/- Copyright (c) 2020 Oliver Nash. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Oliver Nash, Antoine Labelle -/ import linear_algebra.dual import linear_algebra.matrix.to_lin import linear_algebra.tensor_product_basis import linear_algebra.free_module.finite.rank /-! # Contractions Given modules $M, N$ over a commutative ring $R$, this file defines the natural linear maps: $M^* \otimes M \to R$, $M \otimes M^* \to R$, and $M^* \otimes N → Hom(M, N)$, as well as proving some basic properties of these maps. ## Tags contraction, dual module, tensor product -/ variables {ι : Type*} (R M N P Q : Type*) local attribute [ext] tensor_product.ext section contraction open tensor_product linear_map matrix module open_locale tensor_product big_operators section comm_semiring variables [comm_semiring R] variables [add_comm_monoid M] [add_comm_monoid N] [add_comm_monoid P] [add_comm_monoid Q] variables [module R M] [module R N] [module R P] [module R Q] variables [decidable_eq ι] [fintype ι] (b : basis ι R M) /-- The natural left-handed pairing between a module and its dual. -/ def contract_left : (module.dual R M) ⊗ M →ₗ[R] R := (uncurry _ _ _ _).to_fun linear_map.id /-- The natural right-handed pairing between a module and its dual. -/ def contract_right : M ⊗ (module.dual R M) →ₗ[R] R := (uncurry _ _ _ _).to_fun (linear_map.flip linear_map.id) /-- The natural map associating a linear map to the tensor product of two modules. -/ def dual_tensor_hom : (module.dual R M) ⊗ N →ₗ[R] M →ₗ[R] N := let M' := module.dual R M in (uncurry R M' N (M →ₗ[R] N) : _ → M' ⊗ N →ₗ[R] M →ₗ[R] N) linear_map.smul_rightₗ variables {R M N P Q} @[simp] lemma contract_left_apply (f : module.dual R M) (m : M) : contract_left R M (f ⊗ₜ m) = f m := by apply uncurry_apply @[simp] lemma contract_right_apply (f : module.dual R M) (m : M) : contract_right R M (m ⊗ₜ f) = f m := by apply uncurry_apply @[simp] lemma dual_tensor_hom_apply (f : module.dual R M) (m : M) (n : N) : dual_tensor_hom R M N (f ⊗ₜ n) m = (f m) • n := by { dunfold dual_tensor_hom, rw uncurry_apply, refl, } @[simp] lemma transpose_dual_tensor_hom (f : module.dual R M) (m : M) : dual.transpose (dual_tensor_hom R M M (f ⊗ₜ m)) = dual_tensor_hom R _ _ (dual.eval R M m ⊗ₜ f) := by { ext f' m', simp only [dual.transpose_apply, coe_comp, function.comp_app, dual_tensor_hom_apply, linear_map.map_smulₛₗ, ring_hom.id_apply, algebra.id.smul_eq_mul, dual.eval_apply, smul_apply], exact mul_comm _ _ } @[simp] lemma dual_tensor_hom_prod_map_zero (f : module.dual R M) (p : P) : ((dual_tensor_hom R M P) (f ⊗ₜ[R] p)).prod_map (0 : N →ₗ[R] Q) = dual_tensor_hom R (M × N) (P × Q) ((f ∘ₗ fst R M N) ⊗ₜ inl R P Q p) := by {ext; simp only [coe_comp, coe_inl, function.comp_app, prod_map_apply, dual_tensor_hom_apply, fst_apply, prod.smul_mk, zero_apply, smul_zero]} @[simp] lemma zero_prod_map_dual_tensor_hom (g : module.dual R N) (q : Q) : (0 : M →ₗ[R] P).prod_map ((dual_tensor_hom R N Q) (g ⊗ₜ[R] q)) = dual_tensor_hom R (M × N) (P × Q) ((g ∘ₗ snd R M N) ⊗ₜ inr R P Q q) := by {ext; simp only [coe_comp, coe_inr, function.comp_app, prod_map_apply, dual_tensor_hom_apply, snd_apply, prod.smul_mk, zero_apply, smul_zero]} lemma map_dual_tensor_hom (f : module.dual R M) (p : P) (g : module.dual R N) (q : Q) : tensor_product.map (dual_tensor_hom R M P (f ⊗ₜ[R] p)) (dual_tensor_hom R N Q (g ⊗ₜ[R] q)) = dual_tensor_hom R (M ⊗[R] N) (P ⊗[R] Q) (dual_distrib R M N (f ⊗ₜ g) ⊗ₜ[R] (p ⊗ₜ[R] q)) := begin ext m n, simp only [compr₂_apply, mk_apply, map_tmul, dual_tensor_hom_apply, dual_distrib_apply, ←smul_tmul_smul], end @[simp] lemma comp_dual_tensor_hom (f : module.dual R M) (n : N) (g : module.dual R N) (p : P) : (dual_tensor_hom R N P (g ⊗ₜ[R] p)) ∘ₗ (dual_tensor_hom R M N (f ⊗ₜ[R] n)) = g n • dual_tensor_hom R M P (f ⊗ₜ p) := begin ext m, simp only [coe_comp, function.comp_app, dual_tensor_hom_apply, linear_map.map_smul, ring_hom.id_apply, smul_apply], rw smul_comm, end /-- As a matrix, `dual_tensor_hom` evaluated on a basis element of `M* ⊗ N` is a matrix with a single one and zeros elsewhere -/ theorem to_matrix_dual_tensor_hom {m : Type*} {n : Type*} [fintype m] [fintype n] [decidable_eq m] [decidable_eq n] (bM : basis m R M) (bN : basis n R N) (j : m) (i : n) : to_matrix bM bN (dual_tensor_hom R M N (bM.coord j ⊗ₜ bN i)) = std_basis_matrix i j 1 := begin ext i' j', by_cases hij : (i = i' ∧ j = j'); simp [linear_map.to_matrix_apply, finsupp.single_eq_pi_single, hij], rw [and_iff_not_or_not, not_not] at hij, cases hij; simp [hij], end end comm_semiring section comm_ring variables [comm_ring R] variables [add_comm_group M] [add_comm_group N] [add_comm_group P] [add_comm_group Q] variables [module R M] [module R N] [module R P] [module R Q] variables [decidable_eq ι] [fintype ι] (b : basis ι R M) variables {R M N P Q} /-- If `M` is free, the natural linear map $M^* ⊗ N → Hom(M, N)$ is an equivalence. This function provides this equivalence in return for a basis of `M`. -/ @[simps apply] noncomputable def dual_tensor_hom_equiv_of_basis : (module.dual R M) ⊗[R] N ≃ₗ[R] M →ₗ[R] N := linear_equiv.of_linear (dual_tensor_hom R M N) (∑ i, (tensor_product.mk R _ N (b.dual_basis i)) ∘ₗ linear_map.applyₗ (b i)) (begin ext f m, simp only [applyₗ_apply_apply, coe_fn_sum, dual_tensor_hom_apply, mk_apply, id_coe, id.def, fintype.sum_apply, function.comp_app, basis.coe_dual_basis, coe_comp, basis.coord_apply, ← f.map_smul, (dual_tensor_hom R M N).map_sum, ← f.map_sum, b.sum_repr], end) (begin ext f m, simp only [applyₗ_apply_apply, coe_fn_sum, dual_tensor_hom_apply, mk_apply, id_coe, id.def, fintype.sum_apply, function.comp_app, basis.coe_dual_basis, coe_comp, compr₂_apply, tmul_smul, smul_tmul', ← sum_tmul, basis.sum_dual_apply_smul_coord], end) @[simp] lemma dual_tensor_hom_equiv_of_basis_to_linear_map : (dual_tensor_hom_equiv_of_basis b : (module.dual R M) ⊗[R] N ≃ₗ[R] M →ₗ[R] N).to_linear_map = dual_tensor_hom R M N := rfl @[simp] lemma dual_tensor_hom_equiv_of_basis_symm_cancel_left (x : (module.dual R M) ⊗[R] N) : (dual_tensor_hom_equiv_of_basis b).symm (dual_tensor_hom R M N x) = x := by rw [←dual_tensor_hom_equiv_of_basis_apply b, linear_equiv.symm_apply_apply] @[simp] lemma dual_tensor_hom_equiv_of_basis_symm_cancel_right (x : M →ₗ[R] N) : dual_tensor_hom R M N ((dual_tensor_hom_equiv_of_basis b).symm x) = x := by rw [←dual_tensor_hom_equiv_of_basis_apply b, linear_equiv.apply_symm_apply] variables (R M N P Q) variables [module.free R M] [module.finite R M] [nontrivial R] open_locale classical /-- If `M` is finite free, the natural map $M^* ⊗ N → Hom(M, N)$ is an equivalence. -/ @[simp] noncomputable def dual_tensor_hom_equiv : (module.dual R M) ⊗[R] N ≃ₗ[R] M →ₗ[R] N := dual_tensor_hom_equiv_of_basis (module.free.choose_basis R M) end comm_ring end contraction section hom_tensor_hom open_locale tensor_product open module tensor_product linear_map section comm_ring variables [comm_ring R] variables [add_comm_group M] [add_comm_group N] [add_comm_group P] [add_comm_group Q] variables [module R M] [module R N] [module R P] [module R Q] variables [free R M] [finite R M] [free R N] [finite R N] [nontrivial R] /-- When `M` is a finite free module, the map `ltensor_hom_to_hom_ltensor` is an equivalence. Note that `ltensor_hom_equiv_hom_ltensor` is not defined directly in terms of `ltensor_hom_to_hom_ltensor`, but the equivalence between the two is given by `ltensor_hom_equiv_hom_ltensor_to_linear_map` and `ltensor_hom_equiv_hom_ltensor_apply`. -/ noncomputable def ltensor_hom_equiv_hom_ltensor : P ⊗[R] (M →ₗ[R] Q) ≃ₗ[R] (M →ₗ[R] P ⊗[R] Q) := congr (linear_equiv.refl R P) (dual_tensor_hom_equiv R M Q).symm ≪≫ₗ tensor_product.left_comm R P _ Q ≪≫ₗ dual_tensor_hom_equiv R M _ /-- When `M` is a finite free module, the map `rtensor_hom_to_hom_rtensor` is an equivalence. Note that `rtensor_hom_equiv_hom_rtensor` is not defined directly in terms of `rtensor_hom_to_hom_rtensor`, but the equivalence between the two is given by `rtensor_hom_equiv_hom_rtensor_to_linear_map` and `rtensor_hom_equiv_hom_rtensor_apply`. -/ noncomputable def rtensor_hom_equiv_hom_rtensor : (M →ₗ[R] P) ⊗[R] Q ≃ₗ[R] (M →ₗ[R] P ⊗[R] Q) := congr (dual_tensor_hom_equiv R M P).symm (linear_equiv.refl R Q) ≪≫ₗ tensor_product.assoc R _ P Q ≪≫ₗ dual_tensor_hom_equiv R M _ @[simp] lemma ltensor_hom_equiv_hom_ltensor_to_linear_map : (ltensor_hom_equiv_hom_ltensor R M P Q).to_linear_map = ltensor_hom_to_hom_ltensor R M P Q := begin let e := congr (linear_equiv.refl R P) (dual_tensor_hom_equiv R M Q), have h : function.surjective e.to_linear_map := e.surjective, refine (cancel_right h).1 _, ext p f q m, simp only [ltensor_hom_equiv_hom_ltensor, dual_tensor_hom_equiv, compr₂_apply, mk_apply, coe_comp, linear_equiv.coe_to_linear_map, function.comp_app, map_tmul, linear_equiv.coe_coe, dual_tensor_hom_equiv_of_basis_apply, linear_equiv.trans_apply, congr_tmul, linear_equiv.refl_apply, dual_tensor_hom_equiv_of_basis_symm_cancel_left, left_comm_tmul, dual_tensor_hom_apply, ltensor_hom_to_hom_ltensor_apply, tmul_smul], end @[simp] lemma rtensor_hom_equiv_hom_rtensor_to_linear_map : (rtensor_hom_equiv_hom_rtensor R M P Q).to_linear_map = rtensor_hom_to_hom_rtensor R M P Q := begin let e := congr (dual_tensor_hom_equiv R M P) (linear_equiv.refl R Q), have h : function.surjective e.to_linear_map := e.surjective, refine (cancel_right h).1 _, ext f p q m, simp only [rtensor_hom_equiv_hom_rtensor, dual_tensor_hom_equiv, compr₂_apply, mk_apply, coe_comp, linear_equiv.coe_to_linear_map, function.comp_app, map_tmul, linear_equiv.coe_coe, dual_tensor_hom_equiv_of_basis_apply, linear_equiv.trans_apply, congr_tmul, dual_tensor_hom_equiv_of_basis_symm_cancel_left, linear_equiv.refl_apply, assoc_tmul, dual_tensor_hom_apply, rtensor_hom_to_hom_rtensor_apply, smul_tmul'], end variables {R M N P Q} @[simp] lemma ltensor_hom_equiv_hom_ltensor_apply (x : P ⊗[R] (M →ₗ[R] Q)) : ltensor_hom_equiv_hom_ltensor R M P Q x = ltensor_hom_to_hom_ltensor R M P Q x := by rw [←linear_equiv.coe_to_linear_map, ltensor_hom_equiv_hom_ltensor_to_linear_map] @[simp] lemma rtensor_hom_equiv_hom_rtensor_apply (x : (M →ₗ[R] P) ⊗[R] Q) : rtensor_hom_equiv_hom_rtensor R M P Q x = rtensor_hom_to_hom_rtensor R M P Q x := by rw [←linear_equiv.coe_to_linear_map, rtensor_hom_equiv_hom_rtensor_to_linear_map] variables (R M N P Q) /-- When `M` and `N` are free `R` modules, the map `hom_tensor_hom_map` is an equivalence. Note that `hom_tensor_hom_equiv` is not defined directly in terms of `hom_tensor_hom_map`, but the equivalence between the two is given by `hom_tensor_hom_equiv_to_linear_map` and `hom_tensor_hom_equiv_apply`. -/ noncomputable def hom_tensor_hom_equiv : (M →ₗ[R] P) ⊗[R] (N →ₗ[R] Q) ≃ₗ[R] (M ⊗[R] N →ₗ[R] P ⊗[R] Q) := rtensor_hom_equiv_hom_rtensor R M P _ ≪≫ₗ (linear_equiv.refl R M).arrow_congr (ltensor_hom_equiv_hom_ltensor R N _ Q) ≪≫ₗ lift.equiv R M N _ @[simp] lemma hom_tensor_hom_equiv_to_linear_map : (hom_tensor_hom_equiv R M N P Q).to_linear_map = hom_tensor_hom_map R M N P Q := begin ext f g m n, simp only [hom_tensor_hom_equiv, compr₂_apply, mk_apply, linear_equiv.coe_to_linear_map, linear_equiv.trans_apply, lift.equiv_apply, linear_equiv.arrow_congr_apply, linear_equiv.refl_symm, linear_equiv.refl_apply, rtensor_hom_equiv_hom_rtensor_apply, ltensor_hom_equiv_hom_ltensor_apply, ltensor_hom_to_hom_ltensor_apply, rtensor_hom_to_hom_rtensor_apply, hom_tensor_hom_map_apply, map_tmul], end variables {R M N P Q} @[simp] lemma hom_tensor_hom_equiv_apply (x : (M →ₗ[R] P) ⊗[R] (N →ₗ[R] Q)) : hom_tensor_hom_equiv R M N P Q x = hom_tensor_hom_map R M N P Q x := by rw [←linear_equiv.coe_to_linear_map, hom_tensor_hom_equiv_to_linear_map] end comm_ring end hom_tensor_hom