left_add, map_smul' := curry_left_smul } /-- Currying with the same element twice gives the zero map. -/ @[simp] lemma curry_left_same {n : ℕ} (f : alternating_map R' M'' N'' (fin n.succ.succ)) (m : M'') : (f.curry_left m).curry_left m = 0 := ext $ λ x, f.map_eq_zero_of_eq _ (by simp) fin.zero_ne_one @[simp] lemma curry_left_comp_alternating_map {n : ℕ} (g : N'' →ₗ[R'] N₂'') (f : alternating_map R' M'' N'' (fin n.succ)) (m : M'') : (g.comp_alternating_map f).curry_left m = g.comp_alternating_map (f.curry_left m) := rfl @[simp] lemma curry_left_comp_linear_map {n : ℕ} (g : M₂'' →ₗ[R'] M'') (f : alternating_map R' M'' N'' (fin n.succ)) (m : M₂'') : (f.comp_linear_map g).curry_left m = (f.curry_left (g m)).comp_linear_map g := ext $ λ v, congr_arg f $ funext $ begin refine fin.cases _ _, { refl }, { simp } end /-- The space of constant maps is equivalent to the space of maps that are alternating with respect to an empty family. -/ @[simps] def const_linear_equiv_of_is_empty [is_empty ι] : N'' ≃ₗ[R'] alternating_map R' M'' N'' ι := { to_fun := alternating_map.const_of_is_empty R' M'', map_add' := λ x y, rfl, map_smul' := λ t x, rfl, inv_fun := λ f, f 0, left_inv := λ _, rfl, right_inv := λ f, ext $ λ x, alternating_map.congr_arg f $ subsingleton.elim _ _ } end alternating_map end currying