/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro, Kevin Buzzard, Yury Kudryashov, Frédéric Dupuis, Heather Macbeth -/ import algebra.big_operators.pi import algebra.module.hom import algebra.module.prod import algebra.module.submodule.lattice import data.dfinsupp.basic import data.finsupp.basic import order.compactly_generated /-! # Linear algebra This file defines the basics of linear algebra. It sets up the "categorical/lattice structure" of modules over a ring, submodules, and linear maps. Many of the relevant definitions, including `module`, `submodule`, and `linear_map`, are found in `src/algebra/module`. ## Main definitions * Many constructors for (semi)linear maps * The kernel `ker` and range `range` of a linear map are submodules of the domain and codomain respectively. * The general linear group is defined to be the group of invertible linear maps from `M` to itself. See `linear_algebra.span` for the span of a set (as a submodule), and `linear_algebra.quotient` for quotients by submodules. ## Main theorems See `linear_algebra.isomorphisms` for Noether's three isomorphism theorems for modules. ## Notations * We continue to use the notations `M →ₛₗ[σ] M₂` and `M →ₗ[R] M₂` for the type of semilinear (resp. linear) maps from `M` to `M₂` over the ring homomorphism `σ` (resp. over the ring `R`). ## Implementation notes We note that, when constructing linear maps, it is convenient to use operations defined on bundled maps (`linear_map.prod`, `linear_map.coprod`, arithmetic operations like `+`) instead of defining a function and proving it is linear. ## TODO * Parts of this file have not yet been generalized to semilinear maps ## Tags linear algebra, vector space, module -/ open function open_locale big_operators pointwise variables {R : Type*} {R₁ : Type*} {R₂ : Type*} {R₃ : Type*} {R₄ : Type*} variables {S : Type*} variables {K : Type*} {K₂ : Type*} variables {M : Type*} {M' : Type*} {M₁ : Type*} {M₂ : Type*} {M₃ : Type*} {M₄ : Type*} variables {N : Type*} {N₂ : Type*} variables {ι : Type*} variables {V : Type*} {V₂ : Type*} namespace finsupp lemma smul_sum {α : Type*} {β : Type*} {R : Type*} {M : Type*} [has_zero β] [monoid R] [add_comm_monoid M] [distrib_mul_action R M] {v : α →₀ β} {c : R} {h : α → β → M} : c • (v.sum h) = v.sum (λa b, c • h a b) := finset.smul_sum @[simp] lemma sum_smul_index_linear_map' {α : Type*} {R : Type*} {M : Type*} {M₂ : Type*} [semiring R] [add_comm_monoid M] [module R M] [add_comm_monoid M₂] [module R M₂] {v : α →₀ M} {c : R} {h : α → M →ₗ[R] M₂} : (c • v).sum (λ a, h a) = c • (v.sum (λ a, h a)) := begin rw [finsupp.sum_smul_index', finsupp.smul_sum], { simp only [map_smul], }, { intro i, exact (h i).map_zero }, end variables (α : Type*) [fintype α] variables (R M) [add_comm_monoid M] [semiring R] [module R M] /-- Given `fintype α`, `linear_equiv_fun_on_fintype R` is the natural `R`-linear equivalence between `α →₀ β` and `α → β`. -/ @[simps apply] noncomputable def linear_equiv_fun_on_fintype : (α →₀ M) ≃ₗ[R] (α → M) := { to_fun := coe_fn, map_add' := λ f g, by { ext, refl }, map_smul' := λ c f, by { ext, refl }, .. equiv_fun_on_fintype } @[simp] lemma linear_equiv_fun_on_fintype_single [decidable_eq α] (x : α) (m : M) : (linear_equiv_fun_on_fintype R M α) (single x m) = pi.single x m := begin ext a, change (equiv_fun_on_fintype (single x m)) a = _, convert _root_.congr_fun (equiv_fun_on_fintype_single x m) a, end @[simp] lemma linear_equiv_fun_on_fintype_symm_single [decidable_eq α] (x : α) (m : M) : (linear_equiv_fun_on_fintype R M α).symm (pi.single x m) = single x m := begin ext a, change (equiv_fun_on_fintype.symm (pi.single x m)) a = _, convert congr_fun (equiv_fun_on_fintype_symm_single x m) a, end @[simp] lemma linear_equiv_fun_on_fintype_symm_coe (f : α →₀ M) : (linear_equiv_fun_on_fintype R M α).symm f = f := by { ext, simp [linear_equiv_fun_on_fintype], } end finsupp /-- decomposing `x : ι → R` as a sum along the canonical basis -/ lemma pi_eq_sum_univ {ι : Type*} [fintype ι] [decidable_eq ι] {R : Type*} [semiring R] (x : ι → R) : x = ∑ i, x i • (λj, if i = j then 1 else 0) := by { ext, simp } /-! ### Properties of linear maps -/ namespace linear_map section add_comm_monoid variables [semiring R] [semiring R₂] [semiring R₃] [semiring R₄] variables [add_comm_monoid M] [add_comm_monoid M₁] [add_comm_monoid M₂] variables [add_comm_monoid M₃] [add_comm_monoid M₄] variables [module R M] [module R M₁] [module R₂ M₂] [module R₃ M₃] [module R₄ M₄] variables {σ₁₂ : R →+* R₂} {σ₂₃ : R₂ →+* R₃} {σ₃₄ : R₃ →+* R₄} variables {σ₁₃ : R →+* R₃} {σ₂₄ : R₂ →+* R₄} {σ₁₄ : R →+* R₄} variables [ring_hom_comp_triple σ₁₂ σ₂₃ σ₁₃] [ring_hom_comp_triple σ₂₃ σ₃₄ σ₂₄] variables [ring_hom_comp_triple σ₁₃ σ₃₄ σ₁₄] [ring_hom_comp_triple σ₁₂ σ₂₄ σ₁₄] variables (f : M →ₛₗ[σ₁₂] M₂) (g : M₂ →ₛₗ[σ₂₃] M₃) include R R₂ theorem comp_assoc (h : M₃ →ₛₗ[σ₃₄] M₄) : ((h.comp g : M₂ →ₛₗ[σ₂₄] M₄).comp f : M →ₛₗ[σ₁₄] M₄) = h.comp (g.comp f : M →ₛₗ[σ₁₃] M₃) := rfl omit R R₂ /-- The restriction of a linear map `f : M → M₂` to a submodule `p ⊆ M` gives a linear map `p → M₂`. -/ def dom_restrict (f : M →ₛₗ[σ₁₂] M₂) (p : submodule R M) : p →ₛₗ[σ₁₂] M₂ := f.comp p.subtype @[simp] lemma dom_restrict_apply (f : M →ₛₗ[σ₁₂] M₂) (p : submodule R M) (x : p) : f.dom_restrict p x = f x := rfl /-- A linear map `f : M₂ → M` whose values lie in a submodule `p ⊆ M` can be restricted to a linear map M₂ → p. -/ def cod_restrict (p : submodule R₂ M₂) (f : M →ₛₗ[σ₁₂] M₂) (h : ∀c, f c ∈ p) : M →ₛₗ[σ₁₂] p := by refine {to_fun := λc, ⟨f c, h c⟩, ..}; intros; apply set_coe.ext; simp @[simp] theorem cod_restrict_apply (p : submodule R₂ M₂) (f : M →ₛₗ[σ₁₂] M₂) {h} (x : M) : (cod_restrict p f h x : M₂) = f x := rfl @[simp] lemma comp_cod_restrict (p : submodule R₃ M₃) (h : ∀b, g b ∈ p) : ((cod_restrict p g h).comp f : M →ₛₗ[σ₁₃] p) = cod_restrict p (g.comp f) (assume b, h _) := ext $ assume b, rfl @[simp] lemma subtype_comp_cod_restrict (p : submodule R₂ M₂) (h : ∀b, f b ∈ p) : p.subtype.comp (cod_restrict p f h) = f := ext $ assume b, rfl /-- Restrict domain and codomain of an endomorphism. -/ def restrict (f : M →ₗ[R] M) {p : submodule R M} (hf : ∀ x ∈ p, f x ∈ p) : p →ₗ[R] p := (f.dom_restrict p).cod_restrict p $ set_like.forall.2 hf lemma restrict_apply {f : M →ₗ[R] M} {p : submodule R M} (hf : ∀ x ∈ p, f x ∈ p) (x : p) : f.restrict hf x = ⟨f x, hf x.1 x.2⟩ := rfl lemma subtype_comp_restrict {f : M →ₗ[R] M} {p : submodule R M} (hf : ∀ x ∈ p, f x ∈ p) : p.subtype.comp (f.restrict hf) = f.dom_restrict p := rfl lemma restrict_eq_cod_restrict_dom_restrict {f : M →ₗ[R] M} {p : submodule R M} (hf : ∀ x ∈ p, f x ∈ p) : f.restrict hf = (f.dom_restrict p).cod_restrict p (λ x, hf x.1 x.2) := rfl lemma restrict_eq_dom_restrict_cod_restrict {f : M →ₗ[R] M} {p : submodule R M} (hf : ∀ x, f x ∈ p) : f.restrict (λ x _, hf x) = (f.cod_restrict p hf).dom_restrict p := rfl instance unique_of_left [subsingleton M] : unique (M →ₛₗ[σ₁₂] M₂) := { uniq := λ f, ext $ λ x, by rw [subsingleton.elim x 0, map_zero, map_zero], .. linear_map.inhabited } instance unique_of_right [subsingleton M₂] : unique (M →ₛₗ[σ₁₂] M₂) := coe_injective.unique /-- Evaluation of a `σ₁₂`-linear map at a fixed `a`, as an `add_monoid_hom`. -/ def eval_add_monoid_hom (a : M) : (M →ₛₗ[σ₁₂] M₂) →+ M₂ := { to_fun := λ f, f a, map_add' := λ f g, linear_map.add_apply f g a, map_zero' := rfl } /-- `linear_map.to_add_monoid_hom` promoted to an `add_monoid_hom` -/ def to_add_monoid_hom' : (M →ₛₗ[σ₁₂] M₂) →+ (M →+ M₂) := { to_fun := to_add_monoid_hom, map_zero' := by ext; refl, map_add' := by intros; ext; refl } lemma sum_apply (t : finset ι) (f : ι → M →ₛₗ[σ₁₂] M₂) (b : M) : (∑ d in t, f d) b = ∑ d in t, f d b := add_monoid_hom.map_sum ((add_monoid_hom.eval b).comp to_add_monoid_hom') f _ section smul_right variables [semiring S] [module R S] [module S M] [is_scalar_tower R S M] /-- When `f` is an `R`-linear map taking values in `S`, then `λb, f b • x` is an `R`-linear map. -/ def smul_right (f : M₁ →ₗ[R] S) (x : M) : M₁ →ₗ[R] M := { to_fun := λb, f b • x, map_add' := λ x y, by rw [f.map_add, add_smul], map_smul' := λ b y, by dsimp; rw [map_smul, smul_assoc] } @[simp] theorem coe_smul_right (f : M₁ →ₗ[R] S) (x : M) : (smul_right f x : M₁ → M) = λ c, f c • x := rfl theorem smul_right_apply (f : M₁ →ₗ[R] S) (x : M) (c : M₁) : smul_right f x c = f c • x := rfl end smul_right instance [nontrivial M] : nontrivial (module.End R M) := begin obtain ⟨m, ne⟩ := (nontrivial_iff_exists_ne (0 : M)).mp infer_instance, exact nontrivial_of_ne 1 0 (λ p, ne (linear_map.congr_fun p m)), end @[simp, norm_cast] lemma coe_fn_sum {ι : Type*} (t : finset ι) (f : ι → M →ₛₗ[σ₁₂] M₂) : ⇑(∑ i in t, f i) = ∑ i in t, (f i : M → M₂) := add_monoid_hom.map_sum ⟨@to_fun R R₂ _ _ σ₁₂ M M₂ _ _ _ _, rfl, λ x y, rfl⟩ _ _ @[simp] lemma pow_apply (f : M →ₗ[R] M) (n : ℕ) (m : M) : (f^n) m = (f^[n] m) := begin induction n with n ih, { refl, }, { simp only [function.comp_app, function.iterate_succ, linear_map.mul_apply, pow_succ, ih], exact (function.commute.iterate_self _ _ m).symm, }, end lemma pow_map_zero_of_le {f : module.End R M} {m : M} {k l : ℕ} (hk : k ≤ l) (hm : (f^k) m = 0) : (f^l) m = 0 := by rw [← tsub_add_cancel_of_le hk, pow_add, mul_apply, hm, map_zero] lemma commute_pow_left_of_commute {f : M →ₛₗ[σ₁₂] M₂} {g : module.End R M} {g₂ : module.End R₂ M₂} (h : g₂.comp f = f.comp g) (k : ℕ) : (g₂^k).comp f = f.comp (g^k) := begin induction k with k ih, { simpa only [pow_zero], }, { rw [pow_succ, pow_succ, linear_map.mul_eq_comp, linear_map.comp_assoc, ih, ← linear_map.comp_assoc, h, linear_map.comp_assoc, linear_map.mul_eq_comp], }, end lemma submodule_pow_eq_zero_of_pow_eq_zero {N : submodule R M} {g : module.End R N} {G : module.End R M} (h : G.comp N.subtype = N.subtype.comp g) {k : ℕ} (hG : G^k = 0) : g^k = 0 := begin ext m, have hg : N.subtype.comp (g^k) m = 0, { rw [← commute_pow_left_of_commute h, hG, zero_comp, zero_apply], }, simp only [submodule.subtype_apply, comp_app, submodule.coe_eq_zero, coe_comp] at hg, rw [hg, linear_map.zero_apply], end lemma coe_pow (f : M →ₗ[R] M) (n : ℕ) : ⇑(f^n) = (f^[n]) := by { ext m, apply pow_apply, } @[simp] lemma id_pow (n : ℕ) : (id : M →ₗ[R] M)^n = id := one_pow n section variables {f' : M →ₗ[R] M} lemma iterate_succ (n : ℕ) : (f' ^ (n + 1)) = comp (f' ^ n) f' := by rw [pow_succ', mul_eq_comp] lemma iterate_surjective (h : surjective f') : ∀ n : ℕ, surjective ⇑(f' ^ n) | 0 := surjective_id | (n + 1) := by { rw [iterate_succ], exact surjective.comp (iterate_surjective n) h, } lemma iterate_injective (h : injective f') : ∀ n : ℕ, injective ⇑(f' ^ n) | 0 := injective_id | (n + 1) := by { rw [iterate_succ], exact injective.comp (iterate_injective n) h, } lemma iterate_bijective (h : bijective f') : ∀ n : ℕ, bijective ⇑(f' ^ n) | 0 := bijective_id | (n + 1) := by { rw [iterate_succ], exact bijective.comp (iterate_bijective n) h, } lemma injective_of_iterate_injective {n : ℕ} (hn : n ≠ 0) (h : injective ⇑(f' ^ n)) : injective f' := begin rw [← nat.succ_pred_eq_of_pos (pos_iff_ne_zero.mpr hn), iterate_succ, coe_comp] at h, exact injective.of_comp h, end lemma surjective_of_iterate_surjective {n : ℕ} (hn : n ≠ 0) (h : surjective ⇑(f' ^ n)) : surjective f' := begin rw [← nat.succ_pred_eq_of_pos (pos_iff_ne_zero.mpr hn), nat.succ_eq_add_one, add_comm, pow_add] at h, exact surjective.of_comp h, end lemma pow_apply_mem_of_forall_mem {p : submodule R M} (n : ℕ) (h : ∀ x ∈ p, f' x ∈ p) (x : M) (hx : x ∈ p) : (f'^n) x ∈ p := begin induction n with n ih generalizing x, { simpa, }, simpa only [iterate_succ, coe_comp, function.comp_app, restrict_apply] using ih _ (h _ hx), end lemma pow_restrict {p : submodule R M} (n : ℕ) (h : ∀ x ∈ p, f' x ∈ p) (h' := pow_apply_mem_of_forall_mem n h) : (f'.restrict h)^n = (f'^n).restrict h' := begin induction n with n ih; ext, { simp [restrict_apply], }, { simp [restrict_apply, linear_map.iterate_succ, -linear_map.pow_apply, ih], }, end end /-- A linear map `f` applied to `x : ι → R` can be computed using the image under `f` of elements of the canonical basis. -/ lemma pi_apply_eq_sum_univ [fintype ι] [decidable_eq ι] (f : (ι → R) →ₗ[R] M) (x : ι → R) : f x = ∑ i, x i • (f (λj, if i = j then 1 else 0)) := begin conv_lhs { rw [pi_eq_sum_univ x, f.map_sum] }, apply finset.sum_congr rfl (λl hl, _), rw map_smul end end add_comm_monoid section module variables [semiring R] [semiring S] [add_comm_monoid M] [add_comm_monoid M₂] [add_comm_monoid M₃] [module R M] [module R M₂] [module R M₃] [module S M₂] [module S M₃] [smul_comm_class R S M₂] [smul_comm_class R S M₃] (f : M →ₗ[R] M₂) variable (S) /-- Applying a linear map at `v : M`, seen as `S`-linear map from `M →ₗ[R] M₂` to `M₂`. See `linear_map.applyₗ` for a version where `S = R`. -/ @[simps] def applyₗ' : M →+ (M →ₗ[R] M₂) →ₗ[S] M₂ := { to_fun := λ v, { to_fun := λ f, f v, map_add' := λ f g, f.add_apply g v, map_smul' := λ x f, f.smul_apply x v }, map_zero' := linear_map.ext $ λ f, f.map_zero, map_add' := λ x y, linear_map.ext $ λ f, f.map_add _ _ } section variables (R M) /-- The equivalence between R-linear maps from `R` to `M`, and points of `M` itself. This says that the forgetful functor from `R`-modules to types is representable, by `R`. This as an `S`-linear equivalence, under the assumption that `S` acts on `M` commuting with `R`. When `R` is commutative, we can take this to be the usual action with `S = R`. Otherwise, `S = ℕ` shows that the equivalence is additive. See note [bundled maps over different rings]. -/ @[simps] def ring_lmap_equiv_self [module S M] [smul_comm_class R S M] : (R →ₗ[R] M) ≃ₗ[S] M := { to_fun := λ f, f 1, inv_fun := smul_right (1 : R →ₗ[R] R), left_inv := λ f, by { ext, simp }, right_inv := λ x, by simp, .. applyₗ' S (1 : R) } end end module section comm_semiring variables [comm_semiring R] [add_comm_monoid M] [add_comm_monoid M₂] [add_comm_monoid M₃] variables [module R M] [module R M₂] [module R M₃] variables (f g : M →ₗ[R] M₂) include R /-- Composition by `f : M₂ → M₃` is a linear map from the space of linear maps `M → M₂` to the space of linear maps `M₂ → M₃`. -/ def comp_right (f : M₂ →ₗ[R] M₃) : (M →ₗ[R] M₂) →ₗ[R] (M →ₗ[R] M₃) := { to_fun := f.comp, map_add' := λ _ _, linear_map.ext $ λ _, map_add f _ _, map_smul' := λ _ _, linear_map.ext $ λ _, map_smul f _ _ } @[simp] lemma comp_right_apply (f : M₂ →ₗ[R] M₃) (g : M →ₗ[R] M₂) : comp_right f g = f.comp g := rfl /-- Applying a linear map at `v : M`, seen as a linear map from `M →ₗ[R] M₂` to `M₂`. See also `linear_map.applyₗ'` for a version that works with two different semirings. This is the `linear_map` version of `add_monoid_hom.eval`. -/ @[simps] def applyₗ : M →ₗ[R] (M →ₗ[R] M₂) →ₗ[R] M₂ := { to_fun := λ v, { to_fun := λ f, f v, ..applyₗ' R v }, map_smul' := λ x y, linear_map.ext $ λ f, map_smul f _ _, ..applyₗ' R } /-- Alternative version of `dom_restrict` as a linear map. -/ def dom_restrict' (p : submodule R M) : (M →ₗ[R] M₂) →ₗ[R] (p →ₗ[R] M₂) := { to_fun := λ φ, φ.dom_restrict p, map_add' := by simp [linear_map.ext_iff], map_smul' := by simp [linear_map.ext_iff] } @[simp] lemma dom_restrict'_apply (f : M →ₗ[R] M₂) (p : submodule R M) (x : p) : dom_restrict' p f x = f x := rfl /-- The family of linear maps `M₂ → M` parameterised by `f ∈ M₂ → R`, `x ∈ M`, is linear in `f`, `x`. -/ def smul_rightₗ : (M₂ →ₗ[R] R) →ₗ[R] M →ₗ[R] M₂ →ₗ[R] M := { to_fun := λ f, { to_fun := linear_map.smul_right f, map_add' := λ m m', by { ext, apply smul_add, }, map_smul' := λ c m, by { ext, apply smul_comm, } }, map_add' := λ f f', by { ext, apply add_smul, }, map_smul' := λ c f, by { ext, apply mul_smul, } } @[simp] lemma smul_rightₗ_apply (f : M₂ →ₗ[R] R) (x : M) (c : M₂) : (smul_rightₗ : (M₂ →ₗ[R] R) →ₗ[R] M →ₗ[R] M₂ →ₗ[R] M) f x c = (f c) • x := rfl end comm_semiring end linear_map /-- The `R`-linear equivalence between additive morphisms `A →+ B` and `ℕ`-linear morphisms `A →ₗ[ℕ] B`. -/ @[simps] def add_monoid_hom_lequiv_nat {A B : Type*} (R : Type*) [semiring R] [add_comm_monoid A] [add_comm_monoid B] [module R B] : (A →+ B) ≃ₗ[R] (A →ₗ[ℕ] B) := { to_fun := add_monoid_hom.to_nat_linear_map, inv_fun := linear_map.to_add_monoid_hom, map_add' := by { intros, ext, refl }, map_smul' := by { intros, ext, refl }, left_inv := by { intros f, ext, refl }, right_inv := by { intros f, ext, refl } } /-- The `R`-linear equivalence between additive morphisms `A →+ B` and `ℤ`-linear morphisms `A →ₗ[ℤ] B`. -/ @[simps] def add_monoid_hom_lequiv_int {A B : Type*} (R : Type*) [semiring R] [add_comm_group A] [add_comm_group B] [module R B] : (A →+ B) ≃ₗ[R] (A →ₗ[ℤ] B) := { to_fun := add_monoid_hom.to_int_linear_map, inv_fun := linear_map.to_add_monoid_hom, map_add' := by { intros, ext, refl }, map_smul' := by { intros, ext, refl }, left_inv := by { intros f, ext, refl }, right_inv := by { intros f, ext, refl } } /-! ### Properties of submodules -/ namespace submodule section add_comm_monoid variables [semiring R] [semiring R₂] [semiring R₃] variables [add_comm_monoid M] [add_comm_monoid M₂] [add_comm_monoid M₃] [add_comm_monoid M'] variables [module R M] [module R M'] [module R₂ M₂] [module R₃ M₃] variables {σ₁₂ : R →+* R₂} {σ₂₃ : R₂ →+* R₃} {σ₁₃ : R →+* R₃} variables {σ₂₁ : R₂ →+* R} variables [ring_hom_inv_pair σ₁₂ σ₂₁] [ring_hom_inv_pair σ₂₁ σ₁₂] variables [ring_hom_comp_triple σ₁₂ σ₂₃ σ₁₃] variables (p p' : submodule R M) (q q' : submodule R₂ M₂) variables (q₁ q₁' : submodule R M') variables {r : R} {x y : M} open set variables {p p'} /-- If two submodules `p` and `p'` satisfy `p ⊆ p'`, then `of_le p p'` is the linear map version of this inclusion. -/ def of_le (h : p ≤ p') : p →ₗ[R] p' := p.subtype.cod_restrict p' $ λ ⟨x, hx⟩, h hx @[simp] theorem coe_of_le (h : p ≤ p') (x : p) : (of_le h x : M) = x := rfl theorem of_le_apply (h : p ≤ p') (x : p) : of_le h x = ⟨x, h x.2⟩ := rfl theorem of_le_injective (h : p ≤ p') : function.injective (of_le h) := λ x y h, subtype.val_injective (subtype.mk.inj h) variables (p p') lemma subtype_comp_of_le (p q : submodule R M) (h : p ≤ q) : q.subtype.comp (of_le h) = p.subtype := by { ext ⟨b, hb⟩, refl } variables (R) @[simp] lemma subsingleton_iff : subsingleton (submodule R M) ↔ subsingleton M := have h : subsingleton (submodule R M) ↔ subsingleton (add_submonoid M), { rw [←subsingleton_iff_bot_eq_top, ←subsingleton_iff_bot_eq_top], convert to_add_submonoid_eq.symm; refl, }, h.trans add_submonoid.subsingleton_iff @[simp] lemma nontrivial_iff : nontrivial (submodule R M) ↔ nontrivial M := not_iff_not.mp ( (not_nontrivial_iff_subsingleton.trans $ subsingleton_iff R).trans not_nontrivial_iff_subsingleton.symm) variables {R} instance [subsingleton M] : unique (submodule R M) := ⟨⟨⊥⟩, λ a, @subsingleton.elim _ ((subsingleton_iff R).mpr ‹_›) a _⟩ instance unique' [subsingleton R] : unique (submodule R M) := by haveI := module.subsingleton R M; apply_instance instance [nontrivial M] : nontrivial (submodule R M) := (nontrivial_iff R).mpr ‹_› theorem mem_right_iff_eq_zero_of_disjoint {p p' : submodule R M} (h : disjoint p p') {x : p} : (x:M) ∈ p' ↔ x = 0 := ⟨λ hx, coe_eq_zero.1 $ disjoint_def.1 h x x.2 hx, λ h, h.symm ▸ p'.zero_mem⟩ theorem mem_left_iff_eq_zero_of_disjoint {p p' : submodule R M} (h : disjoint p p') {x : p'} : (x:M) ∈ p ↔ x = 0 := ⟨λ hx, coe_eq_zero.1 $ disjoint_def.1 h x hx x.2, λ h, h.symm ▸ p.zero_mem⟩ section variables [ring_hom_surjective σ₁₂] /-- The pushforward of a submodule `p ⊆ M` by `f : M → M₂` -/ def map (f : M →ₛₗ[σ₁₂] M₂) (p : submodule R M) : submodule R₂ M₂ := { carrier := f '' p, smul_mem' := begin rintro c x ⟨y, hy, rfl⟩, obtain ⟨a, rfl⟩ := σ₁₂.is_surjective c, exact ⟨_, p.smul_mem a hy, map_smulₛₗ f _ _⟩, end, .. p.to_add_submonoid.map f.to_add_monoid_hom } @[simp] lemma map_coe (f : M →ₛₗ[σ₁₂] M₂) (p : submodule R M) : (map f p : set M₂) = f '' p := rfl lemma map_to_add_submonoid (f : M →ₛₗ[σ₁₂] M₂) (p : submodule R M) : (p.map f).to_add_submonoid = p.to_add_submonoid.map (f : M →+ M₂) := set_like.coe_injective rfl lemma map_to_add_submonoid' (f : M →ₛₗ[σ₁₂] M₂) (p : submodule R M) : (p.map f).to_add_submonoid = p.to_add_submonoid.map f := set_like.coe_injective rfl @[simp] lemma mem_map {f : M →ₛₗ[σ₁₂] M₂} {p : submodule R M} {x : M₂} : x ∈ map f p ↔ ∃ y, y ∈ p ∧ f y = x := iff.rfl theorem mem_map_of_mem {f : M →ₛₗ[σ₁₂] M₂} {p : submodule R M} {r} (h : r ∈ p) : f r ∈ map f p := set.mem_image_of_mem _ h lemma apply_coe_mem_map (f : M →ₛₗ[σ₁₂] M₂) {p : submodule R M} (r : p) : f r ∈ map f p := mem_map_of_mem r.prop @[simp] lemma map_id : map (linear_map.id : M →ₗ[R] M) p = p := submodule.ext $ λ a, by simp lemma map_comp [ring_hom_surjective σ₂₃] [ring_hom_surjective σ₁₃] (f : M →ₛₗ[σ₁₂] M₂) (g : M₂ →ₛₗ[σ₂₃] M₃) (p : submodule R M) : map (g.comp f : M →ₛₗ[σ₁₃] M₃) p = map g (map f p) := set_like.coe_injective $ by simp [map_coe]; rw ← image_comp lemma map_mono {f : M →ₛₗ[σ₁₂] M₂} {p p' : submodule R M} : p ≤ p' → map f p ≤ map f p' := image_subset _ @[simp] lemma map_zero : map (0 : M →ₛₗ[σ₁₂] M₂) p = ⊥ := have ∃ (x : M), x ∈ p := ⟨0, p.zero_mem⟩, ext $ by simp [this, eq_comm] lemma map_add_le (f g : M →ₛₗ[σ₁₂] M₂) : map (f + g) p ≤ map f p ⊔ map g p := begin rintros x ⟨m, hm, rfl⟩, exact add_mem_sup (mem_map_of_mem hm) (mem_map_of_mem hm), end lemma range_map_nonempty (N : submodule R M) : (set.range (λ ϕ, submodule.map ϕ N : (M →ₛₗ[σ₁₂] M₂) → submodule R₂ M₂)).nonempty := ⟨_, set.mem_range.mpr ⟨0, rfl⟩⟩ end include σ₂₁ /-- The pushforward of a submodule by an injective linear map is linearly equivalent to the original submodule. See also `linear_equiv.submodule_map` for a computable version when `f` has an explicit inverse. -/ noncomputable def equiv_map_of_injective (f : M →ₛₗ[σ₁₂] M₂) (i : injective f) (p : submodule R M) : p ≃ₛₗ[σ₁₂] p.map f := { map_add' := by { intros, simp, refl }, map_smul' := by { intros, simp, refl }, ..(equiv.set.image f p i) } @[simp] lemma coe_equiv_map_of_injective_apply (f : M →ₛₗ[σ₁₂] M₂) (i : injective f) (p : submodule R M) (x : p) : (equiv_map_of_injective f i p x : M₂) = f x := rfl omit σ₂₁ /-- The pullback of a submodule `p ⊆ M₂` along `f : M → M₂` -/ def comap (f : M →ₛₗ[σ₁₂] M₂) (p : submodule R₂ M₂) : submodule R M := { carrier := f ⁻¹' p, smul_mem' := λ a x h, by simp [p.smul_mem _ h], .. p.to_add_submonoid.comap f.to_add_monoid_hom } @[simp] lemma comap_coe (f : M →ₛₗ[σ₁₂] M₂) (p : submodule R₂ M₂) : (comap f p : set M) = f ⁻¹' p := rfl @[simp] lemma mem_comap {f : M →ₛₗ[σ₁₂] M₂} {p : submodule R₂ M₂} : x ∈ comap f p ↔ f x ∈ p := iff.rfl @[simp] lemma comap_id : comap linear_map.id p = p := set_like.coe_injective rfl lemma comap_comp (f : M →ₛₗ[σ₁₂] M₂) (g : M₂ →ₛₗ[σ₂₃] M₃) (p : submodule R₃ M₃) : comap (g.comp f : M →ₛₗ[σ₁₃] M₃) p = comap f (comap g p) := rfl lemma comap_mono {f : M →ₛₗ[σ₁₂] M₂} {q q' : submodule R₂ M₂} : q ≤ q' → comap f q ≤ comap f q' := preimage_mono lemma le_comap_pow_of_le_comap (p : submodule R M) {f : M →ₗ[R] M} (h : p ≤ p.comap f) (k : ℕ) : p ≤ p.comap (f^k) := begin induction k with k ih, { simp [linear_map.one_eq_id], }, { simp [linear_map.iterate_succ, comap_comp, h.trans (comap_mono ih)], }, end section variables [ring_hom_surjective σ₁₂] lemma map_le_iff_le_comap {f : M →ₛₗ[σ₁₂] M₂} {p : submodule R M} {q : submodule R₂ M₂} : map f p ≤ q ↔ p ≤ comap f q := image_subset_iff lemma gc_map_comap (f : M →ₛₗ[σ₁₂] M₂) : galois_connection (map f) (comap f) | p q := map_le_iff_le_comap @[simp] lemma map_bot (f : M →ₛₗ[σ₁₂] M₂) : map f ⊥ = ⊥ := (gc_map_comap f).l_bot @[simp] lemma map_sup (f : M →ₛₗ[σ₁₂] M₂) : map f (p ⊔ p') = map f p ⊔ map f p' := (gc_map_comap f).l_sup @[simp] lemma map_supr {ι : Sort*} (f : M →ₛₗ[σ₁₂] M₂) (p : ι → submodule R M) : map f (⨆i, p i) = (⨆i, map f (p i)) := (gc_map_comap f).l_supr end @[simp] lemma comap_top (f : M →ₛₗ[σ₁₂] M₂) : comap f ⊤ = ⊤ := rfl @[simp] lemma comap_inf (f : M →ₛₗ[σ₁₂] M₂) : comap f (q ⊓ q') = comap f q ⊓ comap f q' := rfl @[simp] lemma comap_infi [ring_hom_surjective σ₁₂] {ι : Sort*} (f : M →ₛₗ[σ₁₂] M₂) (p : ι → submodule R₂ M₂) : comap f (⨅i, p i) = (⨅i, comap f (p i)) := (gc_map_comap f).u_infi @[simp] lemma comap_zero : comap (0 : M →ₛₗ[σ₁₂] M₂) q = ⊤ := ext $ by simp lemma map_comap_le [ring_hom_surjective σ₁₂] (f : M →ₛₗ[σ₁₂] M₂) (q : submodule R₂ M₂) : map f (comap f q) ≤ q := (gc_map_comap f).l_u_le _ lemma le_comap_map [ring_hom_surjective σ₁₂] (f : M →ₛₗ[σ₁₂] M₂) (p : submodule R M) : p ≤ comap f (map f p) := (gc_map_comap f).le_u_l _ section galois_insertion variables {f : M →ₛₗ[σ₁₂] M₂} (hf : surjective f) variables [ring_hom_surjective σ₁₂] include hf /-- `map f` and `comap f` form a `galois_insertion` when `f` is surjective. -/ def gi_map_comap : galois_insertion (map f) (comap f) := (gc_map_comap f).to_galois_insertion (λ S x hx, begin rcases hf x with ⟨y, rfl⟩, simp only [mem_map, mem_comap], exact ⟨y, hx, rfl⟩ end) lemma map_comap_eq_of_surjective (p : submodule R₂ M₂) : (p.comap f).map f = p := (gi_map_comap hf).l_u_eq _ lemma map_surjective_of_surjective : function.surjective (map f) := (gi_map_comap hf).l_surjective lemma comap_injective_of_surjective : function.injective (comap f) := (gi_map_comap hf).u_injective lemma map_sup_comap_of_surjective (p q : submodule R₂ M₂) : (p.comap f ⊔ q.comap f).map f = p ⊔ q := (gi_map_comap hf).l_sup_u _ _ lemma map_supr_comap_of_sujective {ι : Sort*} (S : ι → submodule R₂ M₂) : (⨆ i, (S i).comap f).map f = supr S := (gi_map_comap hf).l_supr_u _ lemma map_inf_comap_of_surjective (p q : submodule R₂ M₂) : (p.comap f ⊓ q.comap f).map f = p ⊓ q := (gi_map_comap hf).l_inf_u _ _ lemma map_infi_comap_of_surjective {ι : Sort*} (S : ι → submodule R₂ M₂) : (⨅ i, (S i).comap f).map f = infi S := (gi_map_comap hf).l_infi_u _ lemma comap_le_comap_iff_of_surjective (p q : submodule R₂ M₂) : p.comap f ≤ q.comap f ↔ p ≤ q := (gi_map_comap hf).u_le_u_iff lemma comap_strict_mono_of_surjective : strict_mono (comap f) := (gi_map_comap hf).strict_mono_u end galois_insertion section galois_coinsertion variables [ring_hom_surjective σ₁₂] {f : M →ₛₗ[σ₁₂] M₂} (hf : injective f) include hf /-- `map f` and `comap f` form a `galois_coinsertion` when `f` is injective. -/ def gci_map_comap : galois_coinsertion (map f) (comap f) := (gc_map_comap f).to_galois_coinsertion (λ S x, by simp [mem_comap, mem_map, hf.eq_iff]) lemma comap_map_eq_of_injective (p : submodule R M) : (p.map f).comap f = p := (gci_map_comap hf).u_l_eq _ lemma comap_surjective_of_injective : function.surjective (comap f) := (gci_map_comap hf).u_surjective lemma map_injective_of_injective : function.injective (map f) := (gci_map_comap hf).l_injective lemma comap_inf_map_of_injective (p q : submodule R M) : (p.map f ⊓ q.map f).comap f = p ⊓ q := (gci_map_comap hf).u_inf_l _ _ lemma comap_infi_map_of_injective {ι : Sort*} (S : ι → submodule R M) : (⨅ i, (S i).map f).comap f = infi S := (gci_map_comap hf).u_infi_l _ lemma comap_sup_map_of_injective (p q : submodule R M) : (p.map f ⊔ q.map f).comap f = p ⊔ q := (gci_map_comap hf).u_sup_l _ _ lemma comap_supr_map_of_injective {ι : Sort*} (S : ι → submodule R M) : (⨆ i, (S i).map f).comap f = supr S := (gci_map_comap hf).u_supr_l _ lemma map_le_map_iff_of_injective (p q : submodule R M) : p.map f ≤ q.map f ↔ p ≤ q := (gci_map_comap hf).l_le_l_iff lemma map_strict_mono_of_injective : strict_mono (map f) := (gci_map_comap hf).strict_mono_l end galois_coinsertion --TODO(Mario): is there a way to prove this from order properties? lemma map_inf_eq_map_inf_comap [ring_hom_surjective σ₁₂] {f : M →ₛₗ[σ₁₂] M₂} {p : submodule R M} {p' : submodule R₂ M₂} : map f p ⊓ p' = map f (p ⊓ comap f p') := le_antisymm (by rintro _ ⟨⟨x, h₁, rfl⟩, h₂⟩; exact ⟨_, ⟨h₁, h₂⟩, rfl⟩) (le_inf (map_mono inf_le_left) (map_le_iff_le_comap.2 inf_le_right)) lemma map_comap_subtype : map p.subtype (comap p.subtype p') = p ⊓ p' := ext $ λ x, ⟨by rintro ⟨⟨_, h₁⟩, h₂, rfl⟩; exact ⟨h₁, h₂⟩, λ ⟨h₁, h₂⟩, ⟨⟨_, h₁⟩, h₂, rfl⟩⟩ lemma eq_zero_of_bot_submodule : ∀(b : (⊥ : submodule R M)), b = 0 | ⟨b', hb⟩ := subtype.eq $ show b' = 0, from (mem_bot R).1 hb /-- The infimum of a family of invariant submodule of an endomorphism is also an invariant submodule. -/ lemma _root_.linear_map.infi_invariant {σ : R →+* R} [ring_hom_surjective σ] {ι : Sort*} (f : M →ₛₗ[σ] M) {p : ι → submodule R M} (hf : ∀ i, ∀ v ∈ (p i), f v ∈ p i) : ∀ v ∈ infi p, f v ∈ infi p := begin have : ∀ i, (p i).map f ≤ p i, { rintros i - ⟨v, hv, rfl⟩, exact hf i v hv }, suffices : (infi p).map f ≤ infi p, { exact λ v hv, this ⟨v, hv, rfl⟩, }, exact le_infi (λ i, (submodule.map_mono (infi_le p i)).trans (this i)), end end add_comm_monoid section add_comm_group variables [ring R] [add_comm_group M] [module R M] (p : submodule R M) variables [add_comm_group M₂] [module R M₂] @[simp] lemma neg_coe : -(p : set M) = p := set.ext $ λ x, p.neg_mem_iff @[simp] protected lemma map_neg (f : M →ₗ[R] M₂) : map (-f) p = map f p := ext $ λ y, ⟨λ ⟨x, hx, hy⟩, hy ▸ ⟨-x, show -x ∈ p, from neg_mem hx, map_neg f x⟩, λ ⟨x, hx, hy⟩, hy ▸ ⟨-x, show -x ∈ p, from neg_mem hx, (map_neg (-f) _).trans (neg_neg (f x))⟩⟩ end add_comm_group end submodule namespace submodule variables [field K] variables [add_comm_group V] [module K V] variables [add_comm_group V₂] [module K V₂] lemma comap_smul (f : V →ₗ[K] V₂) (p : submodule K V₂) (a : K) (h : a ≠ 0) : p.comap (a • f) = p.comap f := by ext b; simp only [submodule.mem_comap, p.smul_mem_iff h, linear_map.smul_apply] lemma map_smul (f : V →ₗ[K] V₂) (p : submodule K V) (a : K) (h : a ≠ 0) : p.map (a • f) = p.map f := le_antisymm begin rw [map_le_iff_le_comap, comap_smul f _ a h, ← map_le_iff_le_comap], exact le_rfl end begin rw [map_le_iff_le_comap, ← comap_smul f _ a h, ← map_le_iff_le_comap], exact le_rfl end lemma comap_smul' (f : V →ₗ[K] V₂) (p : submodule K V₂) (a : K) : p.comap (a • f) = (⨅ h : a ≠ 0, p.comap f) := by classical; by_cases a = 0; simp [h, comap_smul] lemma map_smul' (f : V →ₗ[K] V₂) (p : submodule K V) (a : K) : p.map (a • f) = (⨆ h : a ≠ 0, p.map f) := by classical; by_cases a = 0; simp [h, map_smul] end submodule /-! ### Properties of linear maps -/ namespace linear_map section add_comm_monoid variables [semiring R] [semiring R₂] [semiring R₃] variables [add_comm_monoid M] [add_comm_monoid M₂] [add_comm_monoid M₃] variables {σ₁₂ : R →+* R₂} {σ₂₃ : R₂ →+* R₃} {σ₁₃ : R →+* R₃} variables [ring_hom_comp_triple σ₁₂ σ₂₃ σ₁₃] variables [module R M] [module R₂ M₂] [module R₃ M₃] include R open submodule section finsupp variables {γ : Type*} [has_zero γ] @[simp] lemma map_finsupp_sum (f : M →ₛₗ[σ₁₂] M₂) {t : ι →₀ γ} {g : ι → γ → M} : f (t.sum g) = t.sum (λ i d, f (g i d)) := f.map_sum lemma coe_finsupp_sum (t : ι →₀ γ) (g : ι → γ → M →ₛₗ[σ₁₂] M₂) : ⇑(t.sum g) = t.sum (λ i d, g i d) := coe_fn_sum _ _ @[simp] lemma finsupp_sum_apply (t : ι →₀ γ) (g : ι → γ → M →ₛₗ[σ₁₂] M₂) (b : M) : (t.sum g) b = t.sum (λ i d, g i d b) := sum_apply _ _ _ end finsupp section dfinsupp open dfinsupp variables {γ : ι → Type*} [decidable_eq ι] section sum variables [Π i, has_zero (γ i)] [Π i (x : γ i), decidable (x ≠ 0)] @[simp] lemma map_dfinsupp_sum (f : M →ₛₗ[σ₁₂] M₂) {t : Π₀ i, γ i} {g : Π i, γ i → M} : f (t.sum g) = t.sum (λ i d, f (g i d)) := f.map_sum lemma coe_dfinsupp_sum (t : Π₀ i, γ i) (g : Π i, γ i → M →ₛₗ[σ₁₂] M₂) : ⇑(t.sum g) = t.sum (λ i d, g i d) := coe_fn_sum _ _ @[simp] lemma dfinsupp_sum_apply (t : Π₀ i, γ i) (g : Π i, γ i → M →ₛₗ[σ₁₂] M₂) (b : M) : (t.sum g) b = t.sum (λ i d, g i d b) := sum_apply _ _ _ end sum section sum_add_hom variables [Π i, add_zero_class (γ i)] @[simp] lemma map_dfinsupp_sum_add_hom (f : M →ₛₗ[σ₁₂] M₂) {t : Π₀ i, γ i} {g : Π i, γ i →+ M} : f (sum_add_hom g t) = sum_add_hom (λ i, f.to_add_monoid_hom.comp (g i)) t := f.to_add_monoid_hom.map_dfinsupp_sum_add_hom _ _ end sum_add_hom end dfinsupp variables {σ₂₁ : R₂ →+* R} {τ₁₂ : R →+* R₂} {τ₂₃ : R₂ →+* R₃} {τ₁₃ : R →+* R₃} variables [ring_hom_comp_triple τ₁₂ τ₂₃ τ₁₃] theorem map_cod_restrict [ring_hom_surjective σ₂₁] (p : submodule R M) (f : M₂ →ₛₗ[σ₂₁] M) (h p') : submodule.map (cod_restrict p f h) p' = comap p.subtype (p'.map f) := submodule.ext $ λ ⟨x, hx⟩, by simp [subtype.ext_iff_val] theorem comap_cod_restrict (p : submodule R M) (f : M₂ →ₛₗ[σ₂₁] M) (hf p') : submodule.comap (cod_restrict p f hf) p' = submodule.comap f (map p.subtype p') := submodule.ext $ λ x, ⟨λ h, ⟨⟨_, hf x⟩, h, rfl⟩, by rintro ⟨⟨_, _⟩, h, ⟨⟩⟩; exact h⟩ section /-- The range of a linear map `f : M → M₂` is a submodule of `M₂`. See Note [range copy pattern]. -/ def range [ring_hom_surjective τ₁₂] (f : M →ₛₗ[τ₁₂] M₂) : submodule R₂ M₂ := (map f ⊤).copy (set.range f) set.image_univ.symm theorem range_coe [ring_hom_surjective τ₁₂] (f : M →ₛₗ[τ₁₂] M₂) : (range f : set M₂) = set.range f := rfl lemma range_to_add_submonoid [ring_hom_surjective τ₁₂] (f : M →ₛₗ[τ₁₂] M₂) : f.range.to_add_submonoid = f.to_add_monoid_hom.mrange := rfl @[simp] theorem mem_range [ring_hom_surjective τ₁₂] {f : M →ₛₗ[τ₁₂] M₂} {x} : x ∈ range f ↔ ∃ y, f y = x := iff.rfl lemma range_eq_map [ring_hom_surjective τ₁₂] (f : M →ₛₗ[τ₁₂] M₂) : f.range = map f ⊤ := by { ext, simp } theorem mem_range_self [ring_hom_surjective τ₁₂] (f : M →ₛₗ[τ₁₂] M₂) (x : M) : f x ∈ f.range := ⟨x, rfl⟩ @[simp] theorem range_id : range (linear_map.id : M →ₗ[R] M) = ⊤ := set_like.coe_injective set.range_id theorem range_comp [ring_hom_surjective τ₁₂] [ring_hom_surjective τ₂₃] [ring_hom_surjective τ₁₃] (f : M →ₛₗ[τ₁₂] M₂) (g : M₂ →ₛₗ[τ₂₃] M₃) : range (g.comp f : M →ₛₗ[τ₁₃] M₃) = map g (range f) := set_like.coe_injective (set.range_comp g f) theorem range_comp_le_range [ring_hom_surjective τ₂₃] [ring_hom_surjective τ₁₃] (f : M →ₛₗ[τ₁₂] M₂) (g : M₂ →ₛₗ[τ₂₃] M₃) : range (g.comp f : M →ₛₗ[τ₁₃] M₃) ≤ range g := set_like.coe_mono (set.range_comp_subset_range f g) theorem range_eq_top [ring_hom_surjective τ₁₂] {f : M →ₛₗ[τ₁₂] M₂} : range f = ⊤ ↔ surjective f := by rw [set_like.ext'_iff, range_coe, top_coe, set.range_iff_surjective] lemma range_le_iff_comap [ring_hom_surjective τ₁₂] {f : M →ₛₗ[τ₁₂] M₂} {p : submodule R₂ M₂} : range f ≤ p ↔ comap f p = ⊤ := by rw [range_eq_map, map_le_iff_le_comap, eq_top_iff] lemma map_le_range [ring_hom_surjective τ₁₂] {f : M →ₛₗ[τ₁₂] M₂} {p : submodule R M} : map f p ≤ range f := set_like.coe_mono (set.image_subset_range f p) @[simp] lemma range_neg {R : Type*} {R₂ : Type*} {M : Type*} {M₂ : Type*} [semiring R] [ring R₂] [add_comm_monoid M] [add_comm_group M₂] [module R M] [module R₂ M₂] {τ₁₂ : R →+* R₂} [ring_hom_surjective τ₁₂] (f : M →ₛₗ[τ₁₂] M₂) : (-f).range = f.range := begin change ((-linear_map.id : M₂ →ₗ[R₂] M₂).comp f).range = _, rw [range_comp, submodule.map_neg, submodule.map_id], end end /-- The decreasing sequence of submodules consisting of the ranges of the iterates of a linear map. -/ @[simps] def iterate_range (f : M →ₗ[R] M) : ℕ →o (submodule R M)ᵒᵈ := ⟨λ n, (f ^ n).range, λ n m w x h, begin obtain ⟨c, rfl⟩ := le_iff_exists_add.mp w, rw linear_map.mem_range at h, obtain ⟨m, rfl⟩ := h, rw linear_map.mem_range, use (f ^ c) m, rw [pow_add, linear_map.mul_apply], end⟩ /-- Restrict the codomain of a linear map `f` to `f.range`. This is the bundled version of `set.range_factorization`. -/ @[reducible] def range_restrict [ring_hom_surjective τ₁₂] (f : M →ₛₗ[τ₁₂] M₂) : M →ₛₗ[τ₁₂] f.range := f.cod_restrict f.range f.mem_range_self /-- The range of a linear map is finite if the domain is finite. Note: this instance can form a diamond with `subtype.fintype` in the presence of `fintype M₂`. -/ instance fintype_range [fintype M] [decidable_eq M₂] [ring_hom_surjective τ₁₂] (f : M →ₛₗ[τ₁₂] M₂) : fintype (range f) := set.fintype_range f /-- The kernel of a linear map `f : M → M₂` is defined to be `comap f ⊥`. This is equivalent to the set of `x : M` such that `f x = 0`. The kernel is a submodule of `M`. -/ def ker (f : M →ₛₗ[τ₁₂] M₂) : submodule R M := comap f ⊥ @[simp] theorem mem_ker {f : M →ₛₗ[τ₁₂] M₂} {y} : y ∈ ker f ↔ f y = 0 := mem_bot R₂ @[simp] theorem ker_id : ker (linear_map.id : M →ₗ[R] M) = ⊥ := rfl @[simp] theorem map_coe_ker (f : M →ₛₗ[τ₁₂] M₂) (x : ker f) : f x = 0 := mem_ker.1 x.2 lemma ker_to_add_submonoid (f : M →ₛₗ[τ₁₂] M₂) : f.ker.to_add_submonoid = f.to_add_monoid_hom.mker := rfl lemma comp_ker_subtype (f : M →ₛₗ[τ₁₂] M₂) : f.comp f.ker.subtype = 0 := linear_map.ext $ λ x, suffices f x = 0, by simp [this], mem_ker.1 x.2 theorem ker_comp (f : M →ₛₗ[τ₁₂] M₂) (g : M₂ →ₛₗ[τ₂₃] M₃) : ker (g.comp f : M →ₛₗ[τ₁₃] M₃) = comap f (ker g) := rfl theorem ker_le_ker_comp (f : M →ₛₗ[τ₁₂] M₂) (g : M₂ →ₛₗ[τ₂₃] M₃) : ker f ≤ ker (g.comp f : M →ₛₗ[τ₁₃] M₃) := by rw ker_comp; exact comap_mono bot_le theorem disjoint_ker {f : M →ₛₗ[τ₁₂] M₂} {p : submodule R M} : disjoint p (ker f) ↔ ∀ x ∈ p, f x = 0 → x = 0 := by simp [disjoint_def] theorem ker_eq_bot' {f : M →ₛₗ[τ₁₂] M₂} : ker f = ⊥ ↔ (∀ m, f m = 0 → m = 0) := by simpa [disjoint] using @disjoint_ker _ _ _ _ _ _ _ _ _ _ _ f ⊤ theorem ker_eq_bot_of_inverse {τ₂₁ : R₂ →+* R} [ring_hom_inv_pair τ₁₂ τ₂₁] {f : M →ₛₗ[τ₁₂] M₂} {g : M₂ →ₛₗ[τ₂₁] M} (h : (g.comp f : M →ₗ[R] M) = id) : ker f = ⊥ := ker_eq_bot'.2 $ λ m hm, by rw [← id_apply m, ← h, comp_apply, hm, g.map_zero] lemma le_ker_iff_map [ring_hom_surjective τ₁₂] {f : M →ₛₗ[τ₁₂] M₂} {p : submodule R M} : p ≤ ker f ↔ map f p = ⊥ := by rw [ker, eq_bot_iff, map_le_iff_le_comap] lemma ker_cod_restrict {τ₂₁ : R₂ →+* R} (p : submodule R M) (f : M₂ →ₛₗ[τ₂₁] M) (hf) : ker (cod_restrict p f hf) = ker f := by rw [ker, comap_cod_restrict, map_bot]; refl lemma range_cod_restrict {τ₂₁ : R₂ →+* R} [ring_hom_surjective τ₂₁] (p : submodule R M) (f : M₂ →ₛₗ[τ₂₁] M) (hf) : range (cod_restrict p f hf) = comap p.subtype f.range := by simpa only [range_eq_map] using map_cod_restrict _ _ _ _ lemma ker_restrict {p : submodule R M} {f : M →ₗ[R] M} (hf : ∀ x : M, x ∈ p → f x ∈ p) : ker (f.restrict hf) = (f.dom_restrict p).ker := by rw [restrict_eq_cod_restrict_dom_restrict, ker_cod_restrict] lemma _root_.submodule.map_comap_eq [ring_hom_surjective τ₁₂] (f : M →ₛₗ[τ₁₂] M₂) (q : submodule R₂ M₂) : map f (comap f q) = range f ⊓ q := le_antisymm (le_inf map_le_range (map_comap_le _ _)) $ by rintro _ ⟨⟨x, _, rfl⟩, hx⟩; exact ⟨x, hx, rfl⟩ lemma _root_.submodule.map_comap_eq_self [ring_hom_surjective τ₁₂] {f : M →ₛₗ[τ₁₂] M₂} {q : submodule R₂ M₂} (h : q ≤ range f) : map f (comap f q) = q := by rwa [submodule.map_comap_eq, inf_eq_right] @[simp] theorem ker_zero : ker (0 : M →ₛₗ[τ₁₂] M₂) = ⊤ := eq_top_iff'.2 $ λ x, by simp @[simp] theorem range_zero [ring_hom_surjective τ₁₂] : range (0 : M →ₛₗ[τ₁₂] M₂) = ⊥ := by simpa only [range_eq_map] using submodule.map_zero _ theorem ker_eq_top {f : M →ₛₗ[τ₁₂] M₂} : ker f = ⊤ ↔ f = 0 := ⟨λ h, ext $ λ x, mem_ker.1 $ h.symm ▸ trivial, λ h, h.symm ▸ ker_zero⟩ section variables [ring_hom_surjective τ₁₂] lemma range_le_bot_iff (f : M →ₛₗ[τ₁₂] M₂) : range f ≤ ⊥ ↔ f = 0 := by rw [range_le_iff_comap]; exact ker_eq_top theorem range_eq_bot {f : M →ₛₗ[τ₁₂] M₂} : range f = ⊥ ↔ f = 0 := by rw [← range_le_bot_iff, le_bot_iff] lemma range_le_ker_iff {f : M →ₛₗ[τ₁₂] M₂} {g : M₂ →ₛₗ[τ₂₃] M₃} : range f ≤ ker g ↔ (g.comp f : M →ₛₗ[τ₁₃] M₃) = 0 := ⟨λ h, ker_eq_top.1 $ eq_top_iff'.2 $ λ x, h $ ⟨_, rfl⟩, λ h x hx, mem_ker.2 $ exists.elim hx $ λ y hy, by rw [←hy, ←comp_apply, h, zero_apply]⟩ theorem comap_le_comap_iff {f : M →ₛₗ[τ₁₂] M₂} (hf : range f = ⊤) {p p'} : comap f p ≤ comap f p' ↔ p ≤ p' := ⟨λ H x hx, by rcases range_eq_top.1 hf x with ⟨y, hy, rfl⟩; exact H hx, comap_mono⟩ theorem comap_injective {f : M →ₛₗ[τ₁₂] M₂} (hf : range f = ⊤) : injective (comap f) := λ p p' h, le_antisymm ((comap_le_comap_iff hf).1 (le_of_eq h)) ((comap_le_comap_iff hf).1 (ge_of_eq h)) end theorem ker_eq_bot_of_injective {f : M →ₛₗ[τ₁₂] M₂} (hf : injective f) : ker f = ⊥ := begin have : disjoint ⊤ f.ker, by { rw [disjoint_ker, ← map_zero f], exact λ x hx H, hf H }, simpa [disjoint] end /-- The increasing sequence of submodules consisting of the kernels of the iterates of a linear map. -/ @[simps] def iterate_ker (f : M →ₗ[R] M) : ℕ →o submodule R M := ⟨λ n, (f ^ n).ker, λ n m w x h, begin obtain ⟨c, rfl⟩ := le_iff_exists_add.mp w, rw linear_map.mem_ker at h, rw [linear_map.mem_ker, add_comm, pow_add, linear_map.mul_apply, h, linear_map.map_zero], end⟩ end add_comm_monoid section ring variables [ring R] [ring R₂] [ring R₃] variables [add_comm_group M] [add_comm_group M₂] [add_comm_group M₃] variables [module R M] [module R₂ M₂] [module R₃ M₃] variables {τ₁₂ : R →+* R₂} {τ₂₃ : R₂ →+* R₃} {τ₁₃ : R →+* R₃} variables [ring_hom_comp_triple τ₁₂ τ₂₃ τ₁₃] variables {f : M →ₛₗ[τ₁₂] M₂} include R open submodule lemma range_to_add_subgroup [ring_hom_surjective τ₁₂] (f : M →ₛₗ[τ₁₂] M₂) : f.range.to_add_subgroup = f.to_add_monoid_hom.range := rfl lemma ker_to_add_subgroup (f : M →ₛₗ[τ₁₂] M₂) : f.ker.to_add_subgroup = f.to_add_monoid_hom.ker := rfl theorem sub_mem_ker_iff {x y} : x - y ∈ f.ker ↔ f x = f y := by rw [mem_ker, map_sub, sub_eq_zero] theorem disjoint_ker' {p : submodule R M} : disjoint p (ker f) ↔ ∀ x y ∈ p, f x = f y → x = y := disjoint_ker.trans ⟨λ H x hx y hy h, eq_of_sub_eq_zero $ H _ (sub_mem hx hy) (by simp [h]), λ H x h₁ h₂, H x h₁ 0 (zero_mem _) (by simpa using h₂)⟩ theorem inj_of_disjoint_ker {p : submodule R M} {s : set M} (h : s ⊆ p) (hd : disjoint p (ker f)) : ∀ x y ∈ s, f x = f y → x = y := λ x hx y hy, disjoint_ker'.1 hd _ (h hx) _ (h hy) theorem ker_eq_bot : ker f = ⊥ ↔ injective f := by simpa [disjoint] using @disjoint_ker' _ _ _ _ _ _ _ _ _ _ _ f ⊤ lemma ker_le_iff [ring_hom_surjective τ₁₂] {p : submodule R M} : ker f ≤ p ↔ ∃ (y ∈ range f), f ⁻¹' {y} ⊆ p := begin split, { intros h, use 0, rw [← set_like.mem_coe, f.range_coe], exact ⟨⟨0, map_zero f⟩, h⟩, }, { rintros ⟨y, h₁, h₂⟩, rw set_like.le_def, intros z hz, simp only [mem_ker, set_like.mem_coe] at hz, rw [← set_like.mem_coe, f.range_coe, set.mem_range] at h₁, obtain ⟨x, hx⟩ := h₁, have hx' : x ∈ p, { exact h₂ hx, }, have hxz : z + x ∈ p, { apply h₂, simp [hx, hz], }, suffices : z + x - x ∈ p, { simpa only [this, add_sub_cancel], }, exact p.sub_mem hxz hx', }, end end ring section field variables [field K] [field K₂] variables [add_comm_group V] [module K V] variables [add_comm_group V₂] [module K V₂] lemma ker_smul (f : V →ₗ[K] V₂) (a : K) (h : a ≠ 0) : ker (a • f) = ker f := submodule.comap_smul f _ a h lemma ker_smul' (f : V →ₗ[K] V₂) (a : K) : ker (a • f) = ⨅(h : a ≠ 0), ker f := submodule.comap_smul' f _ a lemma range_smul (f : V →ₗ[K] V₂) (a : K) (h : a ≠ 0) : range (a • f) = range f := by simpa only [range_eq_map] using submodule.map_smul f _ a h lemma range_smul' (f : V →ₗ[K] V₂) (a : K) : range (a • f) = ⨆(h : a ≠ 0), range f := by simpa only [range_eq_map] using submodule.map_smul' f _ a end field end linear_map namespace is_linear_map lemma is_linear_map_add [semiring R] [add_comm_monoid M] [module R M] : is_linear_map R (λ (x : M × M), x.1 + x.2) := begin apply is_linear_map.mk, { intros x y, simp, cc }, { intros x y, simp [smul_add] } end lemma is_linear_map_sub {R M : Type*} [semiring R] [add_comm_group M] [module R M]: is_linear_map R (λ (x : M × M), x.1 - x.2) := begin apply is_linear_map.mk, { intros x y, simp [add_comm, add_left_comm, sub_eq_add_neg] }, { intros x y, simp [smul_sub] } end end is_linear_map namespace submodule section add_comm_monoid variables [semiring R] [semiring R₂] [add_comm_monoid M] [add_comm_monoid M₂] variables [module R M] [module R₂ M₂] variables (p p' : submodule R M) (q : submodule R₂ M₂) variables {τ₁₂ : R →+* R₂} open linear_map @[simp] theorem map_top [ring_hom_surjective τ₁₂] (f : M →ₛₗ[τ₁₂] M₂) : map f ⊤ = range f := f.range_eq_map.symm @[simp] theorem comap_bot (f : M →ₛₗ[τ₁₂] M₂) : comap f ⊥ = ker f := rfl @[simp] theorem ker_subtype : p.subtype.ker = ⊥ := ker_eq_bot_of_injective $ λ x y, subtype.ext_val @[simp] theorem range_subtype : p.subtype.range = p := by simpa using map_comap_subtype p ⊤ lemma map_subtype_le (p' : submodule R p) : map p.subtype p' ≤ p := by simpa using (map_le_range : map p.subtype p' ≤ p.subtype.range) /-- Under the canonical linear map from a submodule `p` to the ambient space `M`, the image of the maximal submodule of `p` is just `p `. -/ @[simp] lemma map_subtype_top : map p.subtype (⊤ : submodule R p) = p := by simp @[simp] lemma comap_subtype_eq_top {p p' : submodule R M} : comap p.subtype p' = ⊤ ↔ p ≤ p' := eq_top_iff.trans $ map_le_iff_le_comap.symm.trans $ by rw [map_subtype_top] @[simp] lemma comap_subtype_self : comap p.subtype p = ⊤ := comap_subtype_eq_top.2 le_rfl @[simp] theorem ker_of_le (p p' : submodule R M) (h : p ≤ p') : (of_le h).ker = ⊥ := by rw [of_le, ker_cod_restrict, ker_subtype] lemma range_of_le (p q : submodule R M) (h : p ≤ q) : (of_le h).range = comap q.subtype p := by rw [← map_top, of_le, linear_map.map_cod_restrict, map_top, range_subtype] @[simp] lemma map_subtype_range_of_le {p p' : submodule R M} (h : p ≤ p') : map p'.subtype (of_le h).range = p := by simp [range_of_le, map_comap_eq, h] lemma disjoint_iff_comap_eq_bot {p q : submodule R M} : disjoint p q ↔ comap p.subtype q = ⊥ := by rw [←(map_injective_of_injective (show injective p.subtype, from subtype.coe_injective)).eq_iff, map_comap_subtype, map_bot, disjoint_iff] /-- If `N ⊆ M` then submodules of `N` are the same as submodules of `M` contained in `N` -/ def map_subtype.rel_iso : submodule R p ≃o {p' : submodule R M // p' ≤ p} := { to_fun := λ p', ⟨map p.subtype p', map_subtype_le p _⟩, inv_fun := λ q, comap p.subtype q, left_inv := λ p', comap_map_eq_of_injective subtype.coe_injective p', right_inv := λ ⟨q, hq⟩, subtype.ext_val $ by simp [map_comap_subtype p, inf_of_le_right hq], map_rel_iff' := λ p₁ p₂, subtype.coe_le_coe.symm.trans begin dsimp, rw [map_le_iff_le_comap, comap_map_eq_of_injective (show injective p.subtype, from subtype.coe_injective) p₂], end } /-- If `p ⊆ M` is a submodule, the ordering of submodules of `p` is embedded in the ordering of submodules of `M`. -/ def map_subtype.order_embedding : submodule R p ↪o submodule R M := (rel_iso.to_rel_embedding $ map_subtype.rel_iso p).trans (subtype.rel_embedding _ _) @[simp] lemma map_subtype_embedding_eq (p' : submodule R p) : map_subtype.order_embedding p p' = map p.subtype p' := rfl end add_comm_monoid end submodule namespace linear_map section semiring variables [semiring R] [semiring R₂] [semiring R₃] variables [add_comm_monoid M] [add_comm_monoid M₂] [add_comm_monoid M₃] variables [module R M] [module R₂ M₂] [module R₃ M₃] variables {τ₁₂ : R →+* R₂} {τ₂₃ : R₂ →+* R₃} {τ₁₃ : R →+* R₃} variables [ring_hom_comp_triple τ₁₂ τ₂₃ τ₁₃] /-- A monomorphism is injective. -/ lemma ker_eq_bot_of_cancel {f : M →ₛₗ[τ₁₂] M₂} (h : ∀ (u v : f.ker →ₗ[R] M), f.comp u = f.comp v → u = v) : f.ker = ⊥ := begin have h₁ : f.comp (0 : f.ker →ₗ[R] M) = 0 := comp_zero _, rw [←submodule.range_subtype f.ker, ←h 0 f.ker.subtype (eq.trans h₁ (comp_ker_subtype f).symm)], exact range_zero end lemma range_comp_of_range_eq_top [ring_hom_surjective τ₁₂] [ring_hom_surjective τ₂₃] [ring_hom_surjective τ₁₃] {f : M →ₛₗ[τ₁₂] M₂} (g : M₂ →ₛₗ[τ₂₃] M₃) (hf : range f = ⊤) : range (g.comp f : M →ₛₗ[τ₁₃] M₃) = range g := by rw [range_comp, hf, submodule.map_top] lemma ker_comp_of_ker_eq_bot (f : M →ₛₗ[τ₁₂] M₂) {g : M₂ →ₛₗ[τ₂₃] M₃} (hg : ker g = ⊥) : ker (g.comp f : M →ₛₗ[τ₁₃] M₃) = ker f := by rw [ker_comp, hg, submodule.comap_bot] section image /-- If `O` is a submodule of `M`, and `Φ : O →ₗ M'` is a linear map, then `(ϕ : O →ₗ M').submodule_image N` is `ϕ(N)` as a submodule of `M'` -/ def submodule_image {M' : Type*} [add_comm_monoid M'] [module R M'] {O : submodule R M} (ϕ : O →ₗ[R] M') (N : submodule R M) : submodule R M' := (N.comap O.subtype).map ϕ @[simp] lemma mem_submodule_image {M' : Type*} [add_comm_monoid M'] [module R M'] {O : submodule R M} {ϕ : O →ₗ[R] M'} {N : submodule R M} {x : M'} : x ∈ ϕ.submodule_image N ↔ ∃ y (yO : y ∈ O) (yN : y ∈ N), ϕ ⟨y, yO⟩ = x := begin refine submodule.mem_map.trans ⟨_, _⟩; simp_rw submodule.mem_comap, { rintro ⟨⟨y, yO⟩, (yN : y ∈ N), h⟩, exact ⟨y, yO, yN, h⟩ }, { rintro ⟨y, yO, yN, h⟩, exact ⟨⟨y, yO⟩, yN, h⟩ } end lemma mem_submodule_image_of_le {M' : Type*} [add_comm_monoid M'] [module R M'] {O : submodule R M} {ϕ : O →ₗ[R] M'} {N : submodule R M} (hNO : N ≤ O) {x : M'} : x ∈ ϕ.submodule_image N ↔ ∃ y (yN : y ∈ N), ϕ ⟨y, hNO yN⟩ = x := begin refine mem_submodule_image.trans ⟨_, _⟩, { rintro ⟨y, yO, yN, h⟩, exact ⟨y, yN, h⟩ }, { rintro ⟨y, yN, h⟩, exact ⟨y, hNO yN, yN, h⟩ } end lemma submodule_image_apply_of_le {M' : Type*} [add_comm_group M'] [module R M'] {O : submodule R M} (ϕ : O →ₗ[R] M') (N : submodule R M) (hNO : N ≤ O) : ϕ.submodule_image N = (ϕ.comp (submodule.of_le hNO)).range := by rw [submodule_image, range_comp, submodule.range_of_le] end image end semiring end linear_map @[simp] lemma linear_map.range_range_restrict [semiring R] [add_comm_monoid M] [add_comm_monoid M₂] [module R M] [module R M₂] (f : M →ₗ[R] M₂) : f.range_restrict.range = ⊤ := by simp [f.range_cod_restrict _] /-! ### Linear equivalences -/ namespace linear_equiv section add_comm_monoid section subsingleton variables [semiring R] [semiring R₂] [semiring R₃] [semiring R₄] variables [add_comm_monoid M] [add_comm_monoid M₂] [add_comm_monoid M₃] [add_comm_monoid M₄] variables [module R M] [module R₂ M₂] variables [subsingleton M] [subsingleton M₂] variables {σ₁₂ : R →+* R₂} {σ₂₁ : R₂ →+* R} variables [ring_hom_inv_pair σ₁₂ σ₂₁] [ring_hom_inv_pair σ₂₁ σ₁₂] include σ₂₁ /-- Between two zero modules, the zero map is an equivalence. -/ instance : has_zero (M ≃ₛₗ[σ₁₂] M₂) := ⟨{ to_fun := 0, inv_fun := 0, right_inv := λ x, subsingleton.elim _ _, left_inv := λ x, subsingleton.elim _ _, ..(0 : M →ₛₗ[σ₁₂] M₂)}⟩ omit σ₂₁ -- Even though these are implied by `subsingleton.elim` via the `unique` instance below, they're -- nice to have as `rfl`-lemmas for `dsimp`. include σ₂₁ @[simp] lemma zero_symm : (0 : M ≃ₛₗ[σ₁₂] M₂).symm = 0 := rfl @[simp] lemma coe_zero : ⇑(0 : M ≃ₛₗ[σ₁₂] M₂) = 0 := rfl lemma zero_apply (x : M) : (0 : M ≃ₛₗ[σ₁₂] M₂) x = 0 := rfl /-- Between two zero modules, the zero map is the only equivalence. -/ instance : unique (M ≃ₛₗ[σ₁₂] M₂) := { uniq := λ f, to_linear_map_injective (subsingleton.elim _ _), default := 0 } omit σ₂₁ end subsingleton section variables [semiring R] [semiring R₂] [semiring R₃] [semiring R₄] variables [add_comm_monoid M] [add_comm_monoid M₂] [add_comm_monoid M₃] [add_comm_monoid M₄] variables {module_M : module R M} {module_M₂ : module R₂ M₂} variables {σ₁₂ : R →+* R₂} {σ₂₁ : R₂ →+* R} variables {re₁₂ : ring_hom_inv_pair σ₁₂ σ₂₁} {re₂₁ : ring_hom_inv_pair σ₂₁ σ₁₂} variables (e e' : M ≃ₛₗ[σ₁₂] M₂) lemma map_eq_comap {p : submodule R M} : (p.map (e : M →ₛₗ[σ₁₂] M₂) : submodule R₂ M₂) = p.comap (e.symm : M₂ →ₛₗ[σ₂₁] M) := set_like.coe_injective $ by simp [e.image_eq_preimage] /-- A linear equivalence of two modules restricts to a linear equivalence from any submodule `p` of the domain onto the image of that submodule. This is the linear version of `add_equiv.submonoid_map` and `add_equiv.subgroup_map`. This is `linear_equiv.of_submodule'` but with `map` on the right instead of `comap` on the left. -/ def submodule_map (p : submodule R M) : p ≃ₛₗ[σ₁₂] ↥(p.map (e : M →ₛₗ[σ₁₂] M₂) : submodule R₂ M₂) := { inv_fun := λ y, ⟨(e.symm : M₂ →ₛₗ[σ₂₁] M) y, by { rcases y with ⟨y', hy⟩, rw submodule.mem_map at hy, rcases hy with ⟨x, hx, hxy⟩, subst hxy, simp only [symm_apply_apply, submodule.coe_mk, coe_coe, hx], }⟩, left_inv := λ x, by simp only [linear_map.dom_restrict_apply, linear_map.cod_restrict_apply, linear_map.to_fun_eq_coe, linear_equiv.coe_coe, linear_equiv.symm_apply_apply, set_like.eta], right_inv := λ y, by { apply set_coe.ext, simp only [linear_map.dom_restrict_apply, linear_map.cod_restrict_apply, linear_map.to_fun_eq_coe, linear_equiv.coe_coe, set_like.coe_mk, linear_equiv.apply_symm_apply] }, ..((e : M →ₛₗ[σ₁₂] M₂).dom_restrict p).cod_restrict (p.map (e : M →ₛₗ[σ₁₂] M₂)) (λ x, ⟨x, by simp only [linear_map.dom_restrict_apply, eq_self_iff_true, and_true, set_like.coe_mem, set_like.mem_coe]⟩) } include σ₂₁ @[simp] lemma submodule_map_apply (p : submodule R M) (x : p) : ↑(e.submodule_map p x) = e x := rfl @[simp] lemma submodule_map_symm_apply (p : submodule R M) (x : (p.map (e : M →ₛₗ[σ₁₂] M₂) : submodule R₂ M₂)) : ↑((e.submodule_map p).symm x) = e.symm x := rfl omit σ₂₁ end section finsupp variables {γ : Type*} variables [semiring R] [semiring R₂] variables [add_comm_monoid M] [add_comm_monoid M₂] variables [module R M] [module R₂ M₂] [has_zero γ] variables {τ₁₂ : R →+* R₂} {τ₂₁ : R₂ →+* R} variables [ring_hom_inv_pair τ₁₂ τ₂₁] [ring_hom_inv_pair τ₂₁ τ₁₂] include τ₂₁ @[simp] lemma map_finsupp_sum (f : M ≃ₛₗ[τ₁₂] M₂) {t : ι →₀ γ} {g : ι → γ → M} : f (t.sum g) = t.sum (λ i d, f (g i d)) := f.map_sum _ omit τ₂₁ end finsupp section dfinsupp open dfinsupp variables [semiring R] [semiring R₂] variables [add_comm_monoid M] [add_comm_monoid M₂] variables [module R M] [module R₂ M₂] variables {τ₁₂ : R →+* R₂} {τ₂₁ : R₂ →+* R} variables [ring_hom_inv_pair τ₁₂ τ₂₁] [ring_hom_inv_pair τ₂₁ τ₁₂] variables {γ : ι → Type*} [decidable_eq ι] include τ₂₁ @[simp] lemma map_dfinsupp_sum [Π i, has_zero (γ i)] [Π i (x : γ i), decidable (x ≠ 0)] (f : M ≃ₛₗ[τ₁₂] M₂) (t : Π₀ i, γ i) (g : Π i, γ i → M) : f (t.sum g) = t.sum (λ i d, f (g i d)) := f.map_sum _ @[simp] lemma map_dfinsupp_sum_add_hom [Π i, add_zero_class (γ i)] (f : M ≃ₛₗ[τ₁₂] M₂) (t : Π₀ i, γ i) (g : Π i, γ i →+ M) : f (sum_add_hom g t) = sum_add_hom (λ i, f.to_add_equiv.to_add_monoid_hom.comp (g i)) t := f.to_add_equiv.map_dfinsupp_sum_add_hom _ _ end dfinsupp section uncurry variables [semiring R] [semiring R₂] [semiring R₃] [semiring R₄] variables [add_comm_monoid M] [add_comm_monoid M₂] [add_comm_monoid M₃] [add_comm_monoid M₄] variables (V V₂ R) /-- Linear equivalence between a curried and uncurried function. Differs from `tensor_product.curry`. -/ protected def curry : (V × V₂ → R) ≃ₗ[R] (V → V₂ → R) := { map_add' := λ _ _, by { ext, refl }, map_smul' := λ _ _, by { ext, refl }, .. equiv.curry _ _ _ } @[simp] lemma coe_curry : ⇑(linear_equiv.curry R V V₂) = curry := rfl @[simp] lemma coe_curry_symm : ⇑(linear_equiv.curry R V V₂).symm = uncurry := rfl end uncurry section variables [semiring R] [semiring R₂] [semiring R₃] [semiring R₄] variables [add_comm_monoid M] [add_comm_monoid M₂] [add_comm_monoid M₃] [add_comm_monoid M₄] variables {module_M : module R M} {module_M₂ : module R₂ M₂} {module_M₃ : module R₃ M₃} variables {σ₁₂ : R →+* R₂} {σ₂₁ : R₂ →+* R} variables {σ₂₃ : R₂ →+* R₃} {σ₁₃ : R →+* R₃} [ring_hom_comp_triple σ₁₂ σ₂₃ σ₁₃] variables {σ₃₂ : R₃ →+* R₂} variables {re₁₂ : ring_hom_inv_pair σ₁₂ σ₂₁} {re₂₁ : ring_hom_inv_pair σ₂₁ σ₁₂} variables {re₂₃ : ring_hom_inv_pair σ₂₃ σ₃₂} {re₃₂ : ring_hom_inv_pair σ₃₂ σ₂₃} variables (f : M →ₛₗ[σ₁₂] M₂) (g : M₂ →ₛₗ[σ₂₁] M) (e : M ≃ₛₗ[σ₁₂] M₂) (h : M₂ →ₛₗ[σ₂₃] M₃) variables (e'' : M₂ ≃ₛₗ[σ₂₃] M₃) variables (p q : submodule R M) /-- Linear equivalence between two equal submodules. -/ def of_eq (h : p = q) : p ≃ₗ[R] q := { map_smul' := λ _ _, rfl, map_add' := λ _ _, rfl, .. equiv.set.of_eq (congr_arg _ h) } variables {p q} @[simp] lemma coe_of_eq_apply (h : p = q) (x : p) : (of_eq p q h x : M) = x := rfl @[simp] lemma of_eq_symm (h : p = q) : (of_eq p q h).symm = of_eq q p h.symm := rfl @[simp] lemma of_eq_rfl : of_eq p p rfl = linear_equiv.refl R p := by ext; refl include σ₂₁ /-- A linear equivalence which maps a submodule of one module onto another, restricts to a linear equivalence of the two submodules. -/ def of_submodules (p : submodule R M) (q : submodule R₂ M₂) (h : p.map (e : M →ₛₗ[σ₁₂] M₂) = q) : p ≃ₛₗ[σ₁₂] q := (e.submodule_map p).trans (linear_equiv.of_eq _ _ h) @[simp] lemma of_submodules_apply {p : submodule R M} {q : submodule R₂ M₂} (h : p.map ↑e = q) (x : p) : ↑(e.of_submodules p q h x) = e x := rfl @[simp] lemma of_submodules_symm_apply {p : submodule R M} {q : submodule R₂ M₂} (h : p.map ↑e = q) (x : q) : ↑((e.of_submodules p q h).symm x) = e.symm x := rfl include re₁₂ re₂₁ /-- A linear equivalence of two modules restricts to a linear equivalence from the preimage of any submodule to that submodule. This is `linear_equiv.of_submodule` but with `comap` on the left instead of `map` on the right. -/ def of_submodule' [module R M] [module R₂ M₂] (f : M ≃ₛₗ[σ₁₂] M₂) (U : submodule R₂ M₂) : U.comap (f : M →ₛₗ[σ₁₂] M₂) ≃ₛₗ[σ₁₂] U := (f.symm.of_submodules _ _ f.symm.map_eq_comap).symm lemma of_submodule'_to_linear_map [module R M] [module R₂ M₂] (f : M ≃ₛₗ[σ₁₂] M₂) (U : submodule R₂ M₂) : (f.of_submodule' U).to_linear_map = (f.to_linear_map.dom_restrict _).cod_restrict _ subtype.prop := by { ext, refl } @[simp] lemma of_submodule'_apply [module R M] [module R₂ M₂] (f : M ≃ₛₗ[σ₁₂] M₂) (U : submodule R₂ M₂) (x : U.comap (f : M →ₛₗ[σ₁₂] M₂)) : (f.of_submodule' U x : M₂) = f (x : M) := rfl @[simp] lemma of_submodule'_symm_apply [module R M] [module R₂ M₂] (f : M ≃ₛₗ[σ₁₂] M₂) (U : submodule R₂ M₂) (x : U) : ((f.of_submodule' U).symm x : M) = f.symm (x : M₂) := rfl variable (p) omit σ₂₁ re₁₂ re₂₁ /-- The top submodule of `M` is linearly equivalent to `M`. -/ def of_top (h : p = ⊤) : p ≃ₗ[R] M := { inv_fun := λ x, ⟨x, h.symm ▸ trivial⟩, left_inv := λ ⟨x, h⟩, rfl, right_inv := λ x, rfl, .. p.subtype } @[simp] theorem of_top_apply {h} (x : p) : of_top p h x = x := rfl @[simp] theorem coe_of_top_symm_apply {h} (x : M) : ((of_top p h).symm x : M) = x := rfl theorem of_top_symm_apply {h} (x : M) : (of_top p h).symm x = ⟨x, h.symm ▸ trivial⟩ := rfl include σ₂₁ re₁₂ re₂₁ /-- If a linear map has an inverse, it is a linear equivalence. -/ def of_linear (h₁ : f.comp g = linear_map.id) (h₂ : g.comp f = linear_map.id) : M ≃ₛₗ[σ₁₂] M₂ := { inv_fun := g, left_inv := linear_map.ext_iff.1 h₂, right_inv := linear_map.ext_iff.1 h₁, ..f } omit σ₂₁ re₁₂ re₂₁ include σ₂₁ re₁₂ re₂₁ @[simp] theorem of_linear_apply {h₁ h₂} (x : M) : of_linear f g h₁ h₂ x = f x := rfl omit σ₂₁ re₁₂ re₂₁ include σ₂₁ re₁₂ re₂₁ @[simp] theorem of_linear_symm_apply {h₁ h₂} (x : M₂) : (of_linear f g h₁ h₂).symm x = g x := rfl omit σ₂₁ re₁₂ re₂₁ @[simp] protected theorem range : (e : M →ₛₗ[σ₁₂] M₂).range = ⊤ := linear_map.range_eq_top.2 e.to_equiv.surjective include σ₂₁ re₁₂ re₂₁ lemma eq_bot_of_equiv [module R₂ M₂] (e : p ≃ₛₗ[σ₁₂] (⊥ : submodule R₂ M₂)) : p = ⊥ := begin refine bot_unique (set_like.le_def.2 $ assume b hb, (submodule.mem_bot R).2 _), rw [← p.mk_eq_zero hb, ← e.map_eq_zero_iff], apply submodule.eq_zero_of_bot_submodule end omit σ₂₁ re₁₂ re₂₁ @[simp] protected theorem ker : (e : M →ₛₗ[σ₁₂] M₂).ker = ⊥ := linear_map.ker_eq_bot_of_injective e.to_equiv.injective @[simp] theorem range_comp [ring_hom_surjective σ₁₂] [ring_hom_surjective σ₂₃] [ring_hom_surjective σ₁₃] : (h.comp (e : M →ₛₗ[σ₁₂] M₂) : M →ₛₗ[σ₁₃] M₃).range = h.range := linear_map.range_comp_of_range_eq_top _ e.range include module_M @[simp] theorem ker_comp (l : M →ₛₗ[σ₁₂] M₂) : (((e'' : M₂ →ₛₗ[σ₂₃] M₃).comp l : M →ₛₗ[σ₁₃] M₃) : M →ₛₗ[σ₁₃] M₃).ker = l.ker := linear_map.ker_comp_of_ker_eq_bot _ e''.ker omit module_M variables {f g} include σ₂₁ /-- An linear map `f : M →ₗ[R] M₂` with a left-inverse `g : M₂ →ₗ[R] M` defines a linear equivalence between `M` and `f.range`. This is a computable alternative to `linear_equiv.of_injective`, and a bidirectional version of `linear_map.range_restrict`. -/ def of_left_inverse [ring_hom_inv_pair σ₁₂ σ₂₁] [ring_hom_inv_pair σ₂₁ σ₁₂] {g : M₂ → M} (h : function.left_inverse g f) : M ≃ₛₗ[σ₁₂] f.range := { to_fun := f.range_restrict, inv_fun := g ∘ f.range.subtype, left_inv := h, right_inv := λ x, subtype.ext $ let ⟨x', hx'⟩ := linear_map.mem_range.mp x.prop in show f (g x) = x, by rw [←hx', h x'], .. f.range_restrict } omit σ₂₁ @[simp] lemma of_left_inverse_apply [ring_hom_inv_pair σ₁₂ σ₂₁] [ring_hom_inv_pair σ₂₁ σ₁₂] (h : function.left_inverse g f) (x : M) : ↑(of_left_inverse h x) = f x := rfl include σ₂₁ @[simp] lemma of_left_inverse_symm_apply [ring_hom_inv_pair σ₁₂ σ₂₁] [ring_hom_inv_pair σ₂₁ σ₁₂] (h : function.left_inverse g f) (x : f.range) : (of_left_inverse h).symm x = g x := rfl omit σ₂₁ variables (f) /-- An `injective` linear map `f : M →ₗ[R] M₂` defines a linear equivalence between `M` and `f.range`. See also `linear_map.of_left_inverse`. -/ noncomputable def of_injective [ring_hom_inv_pair σ₁₂ σ₂₁] [ring_hom_inv_pair σ₂₁ σ₁₂] (h : injective f) : M ≃ₛₗ[σ₁₂] f.range := of_left_inverse $ classical.some_spec h.has_left_inverse @[simp] theorem of_injective_apply [ring_hom_inv_pair σ₁₂ σ₂₁] [ring_hom_inv_pair σ₂₁ σ₁₂] {h : injective f} (x : M) : ↑(of_injective f h x) = f x := rfl /-- A bijective linear map is a linear equivalence. -/ noncomputable def of_bijective [ring_hom_inv_pair σ₁₂ σ₂₁] [ring_hom_inv_pair σ₂₁ σ₁₂] (hf₁ : injective f) (hf₂ : surjective f) : M ≃ₛₗ[σ₁₂] M₂ := (of_injective f hf₁).trans (of_top _ $ linear_map.range_eq_top.2 hf₂) @[simp] theorem of_bijective_apply [ring_hom_inv_pair σ₁₂ σ₂₁] [ring_hom_inv_pair σ₂₁ σ₁₂] {hf₁ hf₂} (x : M) : of_bijective f hf₁ hf₂ x = f x := rfl end end add_comm_monoid section add_comm_group variables [semiring R] [semiring R₂] [semiring R₃] [semiring R₄] variables [add_comm_group M] [add_comm_group M₂] [add_comm_group M₃] [add_comm_group M₄] variables {module_M : module R M} {module_M₂ : module R₂ M₂} variables {module_M₃ : module R₃ M₃} {module_M₄ : module R₄ M₄} variables {σ₁₂ : R →+* R₂} {σ₃₄ : R₃ →+* R₄} variables {σ₂₁ : R₂ →+* R} {σ₄₃ : R₄ →+* R₃} variables {re₁₂ : ring_hom_inv_pair σ₁₂ σ₂₁} {re₂₁ : ring_hom_inv_pair σ₂₁ σ₁₂} variables {re₃₄ : ring_hom_inv_pair σ₃₄ σ₄₃} {re₄₃ : ring_hom_inv_pair σ₄₃ σ₃₄} variables (e e₁ : M ≃ₛₗ[σ₁₂] M₂) (e₂ : M₃ ≃ₛₗ[σ₃₄] M₄) @[simp] theorem map_neg (a : M) : e (-a) = -e a := e.to_linear_map.map_neg a @[simp] theorem map_sub (a b : M) : e (a - b) = e a - e b := e.to_linear_map.map_sub a b end add_comm_group section neg variables (R) [semiring R] [add_comm_group M] [module R M] /-- `x ↦ -x` as a `linear_equiv` -/ def neg : M ≃ₗ[R] M := { .. equiv.neg M, .. (-linear_map.id : M →ₗ[R] M) } variable {R} @[simp] lemma coe_neg : ⇑(neg R : M ≃ₗ[R] M) = -id := rfl lemma neg_apply (x : M) : neg R x = -x := by simp @[simp] lemma symm_neg : (neg R : M ≃ₗ[R] M).symm = neg R := rfl end neg section comm_semiring variables [comm_semiring R] [add_comm_monoid M] [add_comm_monoid M₂] [add_comm_monoid M₃] variables [module R M] [module R M₂] [module R M₃] open _root_.linear_map /-- Multiplying by a unit `a` of the ring `R` is a linear equivalence. -/ def smul_of_unit (a : Rˣ) : M ≃ₗ[R] M := distrib_mul_action.to_linear_equiv R M a /-- A linear isomorphism between the domains and codomains of two spaces of linear maps gives a linear isomorphism between the two function spaces. -/ def arrow_congr {R M₁ M₂ M₂₁ M₂₂ : Sort*} [comm_semiring R] [add_comm_monoid M₁] [add_comm_monoid M₂] [add_comm_monoid M₂₁] [add_comm_monoid M₂₂] [module R M₁] [module R M₂] [module R M₂₁] [module R M₂₂] (e₁ : M₁ ≃ₗ[R] M₂) (e₂ : M₂₁ ≃ₗ[R] M₂₂) : (M₁ →ₗ[R] M₂₁) ≃ₗ[R] (M₂ →ₗ[R] M₂₂) := { to_fun := λ f : M₁ →ₗ[R] M₂₁, (e₂ : M₂₁ →ₗ[R] M₂₂).comp $ f.comp (e₁.symm : M₂ →ₗ[R] M₁), inv_fun := λ f, (e₂.symm : M₂₂ →ₗ[R] M₂₁).comp $ f.comp (e₁ : M₁ →ₗ[R] M₂), left_inv := λ f, by { ext x, simp only [symm_apply_apply, comp_app, coe_comp, coe_coe]}, right_inv := λ f, by { ext x, simp only [comp_app, apply_symm_apply, coe_comp, coe_coe]}, map_add' := λ f g, by { ext x, simp only [map_add, add_apply, comp_app, coe_comp, coe_coe]}, map_smul' := λ c f, by { ext x, simp only [smul_apply, comp_app, coe_comp, map_smulₛₗ e₂, coe_coe]} } @[simp] lemma arrow_congr_apply {R M₁ M₂ M₂₁ M₂₂ : Sort*} [comm_semiring R] [add_comm_monoid M₁] [add_comm_monoid M₂] [add_comm_monoid M₂₁] [add_comm_monoid M₂₂] [module R M₁] [module R M₂] [module R M₂₁] [module R M₂₂] (e₁ : M₁ ≃ₗ[R] M₂) (e₂ : M₂₁ ≃ₗ[R] M₂₂) (f : M₁ →ₗ[R] M₂₁) (x : M₂) : arrow_congr e₁ e₂ f x = e₂ (f (e₁.symm x)) := rfl @[simp] lemma arrow_congr_symm_apply {R M₁ M₂ M₂₁ M₂₂ : Sort*} [comm_semiring R] [add_comm_monoid M₁] [add_comm_monoid M₂] [add_comm_monoid M₂₁] [add_comm_monoid M₂₂] [module R M₁] [module R M₂] [module R M₂₁] [module R M₂₂] (e₁ : M₁ ≃ₗ[R] M₂) (e₂ : M₂₁ ≃ₗ[R] M₂₂) (f : M₂ →ₗ[R] M₂₂) (x : M₁) : (arrow_congr e₁ e₂).symm f x = e₂.symm (f (e₁ x)) := rfl lemma arrow_congr_comp {N N₂ N₃ : Sort*} [add_comm_monoid N] [add_comm_monoid N₂] [add_comm_monoid N₃] [module R N] [module R N₂] [module R N₃] (e₁ : M ≃ₗ[R] N) (e₂ : M₂ ≃ₗ[R] N₂) (e₃ : M₃ ≃ₗ[R] N₃) (f : M →ₗ[R] M₂) (g : M₂ →ₗ[R] M₃) : arrow_congr e₁ e₃ (g.comp f) = (arrow_congr e₂ e₃ g).comp (arrow_congr e₁ e₂ f) := by { ext, simp only [symm_apply_apply, arrow_congr_apply, linear_map.comp_apply], } lemma arrow_congr_trans {M₁ M₂ M₃ N₁ N₂ N₃ : Sort*} [add_comm_monoid M₁] [module R M₁] [add_comm_monoid M₂] [module R M₂] [add_comm_monoid M₃] [module R M₃] [add_comm_monoid N₁] [module R N₁] [add_comm_monoid N₂] [module R N₂] [add_comm_monoid N₃] [module R N₃] (e₁ : M₁ ≃ₗ[R] M₂) (e₂ : N₁ ≃ₗ[R] N₂) (e₃ : M₂ ≃ₗ[R] M₃) (e₄ : N₂ ≃ₗ[R] N₃) : (arrow_congr e₁ e₂).trans (arrow_congr e₃ e₄) = arrow_congr (e₁.trans e₃) (e₂.trans e₄) := rfl /-- If `M₂` and `M₃` are linearly isomorphic then the two spaces of linear maps from `M` into `M₂` and `M` into `M₃` are linearly isomorphic. -/ def congr_right (f : M₂ ≃ₗ[R] M₃) : (M →ₗ[R] M₂) ≃ₗ[R] (M →ₗ[R] M₃) := arrow_congr (linear_equiv.refl R M) f /-- If `M` and `M₂` are linearly isomorphic then the two spaces of linear maps from `M` and `M₂` to themselves are linearly isomorphic. -/ def conj (e : M ≃ₗ[R] M₂) : (module.End R M) ≃ₗ[R] (module.End R M₂) := arrow_congr e e lemma conj_apply (e : M ≃ₗ[R] M₂) (f : module.End R M) : e.conj f = ((↑e : M →ₗ[R] M₂).comp f).comp (e.symm : M₂ →ₗ[R] M) := rfl lemma symm_conj_apply (e : M ≃ₗ[R] M₂) (f : module.End R M₂) : e.symm.conj f = ((↑e.symm : M₂ →ₗ[R] M).comp f).comp (e : M →ₗ[R] M₂) := rfl lemma conj_comp (e : M ≃ₗ[R] M₂) (f g : module.End R M) : e.conj (g.comp f) = (e.conj g).comp (e.conj f) := arrow_congr_comp e e e f g lemma conj_trans (e₁ : M ≃ₗ[R] M₂) (e₂ : M₂ ≃ₗ[R] M₃) : e₁.conj.trans e₂.conj = (e₁.trans e₂).conj := by { ext f x, refl, } @[simp] lemma conj_id (e : M ≃ₗ[R] M₂) : e.conj linear_map.id = linear_map.id := by { ext, simp [conj_apply], } end comm_semiring section field variables [field K] [add_comm_group M] [add_comm_group M₂] [add_comm_group M₃] variables [module K M] [module K M₂] [module K M₃] variables (K) (M) open _root_.linear_map /-- Multiplying by a nonzero element `a` of the field `K` is a linear equivalence. -/ @[simps] def smul_of_ne_zero (a : K) (ha : a ≠ 0) : M ≃ₗ[K] M := smul_of_unit $ units.mk0 a ha end field end linear_equiv namespace submodule section module variables [semiring R] [add_comm_monoid M] [module R M] /-- Given `p` a submodule of the module `M` and `q` a submodule of `p`, `p.equiv_subtype_map q` is the natural `linear_equiv` between `q` and `q.map p.subtype`. -/ def equiv_subtype_map (p : submodule R M) (q : submodule R p) : q ≃ₗ[R] q.map p.subtype := { inv_fun := begin rintro ⟨x, hx⟩, refine ⟨⟨x, _⟩, _⟩; rcases hx with ⟨⟨_, h⟩, _, rfl⟩; assumption end, left_inv := λ ⟨⟨_, _⟩, _⟩, rfl, right_inv := λ ⟨x, ⟨_, h⟩, _, rfl⟩, rfl, .. (p.subtype.dom_restrict q).cod_restrict _ begin rintro ⟨x, hx⟩, refine ⟨x, hx, rfl⟩, end } @[simp] lemma equiv_subtype_map_apply {p : submodule R M} {q : submodule R p} (x : q) : (p.equiv_subtype_map q x : M) = p.subtype.dom_restrict q x := rfl @[simp] lemma equiv_subtype_map_symm_apply {p : submodule R M} {q : submodule R p} (x : q.map p.subtype) : ((p.equiv_subtype_map q).symm x : M) = x := by { cases x, refl } /-- If `s ≤ t`, then we can view `s` as a submodule of `t` by taking the comap of `t.subtype`. -/ @[simps] def comap_subtype_equiv_of_le {p q : submodule R M} (hpq : p ≤ q) : comap q.subtype p ≃ₗ[R] p := { to_fun := λ x, ⟨x, x.2⟩, inv_fun := λ x, ⟨⟨x, hpq x.2⟩, x.2⟩, left_inv := λ x, by simp only [coe_mk, set_like.eta, coe_coe], right_inv := λ x, by simp only [subtype.coe_mk, set_like.eta, coe_coe], map_add' := λ x y, rfl, map_smul' := λ c x, rfl } end module end submodule namespace submodule variables [comm_semiring R] [comm_semiring R₂] variables [add_comm_monoid M] [add_comm_monoid M₂] [module R M] [module R₂ M₂] variables [add_comm_monoid N] [add_comm_monoid N₂] [module R N] [module R N₂] variables {τ₁₂ : R →+* R₂} {τ₂₁ : R₂ →+* R} variables [ring_hom_inv_pair τ₁₂ τ₂₁] [ring_hom_inv_pair τ₂₁ τ₁₂] variables (p : submodule R M) (q : submodule R₂ M₂) variables (pₗ : submodule R N) (qₗ : submodule R N₂) include τ₂₁ @[simp] lemma mem_map_equiv {e : M ≃ₛₗ[τ₁₂] M₂} {x : M₂} : x ∈ p.map (e : M →ₛₗ[τ₁₂] M₂) ↔ e.symm x ∈ p := begin rw submodule.mem_map, split, { rintros ⟨y, hy, hx⟩, simp [←hx, hy], }, { intros hx, refine ⟨e.symm x, hx, by simp⟩, }, end omit τ₂₁ lemma map_equiv_eq_comap_symm (e : M ≃ₛₗ[τ₁₂] M₂) (K : submodule R M) : K.map (e : M →ₛₗ[τ₁₂] M₂) = K.comap (e.symm : M₂ →ₛₗ[τ₂₁] M) := submodule.ext (λ _, by rw [mem_map_equiv, mem_comap, linear_equiv.coe_coe]) lemma comap_equiv_eq_map_symm (e : M ≃ₛₗ[τ₁₂] M₂) (K : submodule R₂ M₂) : K.comap (e : M →ₛₗ[τ₁₂] M₂) = K.map (e.symm : M₂ →ₛₗ[τ₂₁] M) := (map_equiv_eq_comap_symm e.symm K).symm lemma comap_le_comap_smul (fₗ : N →ₗ[R] N₂) (c : R) : comap fₗ qₗ ≤ comap (c • fₗ) qₗ := begin rw set_like.le_def, intros m h, change c • (fₗ m) ∈ qₗ, change fₗ m ∈ qₗ at h, apply qₗ.smul_mem _ h, end lemma inf_comap_le_comap_add (f₁ f₂ : M →ₛₗ[τ₁₂] M₂) : comap f₁ q ⊓ comap f₂ q ≤ comap (f₁ + f₂) q := begin rw set_like.le_def, intros m h, change f₁ m + f₂ m ∈ q, change f₁ m ∈ q ∧ f₂ m ∈ q at h, apply q.add_mem h.1 h.2, end /-- Given modules `M`, `M₂` over a commutative ring, together with submodules `p ⊆ M`, `q ⊆ M₂`, the set of maps $\{f ∈ Hom(M, M₂) | f(p) ⊆ q \}$ is a submodule of `Hom(M, M₂)`. -/ def compatible_maps : submodule R (N →ₗ[R] N₂) := { carrier := {fₗ | pₗ ≤ comap fₗ qₗ}, zero_mem' := by { change pₗ ≤ comap 0 qₗ, rw comap_zero, refine le_top, }, add_mem' := λ f₁ f₂ h₁ h₂, by { apply le_trans _ (inf_comap_le_comap_add qₗ f₁ f₂), rw le_inf_iff, exact ⟨h₁, h₂⟩, }, smul_mem' := λ c fₗ h, le_trans h (comap_le_comap_smul qₗ fₗ c), } end submodule namespace equiv variables [semiring R] [add_comm_monoid M] [module R M] [add_comm_monoid M₂] [module R M₂] /-- An equivalence whose underlying function is linear is a linear equivalence. -/ def to_linear_equiv (e : M ≃ M₂) (h : is_linear_map R (e : M → M₂)) : M ≃ₗ[R] M₂ := { .. e, .. h.mk' e} end equiv section fun_left variables (R M) [semiring R] [add_comm_monoid M] [module R M] variables {m n p : Type*} namespace linear_map /-- Given an `R`-module `M` and a function `m → n` between arbitrary types, construct a linear map `(n → M) →ₗ[R] (m → M)` -/ def fun_left (f : m → n) : (n → M) →ₗ[R] (m → M) := { to_fun := (∘ f), map_add' := λ _ _, rfl, map_smul' := λ _ _, rfl } @[simp] theorem fun_left_apply (f : m → n) (g : n → M) (i : m) : fun_left R M f g i = g (f i) := rfl @[simp] theorem fun_left_id (g : n → M) : fun_left R M _root_.id g = g := rfl theorem fun_left_comp (f₁ : n → p) (f₂ : m → n) : fun_left R M (f₁ ∘ f₂) = (fun_left R M f₂).comp (fun_left R M f₁) := rfl theorem fun_left_surjective_of_injective (f : m → n) (hf : injective f) : surjective (fun_left R M f) := begin classical, intro g, refine ⟨λ x, if h : ∃ y, f y = x then g h.some else 0, _⟩, { ext, dsimp only [fun_left_apply], split_ifs with w, { congr, exact hf w.some_spec, }, { simpa only [not_true, exists_apply_eq_apply] using w } }, end theorem fun_left_injective_of_surjective (f : m → n) (hf : surjective f) : injective (fun_left R M f) := begin obtain ⟨g, hg⟩ := hf.has_right_inverse, suffices : left_inverse (fun_left R M g) (fun_left R M f), { exact this.injective }, intro x, rw [←linear_map.comp_apply, ← fun_left_comp, hg.id, fun_left_id], end end linear_map namespace linear_equiv open _root_.linear_map /-- Given an `R`-module `M` and an equivalence `m ≃ n` between arbitrary types, construct a linear equivalence `(n → M) ≃ₗ[R] (m → M)` -/ def fun_congr_left (e : m ≃ n) : (n → M) ≃ₗ[R] (m → M) := linear_equiv.of_linear (fun_left R M e) (fun_left R M e.symm) (linear_map.ext $ λ x, funext $ λ i, by rw [id_apply, ← fun_left_comp, equiv.symm_comp_self, fun_left_id]) (linear_map.ext $ λ x, funext $ λ i, by rw [id_apply, ← fun_left_comp, equiv.self_comp_symm, fun_left_id]) @[simp] theorem fun_congr_left_apply (e : m ≃ n) (x : n → M) : fun_congr_left R M e x = fun_left R M e x := rfl @[simp] theorem fun_congr_left_id : fun_congr_left R M (equiv.refl n) = linear_equiv.refl R (n → M) := rfl @[simp] theorem fun_congr_left_comp (e₁ : m ≃ n) (e₂ : n ≃ p) : fun_congr_left R M (equiv.trans e₁ e₂) = linear_equiv.trans (fun_congr_left R M e₂) (fun_congr_left R M e₁) := rfl @[simp] lemma fun_congr_left_symm (e : m ≃ n) : (fun_congr_left R M e).symm = fun_congr_left R M e.symm := rfl end linear_equiv end fun_left namespace linear_map variables [semiring R] [add_comm_monoid M] [module R M] variables (R M) /-- The group of invertible linear maps from `M` to itself -/ @[reducible] def general_linear_group := (M →ₗ[R] M)ˣ namespace general_linear_group variables {R M} instance : has_coe_to_fun (general_linear_group R M) (λ _, M → M) := by apply_instance /-- An invertible linear map `f` determines an equivalence from `M` to itself. -/ def to_linear_equiv (f : general_linear_group R M) : (M ≃ₗ[R] M) := { inv_fun := f.inv.to_fun, left_inv := λ m, show (f.inv * f.val) m = m, by erw f.inv_val; simp, right_inv := λ m, show (f.val * f.inv) m = m, by erw f.val_inv; simp, ..f.val } /-- An equivalence from `M` to itself determines an invertible linear map. -/ def of_linear_equiv (f : (M ≃ₗ[R] M)) : general_linear_group R M := { val := f, inv := (f.symm : M →ₗ[R] M), val_inv := linear_map.ext $ λ _, f.apply_symm_apply _, inv_val := linear_map.ext $ λ _, f.symm_apply_apply _ } variables (R M) /-- The general linear group on `R` and `M` is multiplicatively equivalent to the type of linear equivalences between `M` and itself. -/ def general_linear_equiv : general_linear_group R M ≃* (M ≃ₗ[R] M) := { to_fun := to_linear_equiv, inv_fun := of_linear_equiv, left_inv := λ f, by { ext, refl }, right_inv := λ f, by { ext, refl }, map_mul' := λ x y, by {ext, refl} } @[simp] lemma general_linear_equiv_to_linear_map (f : general_linear_group R M) : (general_linear_equiv R M f : M →ₗ[R] M) = f := by {ext, refl} @[simp] lemma coe_fn_general_linear_equiv (f : general_linear_group R M) : ⇑(general_linear_equiv R M f) = (f : M → M) := rfl end general_linear_group end linear_map