/- Copyright (c) 2019 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl -/ import data.finsupp.basic import linear_algebra.pi import linear_algebra.span /-! # Properties of the module `α →₀ M` Given an `R`-module `M`, the `R`-module structure on `α →₀ M` is defined in `data.finsupp.basic`. In this file we define `finsupp.supported s` to be the set `{f : α →₀ M | f.support ⊆ s}` interpreted as a submodule of `α →₀ M`. We also define `linear_map` versions of various maps: * `finsupp.lsingle a : M →ₗ[R] ι →₀ M`: `finsupp.single a` as a linear map; * `finsupp.lapply a : (ι →₀ M) →ₗ[R] M`: the map `λ f, f a` as a linear map; * `finsupp.lsubtype_domain (s : set α) : (α →₀ M) →ₗ[R] (s →₀ M)`: restriction to a subtype as a linear map; * `finsupp.restrict_dom`: `finsupp.filter` as a linear map to `finsupp.supported s`; * `finsupp.lsum`: `finsupp.sum` or `finsupp.lift_add_hom` as a `linear_map`; * `finsupp.total α M R (v : ι → M)`: sends `l : ι → R` to the linear combination of `v i` with coefficients `l i`; * `finsupp.total_on`: a restricted version of `finsupp.total` with domain `finsupp.supported R R s` and codomain `submodule.span R (v '' s)`; * `finsupp.supported_equiv_finsupp`: a linear equivalence between the functions `α →₀ M` supported on `s` and the functions `s →₀ M`; * `finsupp.lmap_domain`: a linear map version of `finsupp.map_domain`; * `finsupp.dom_lcongr`: a `linear_equiv` version of `finsupp.dom_congr`; * `finsupp.congr`: if the sets `s` and `t` are equivalent, then `supported M R s` is equivalent to `supported M R t`; * `finsupp.lcongr`: a `linear_equiv`alence between `α →₀ M` and `β →₀ N` constructed using `e : α ≃ β` and `e' : M ≃ₗ[R] N`. ## Tags function with finite support, module, linear algebra -/ noncomputable theory open set linear_map submodule open_locale classical big_operators namespace finsupp variables {α : Type*} {M : Type*} {N : Type*} {P : Type*} {R : Type*} {S : Type*} variables [semiring R] [semiring S] [add_comm_monoid M] [module R M] variables [add_comm_monoid N] [module R N] variables [add_comm_monoid P] [module R P] /-- Interpret `finsupp.single a` as a linear map. -/ def lsingle (a : α) : M →ₗ[R] (α →₀ M) := { map_smul' := assume a b, (smul_single _ _ _).symm, ..finsupp.single_add_hom a } /-- Two `R`-linear maps from `finsupp X M` which agree on each `single x y` agree everywhere. -/ lemma lhom_ext ⦃φ ψ : (α →₀ M) →ₗ[R] N⦄ (h : ∀ a b, φ (single a b) = ψ (single a b)) : φ = ψ := linear_map.to_add_monoid_hom_injective $ add_hom_ext h /-- Two `R`-linear maps from `finsupp X M` which agree on each `single x y` agree everywhere. We formulate this fact using equality of linear maps `φ.comp (lsingle a)` and `ψ.comp (lsingle a)` so that the `ext` tactic can apply a type-specific extensionality lemma to prove equality of these maps. E.g., if `M = R`, then it suffices to verify `φ (single a 1) = ψ (single a 1)`. -/ @[ext] lemma lhom_ext' ⦃φ ψ : (α →₀ M) →ₗ[R] N⦄ (h : ∀ a, φ.comp (lsingle a) = ψ.comp (lsingle a)) : φ = ψ := lhom_ext $ λ a, linear_map.congr_fun (h a) /-- Interpret `λ (f : α →₀ M), f a` as a linear map. -/ def lapply (a : α) : (α →₀ M) →ₗ[R] M := { map_smul' := assume a b, rfl, ..finsupp.apply_add_hom a } section lsubtype_domain variables (s : set α) /-- Interpret `finsupp.subtype_domain s` as a linear map. -/ def lsubtype_domain : (α →₀ M) →ₗ[R] (s →₀ M) := { to_fun := subtype_domain (λx, x ∈ s), map_add' := λ a b, subtype_domain_add, map_smul' := λ c a, ext $ λ a, rfl } lemma lsubtype_domain_apply (f : α →₀ M) : (lsubtype_domain s : (α →₀ M) →ₗ[R] (s →₀ M)) f = subtype_domain (λx, x ∈ s) f := rfl end lsubtype_domain @[simp] lemma lsingle_apply (a : α) (b : M) : (lsingle a : M →ₗ[R] (α →₀ M)) b = single a b := rfl @[simp] lemma lapply_apply (a : α) (f : α →₀ M) : (lapply a : (α →₀ M) →ₗ[R] M) f = f a := rfl @[simp] lemma ker_lsingle (a : α) : (lsingle a : M →ₗ[R] (α →₀ M)).ker = ⊥ := ker_eq_bot_of_injective (single_injective a) lemma lsingle_range_le_ker_lapply (s t : set α) (h : disjoint s t) : (⨆a∈s, (lsingle a : M →ₗ[R] (α →₀ M)).range) ≤ (⨅a∈t, ker (lapply a)) := begin refine supr_le (assume a₁, supr_le $ assume h₁, range_le_iff_comap.2 _), simp only [(ker_comp _ _).symm, eq_top_iff, set_like.le_def, mem_ker, comap_infi, mem_infi], assume b hb a₂ h₂, have : a₁ ≠ a₂ := assume eq, h ⟨h₁, eq.symm ▸ h₂⟩, exact single_eq_of_ne this end lemma infi_ker_lapply_le_bot : (⨅a, ker (lapply a : (α →₀ M) →ₗ[R] M)) ≤ ⊥ := begin simp only [set_like.le_def, mem_infi, mem_ker, mem_bot, lapply_apply], exact assume a h, finsupp.ext h end lemma supr_lsingle_range : (⨆a, (lsingle a : M →ₗ[R] (α →₀ M)).range) = ⊤ := begin refine (eq_top_iff.2 $ set_like.le_def.2 $ assume f _, _), rw [← sum_single f], exact sum_mem (assume a ha, submodule.mem_supr_of_mem a ⟨_, rfl⟩), end lemma disjoint_lsingle_lsingle (s t : set α) (hs : disjoint s t) : disjoint (⨆a∈s, (lsingle a : M →ₗ[R] (α →₀ M)).range) (⨆a∈t, (lsingle a).range) := begin refine disjoint.mono (lsingle_range_le_ker_lapply _ _ $ disjoint_compl_right) (lsingle_range_le_ker_lapply _ _ $ disjoint_compl_right) (le_trans (le_infi $ assume i, _) infi_ker_lapply_le_bot), classical, by_cases his : i ∈ s, { by_cases hit : i ∈ t, { exact (hs ⟨his, hit⟩).elim }, exact inf_le_of_right_le (infi_le_of_le i $ infi_le _ hit) }, exact inf_le_of_left_le (infi_le_of_le i $ infi_le _ his) end lemma span_single_image (s : set M) (a : α) : submodule.span R (single a '' s) = (submodule.span R s).map (lsingle a) := by rw ← span_image; refl variables (M R) /-- `finsupp.supported M R s` is the `R`-submodule of all `p : α →₀ M` such that `p.support ⊆ s`. -/ def supported (s : set α) : submodule R (α →₀ M) := begin refine ⟨ {p | ↑p.support ⊆ s }, _, _, _ ⟩, { assume p q hp hq, refine subset.trans (subset.trans (finset.coe_subset.2 support_add) _) (union_subset hp hq), rw [finset.coe_union] }, { simp only [subset_def, finset.mem_coe, set.mem_set_of_eq, mem_support_iff, zero_apply], assume h ha, exact (ha rfl).elim }, { assume a p hp, refine subset.trans (finset.coe_subset.2 support_smul) hp } end variables {M} lemma mem_supported {s : set α} (p : α →₀ M) : p ∈ (supported M R s) ↔ ↑p.support ⊆ s := iff.rfl lemma mem_supported' {s : set α} (p : α →₀ M) : p ∈ supported M R s ↔ ∀ x ∉ s, p x = 0 := by haveI := classical.dec_pred (λ (x : α), x ∈ s); simp [mem_supported, set.subset_def, not_imp_comm] lemma mem_supported_support (p : α →₀ M) : p ∈ finsupp.supported M R (p.support : set α) := by rw finsupp.mem_supported lemma single_mem_supported {s : set α} {a : α} (b : M) (h : a ∈ s) : single a b ∈ supported M R s := set.subset.trans support_single_subset (finset.singleton_subset_set_iff.2 h) lemma supported_eq_span_single (s : set α) : supported R R s = span R ((λ i, single i 1) '' s) := begin refine (span_eq_of_le _ _ (set_like.le_def.2 $ λ l hl, _)).symm, { rintro _ ⟨_, hp, rfl ⟩ , exact single_mem_supported R 1 hp }, { rw ← l.sum_single, refine sum_mem (λ i il, _), convert @smul_mem R (α →₀ R) _ _ _ _ (single i 1) (l i) _, { simp }, apply subset_span, apply set.mem_image_of_mem _ (hl il) } end variables (M R) /-- Interpret `finsupp.filter s` as a linear map from `α →₀ M` to `supported M R s`. -/ def restrict_dom (s : set α) : (α →₀ M) →ₗ[R] supported M R s := linear_map.cod_restrict _ { to_fun := filter (∈ s), map_add' := λ l₁ l₂, filter_add, map_smul' := λ a l, filter_smul } (λ l, (mem_supported' _ _).2 $ λ x, filter_apply_neg (∈ s) l) variables {M R} section @[simp] theorem restrict_dom_apply (s : set α) (l : α →₀ M) : ((restrict_dom M R s : (α →₀ M) →ₗ[R] supported M R s) l : α →₀ M) = finsupp.filter (∈ s) l := rfl end theorem restrict_dom_comp_subtype (s : set α) : (restrict_dom M R s).comp (submodule.subtype _) = linear_map.id := begin ext l a, by_cases a ∈ s; simp [h], exact ((mem_supported' R l.1).1 l.2 a h).symm end theorem range_restrict_dom (s : set α) : (restrict_dom M R s).range = ⊤ := range_eq_top.2 $ function.right_inverse.surjective $ linear_map.congr_fun (restrict_dom_comp_subtype s) theorem supported_mono {s t : set α} (st : s ⊆ t) : supported M R s ≤ supported M R t := λ l h, set.subset.trans h st @[simp] theorem supported_empty : supported M R (∅ : set α) = ⊥ := eq_bot_iff.2 $ λ l h, (submodule.mem_bot R).2 $ by ext; simp [*, mem_supported'] at * @[simp] theorem supported_univ : supported M R (set.univ : set α) = ⊤ := eq_top_iff.2 $ λ l _, set.subset_univ _ theorem supported_Union {δ : Type*} (s : δ → set α) : supported M R (⋃ i, s i) = ⨆ i, supported M R (s i) := begin refine le_antisymm _ (supr_le $ λ i, supported_mono $ set.subset_Union _ _), haveI := classical.dec_pred (λ x, x ∈ (⋃ i, s i)), suffices : ((submodule.subtype _).comp (restrict_dom M R (⋃ i, s i))).range ≤ ⨆ i, supported M R (s i), { rwa [linear_map.range_comp, range_restrict_dom, map_top, range_subtype] at this }, rw [range_le_iff_comap, eq_top_iff], rintro l ⟨⟩, apply finsupp.induction l, { exact zero_mem _ }, refine λ x a l hl a0, add_mem _, by_cases (∃ i, x ∈ s i); simp [h], { cases h with i hi, exact le_supr (λ i, supported M R (s i)) i (single_mem_supported R _ hi) } end theorem supported_union (s t : set α) : supported M R (s ∪ t) = supported M R s ⊔ supported M R t := by erw [set.union_eq_Union, supported_Union, supr_bool_eq]; refl theorem supported_Inter {ι : Type*} (s : ι → set α) : supported M R (⋂ i, s i) = ⨅ i, supported M R (s i) := submodule.ext $ λ x, by simp [mem_supported, subset_Inter_iff] theorem supported_inter (s t : set α) : supported M R (s ∩ t) = supported M R s ⊓ supported M R t := by rw [set.inter_eq_Inter, supported_Inter, infi_bool_eq]; refl theorem disjoint_supported_supported {s t : set α} (h : disjoint s t) : disjoint (supported M R s) (supported M R t) := disjoint_iff.2 $ by rw [← supported_inter, disjoint_iff_inter_eq_empty.1 h, supported_empty] theorem disjoint_supported_supported_iff [nontrivial M] {s t : set α} : disjoint (supported M R s) (supported M R t) ↔ disjoint s t := begin refine ⟨λ h x hx, _, disjoint_supported_supported⟩, rcases exists_ne (0 : M) with ⟨y, hy⟩, have := h ⟨single_mem_supported R y hx.1, single_mem_supported R y hx.2⟩, rw [mem_bot, single_eq_zero] at this, exact hy this end /-- Interpret `finsupp.restrict_support_equiv` as a linear equivalence between `supported M R s` and `s →₀ M`. -/ def supported_equiv_finsupp (s : set α) : (supported M R s) ≃ₗ[R] (s →₀ M) := begin let F : (supported M R s) ≃ (s →₀ M) := restrict_support_equiv s M, refine F.to_linear_equiv _, have : (F : (supported M R s) → (↥s →₀ M)) = ((lsubtype_domain s : (α →₀ M) →ₗ[R] (s →₀ M)).comp (submodule.subtype (supported M R s))) := rfl, rw this, exact linear_map.is_linear _ end section lsum variables (S) [module S N] [smul_comm_class R S N] /-- Lift a family of linear maps `M →ₗ[R] N` indexed by `x : α` to a linear map from `α →₀ M` to `N` using `finsupp.sum`. This is an upgraded version of `finsupp.lift_add_hom`. See note [bundled maps over different rings] for why separate `R` and `S` semirings are used. -/ def lsum : (α → M →ₗ[R] N) ≃ₗ[S] ((α →₀ M) →ₗ[R] N) := { to_fun := λ F, { to_fun := λ d, d.sum (λ i, F i), map_add' := (lift_add_hom (λ x, (F x).to_add_monoid_hom)).map_add, map_smul' := λ c f, by simp [sum_smul_index', smul_sum] }, inv_fun := λ F x, F.comp (lsingle x), left_inv := λ F, by { ext x y, simp }, right_inv := λ F, by { ext x y, simp }, map_add' := λ F G, by { ext x y, simp }, map_smul' := λ F G, by { ext x y, simp } } @[simp] lemma coe_lsum (f : α → M →ₗ[R] N) : (lsum S f : (α →₀ M) → N) = λ d, d.sum (λ i, f i) := rfl theorem lsum_apply (f : α → M →ₗ[R] N) (l : α →₀ M) : finsupp.lsum S f l = l.sum (λ b, f b) := rfl theorem lsum_single (f : α → M →ₗ[R] N) (i : α) (m : M) : finsupp.lsum S f (finsupp.single i m) = f i m := finsupp.sum_single_index (f i).map_zero theorem lsum_symm_apply (f : (α →₀ M) →ₗ[R] N) (x : α) : (lsum S).symm f x = f.comp (lsingle x) := rfl end lsum section variables (M) (R) (X : Type*) /-- A slight rearrangement from `lsum` gives us the bijection underlying the free-forgetful adjunction for R-modules. -/ noncomputable def lift : (X → M) ≃+ ((X →₀ R) →ₗ[R] M) := (add_equiv.arrow_congr (equiv.refl X) (ring_lmap_equiv_self R ℕ M).to_add_equiv.symm).trans (lsum _ : _ ≃ₗ[ℕ] _).to_add_equiv @[simp] lemma lift_symm_apply (f) (x) : ((lift M R X).symm f) x = f (single x 1) := rfl @[simp] lemma lift_apply (f) (g) : ((lift M R X) f) g = g.sum (λ x r, r • f x) := rfl end section lmap_domain variables {α' : Type*} {α'' : Type*} (M R) /-- Interpret `finsupp.map_domain` as a linear map. -/ def lmap_domain (f : α → α') : (α →₀ M) →ₗ[R] (α' →₀ M) := { to_fun := map_domain f, map_add' := λ a b, map_domain_add, map_smul' := map_domain_smul } @[simp] theorem lmap_domain_apply (f : α → α') (l : α →₀ M) : (lmap_domain M R f : (α →₀ M) →ₗ[R] (α' →₀ M)) l = map_domain f l := rfl @[simp] theorem lmap_domain_id : (lmap_domain M R id : (α →₀ M) →ₗ[R] α →₀ M) = linear_map.id := linear_map.ext $ λ l, map_domain_id theorem lmap_domain_comp (f : α → α') (g : α' → α'') : lmap_domain M R (g ∘ f) = (lmap_domain M R g).comp (lmap_domain M R f) := linear_map.ext $ λ l, map_domain_comp theorem supported_comap_lmap_domain (f : α → α') (s : set α') : supported M R (f ⁻¹' s) ≤ (supported M R s).comap (lmap_domain M R f) := λ l (hl : ↑l.support ⊆ f ⁻¹' s), show ↑(map_domain f l).support ⊆ s, begin rw [← set.image_subset_iff, ← finset.coe_image] at hl, exact set.subset.trans map_domain_support hl end theorem lmap_domain_supported [nonempty α] (f : α → α') (s : set α) : (supported M R s).map (lmap_domain M R f) = supported M R (f '' s) := begin inhabit α, refine le_antisymm (map_le_iff_le_comap.2 $ le_trans (supported_mono $ set.subset_preimage_image _ _) (supported_comap_lmap_domain _ _ _ _)) _, intros l hl, refine ⟨(lmap_domain M R (function.inv_fun_on f s) : (α' →₀ M) →ₗ[R] α →₀ M) l, λ x hx, _, _⟩, { rcases finset.mem_image.1 (map_domain_support hx) with ⟨c, hc, rfl⟩, exact function.inv_fun_on_mem (by simpa using hl hc) }, { rw [← linear_map.comp_apply, ← lmap_domain_comp], refine (map_domain_congr $ λ c hc, _).trans map_domain_id, exact function.inv_fun_on_eq (by simpa using hl hc) } end theorem lmap_domain_disjoint_ker (f : α → α') {s : set α} (H : ∀ a b ∈ s, f a = f b → a = b) : disjoint (supported M R s) (lmap_domain M R f).ker := begin rintro l ⟨h₁, h₂⟩, rw [set_like.mem_coe, mem_ker, lmap_domain_apply, map_domain] at h₂, simp, ext x, haveI := classical.dec_pred (λ x, x ∈ s), by_cases xs : x ∈ s, { have : finsupp.sum l (λ a, finsupp.single (f a)) (f x) = 0, {rw h₂, refl}, rw [finsupp.sum_apply, finsupp.sum, finset.sum_eq_single x] at this, { simpa [finsupp.single_apply] }, { intros y hy xy, simp [mt (H _ (h₁ hy) _ xs) xy] }, { simp {contextual := tt} } }, { by_contra h, exact xs (h₁ $ finsupp.mem_support_iff.2 h) } end end lmap_domain section total variables (α) {α' : Type*} (M) {M' : Type*} (R) [add_comm_monoid M'] [module R M'] (v : α → M) {v' : α' → M'} /-- Interprets (l : α →₀ R) as linear combination of the elements in the family (v : α → M) and evaluates this linear combination. -/ protected def total : (α →₀ R) →ₗ[R] M := finsupp.lsum ℕ (λ i, linear_map.id.smul_right (v i)) variables {α M v} theorem total_apply (l : α →₀ R) : finsupp.total α M R v l = l.sum (λ i a, a • v i) := rfl theorem total_apply_of_mem_supported {l : α →₀ R} {s : finset α} (hs : l ∈ supported R R (↑s : set α)) : finsupp.total α M R v l = s.sum (λ i, l i • v i) := finset.sum_subset hs $ λ x _ hxg, show l x • v x = 0, by rw [not_mem_support_iff.1 hxg, zero_smul] @[simp] theorem total_single (c : R) (a : α) : finsupp.total α M R v (single a c) = c • (v a) := by simp [total_apply, sum_single_index] theorem apply_total (f : M →ₗ[R] M') (v) (l : α →₀ R) : f (finsupp.total α M R v l) = finsupp.total α M' R (f ∘ v) l := by apply finsupp.induction_linear l; simp { contextual := tt, } theorem total_unique [unique α] (l : α →₀ R) (v) : finsupp.total α M R v l = l default • v default := by rw [← total_single, ← unique_single l] lemma total_surjective (h : function.surjective v) : function.surjective (finsupp.total α M R v) := begin intro x, obtain ⟨y, hy⟩ := h x, exact ⟨finsupp.single y 1, by simp [hy]⟩ end theorem total_range (h : function.surjective v) : (finsupp.total α M R v).range = ⊤ := range_eq_top.2 $ total_surjective R h /-- Any module is a quotient of a free module. This is stated as surjectivity of `finsupp.total M M R id : (M →₀ R) →ₗ[R] M`. -/ lemma total_id_surjective (M) [add_comm_monoid M] [module R M] : function.surjective (finsupp.total M M R id) := total_surjective R function.surjective_id lemma range_total : (finsupp.total α M R v).range = span R (range v) := begin ext x, split, { intros hx, rw [linear_map.mem_range] at hx, rcases hx with ⟨l, hl⟩, rw ← hl, rw finsupp.total_apply, exact sum_mem (λ i hi, submodule.smul_mem _ _ (subset_span (mem_range_self i))) }, { apply span_le.2, intros x hx, rcases hx with ⟨i, hi⟩, rw [set_like.mem_coe, linear_map.mem_range], use finsupp.single i 1, simp [hi] } end theorem lmap_domain_total (f : α → α') (g : M →ₗ[R] M') (h : ∀ i, g (v i) = v' (f i)) : (finsupp.total α' M' R v').comp (lmap_domain R R f) = g.comp (finsupp.total α M R v) := by ext l; simp [total_apply, finsupp.sum_map_domain_index, add_smul, h] @[simp] theorem total_emb_domain (f : α ↪ α') (l : α →₀ R) : (finsupp.total α' M' R v') (emb_domain f l) = (finsupp.total α M' R (v' ∘ f)) l := by simp [total_apply, finsupp.sum, support_emb_domain, emb_domain_apply] theorem total_map_domain (f : α → α') (hf : function.injective f) (l : α →₀ R) : (finsupp.total α' M' R v') (map_domain f l) = (finsupp.total α M' R (v' ∘ f)) l := begin have : map_domain f l = emb_domain ⟨f, hf⟩ l, { rw emb_domain_eq_map_domain ⟨f, hf⟩, refl }, rw this, apply total_emb_domain R ⟨f, hf⟩ l end @[simp] theorem total_equiv_map_domain (f : α ≃ α') (l : α →₀ R) : (finsupp.total α' M' R v') (equiv_map_domain f l) = (finsupp.total α M' R (v' ∘ f)) l := by rw [equiv_map_domain_eq_map_domain, total_map_domain _ _ f.injective] /-- A version of `finsupp.range_total` which is useful for going in the other direction -/ theorem span_eq_range_total (s : set M) : span R s = (finsupp.total s M R coe).range := by rw [range_total, subtype.range_coe_subtype, set.set_of_mem_eq] theorem mem_span_iff_total (s : set M) (x : M) : x ∈ span R s ↔ ∃ l : s →₀ R, finsupp.total s M R coe l = x := (set_like.ext_iff.1 $ span_eq_range_total _ _) x theorem span_image_eq_map_total (s : set α): span R (v '' s) = submodule.map (finsupp.total α M R v) (supported R R s) := begin apply span_eq_of_le, { intros x hx, rw set.mem_image at hx, apply exists.elim hx, intros i hi, exact ⟨_, finsupp.single_mem_supported R 1 hi.1, by simp [hi.2]⟩ }, { refine map_le_iff_le_comap.2 (λ z hz, _), have : ∀i, z i • v i ∈ span R (v '' s), { intro c, haveI := classical.dec_pred (λ x, x ∈ s), by_cases c ∈ s, { exact smul_mem _ _ (subset_span (set.mem_image_of_mem _ h)) }, { simp [(finsupp.mem_supported' R _).1 hz _ h] } }, refine sum_mem _, simp [this] } end theorem mem_span_image_iff_total {s : set α} {x : M} : x ∈ span R (v '' s) ↔ ∃ l ∈ supported R R s, finsupp.total α M R v l = x := by { rw span_image_eq_map_total, simp, } lemma total_option (v : option α → M) (f : option α →₀ R) : finsupp.total (option α) M R v f = f none • v none + finsupp.total α M R (v ∘ option.some) f.some := by rw [total_apply, sum_option_index_smul, total_apply] lemma total_total {α β : Type*} (A : α → M) (B : β → (α →₀ R)) (f : β →₀ R) : finsupp.total α M R A (finsupp.total β (α →₀ R) R B f) = finsupp.total β M R (λ b, finsupp.total α M R A (B b)) f := begin simp only [total_apply], apply induction_linear f, { simp only [sum_zero_index], }, { intros f₁ f₂ h₁ h₂, simp [sum_add_index, h₁, h₂, add_smul], }, { simp [sum_single_index, sum_smul_index, smul_sum, mul_smul], } end @[simp] lemma total_fin_zero (f : fin 0 → M) : finsupp.total (fin 0) M R f = 0 := by { ext i, apply fin_zero_elim i } variables (α) (M) (v) /-- `finsupp.total_on M v s` interprets `p : α →₀ R` as a linear combination of a subset of the vectors in `v`, mapping it to the span of those vectors. The subset is indicated by a set `s : set α` of indices. -/ protected def total_on (s : set α) : supported R R s →ₗ[R] span R (v '' s) := linear_map.cod_restrict _ ((finsupp.total _ _ _ v).comp (submodule.subtype (supported R R s))) $ λ ⟨l, hl⟩, (mem_span_image_iff_total _).2 ⟨l, hl, rfl⟩ variables {α} {M} {v} theorem total_on_range (s : set α) : (finsupp.total_on α M R v s).range = ⊤ := begin rw [finsupp.total_on, linear_map.range_eq_map, linear_map.map_cod_restrict, ← linear_map.range_le_iff_comap, range_subtype, map_top, linear_map.range_comp, range_subtype], exact (span_image_eq_map_total _ _).le end theorem total_comp (f : α' → α) : (finsupp.total α' M R (v ∘ f)) = (finsupp.total α M R v).comp (lmap_domain R R f) := by { ext, simp [total_apply] } lemma total_comap_domain (f : α → α') (l : α' →₀ R) (hf : set.inj_on f (f ⁻¹' ↑l.support)) : finsupp.total α M R v (finsupp.comap_domain f l hf) = (l.support.preimage f hf).sum (λ i, (l (f i)) • (v i)) := by rw finsupp.total_apply; refl lemma total_on_finset {s : finset α} {f : α → R} (g : α → M) (hf : ∀ a, f a ≠ 0 → a ∈ s): finsupp.total α M R g (finsupp.on_finset s f hf) = finset.sum s (λ (x : α), f x • g x) := begin simp only [finsupp.total_apply, finsupp.sum, finsupp.on_finset_apply, finsupp.support_on_finset], rw finset.sum_filter_of_ne, intros x hx h, contrapose! h, simp [h], end end total /-- An equivalence of domains induces a linear equivalence of finitely supported functions. This is `finsupp.dom_congr` as a `linear_equiv`. See also `linear_map.fun_congr_left` for the case of arbitrary functions. -/ protected def dom_lcongr {α₁ α₂ : Type*} (e : α₁ ≃ α₂) : (α₁ →₀ M) ≃ₗ[R] (α₂ →₀ M) := (finsupp.dom_congr e : (α₁ →₀ M) ≃+ (α₂ →₀ M)).to_linear_equiv $ by simpa only [equiv_map_domain_eq_map_domain, dom_congr_apply] using (lmap_domain M R e).map_smul @[simp] lemma dom_lcongr_apply {α₁ : Type*} {α₂ : Type*} (e : α₁ ≃ α₂) (v : α₁ →₀ M) : (finsupp.dom_lcongr e : _ ≃ₗ[R] _) v = finsupp.dom_congr e v := rfl @[simp] lemma dom_lcongr_refl : finsupp.dom_lcongr (equiv.refl α) = linear_equiv.refl R (α →₀ M) := linear_equiv.ext $ λ _, equiv_map_domain_refl _ lemma dom_lcongr_trans {α₁ α₂ α₃ : Type*} (f : α₁ ≃ α₂) (f₂ : α₂ ≃ α₃) : (finsupp.dom_lcongr f).trans (finsupp.dom_lcongr f₂) = (finsupp.dom_lcongr (f.trans f₂) : (_ →₀ M) ≃ₗ[R] _) := linear_equiv.ext $ λ _, (equiv_map_domain_trans _ _ _).symm @[simp] lemma dom_lcongr_symm {α₁ α₂ : Type*} (f : α₁ ≃ α₂) : ((finsupp.dom_lcongr f).symm : (_ →₀ M) ≃ₗ[R] _) = finsupp.dom_lcongr f.symm := linear_equiv.ext $ λ x, rfl @[simp] theorem dom_lcongr_single {α₁ : Type*} {α₂ : Type*} (e : α₁ ≃ α₂) (i : α₁) (m : M) : (finsupp.dom_lcongr e : _ ≃ₗ[R] _) (finsupp.single i m) = finsupp.single (e i) m := by simp [finsupp.dom_lcongr, finsupp.dom_congr, equiv_map_domain_single] /-- An equivalence of sets induces a linear equivalence of `finsupp`s supported on those sets. -/ noncomputable def congr {α' : Type*} (s : set α) (t : set α') (e : s ≃ t) : supported M R s ≃ₗ[R] supported M R t := begin haveI := classical.dec_pred (λ x, x ∈ s), haveI := classical.dec_pred (λ x, x ∈ t), refine (finsupp.supported_equiv_finsupp s) ≪≫ₗ (_ ≪≫ₗ (finsupp.supported_equiv_finsupp t).symm), exact finsupp.dom_lcongr e end /-- `finsupp.map_range` as a `linear_map`. -/ @[simps] def map_range.linear_map (f : M →ₗ[R] N) : (α →₀ M) →ₗ[R] (α →₀ N) := { to_fun := (map_range f f.map_zero : (α →₀ M) → (α →₀ N)), map_smul' := λ c v, map_range_smul c v (f.map_smul c), ..map_range.add_monoid_hom f.to_add_monoid_hom } @[simp] lemma map_range.linear_map_id : map_range.linear_map linear_map.id = (linear_map.id : (α →₀ M) →ₗ[R] _):= linear_map.ext map_range_id lemma map_range.linear_map_comp (f : N →ₗ[R] P) (f₂ : M →ₗ[R] N) : (map_range.linear_map (f.comp f₂) : (α →₀ _) →ₗ[R] _) = (map_range.linear_map f).comp (map_range.linear_map f₂) := linear_map.ext $ map_range_comp _ _ _ _ _ @[simp] lemma map_range.linear_map_to_add_monoid_hom (f : M →ₗ[R] N) : (map_range.linear_map f).to_add_monoid_hom = (map_range.add_monoid_hom f.to_add_monoid_hom : (α →₀ M) →+ _):= add_monoid_hom.ext $ λ _, rfl /-- `finsupp.map_range` as a `linear_equiv`. -/ @[simps apply] def map_range.linear_equiv (e : M ≃ₗ[R] N) : (α →₀ M) ≃ₗ[R] (α →₀ N) := { to_fun := map_range e e.map_zero, inv_fun := map_range e.symm e.symm.map_zero, ..map_range.linear_map e.to_linear_map, ..map_range.add_equiv e.to_add_equiv} @[simp] lemma map_range.linear_equiv_refl : map_range.linear_equiv (linear_equiv.refl R M) = linear_equiv.refl R (α →₀ M) := linear_equiv.ext map_range_id lemma map_range.linear_equiv_trans (f : M ≃ₗ[R] N) (f₂ : N ≃ₗ[R] P) : (map_range.linear_equiv (f.trans f₂) : (α →₀ _) ≃ₗ[R] _) = (map_range.linear_equiv f).trans (map_range.linear_equiv f₂) := linear_equiv.ext $ map_range_comp _ _ _ _ _ @[simp] lemma map_range.linear_equiv_symm (f : M ≃ₗ[R] N) : ((map_range.linear_equiv f).symm : (α →₀ _) ≃ₗ[R] _) = map_range.linear_equiv f.symm := linear_equiv.ext $ λ x, rfl @[simp] lemma map_range.linear_equiv_to_add_equiv (f : M ≃ₗ[R] N) : (map_range.linear_equiv f).to_add_equiv = (map_range.add_equiv f.to_add_equiv : (α →₀ M) ≃+ _):= add_equiv.ext $ λ _, rfl @[simp] lemma map_range.linear_equiv_to_linear_map (f : M ≃ₗ[R] N) : (map_range.linear_equiv f).to_linear_map = (map_range.linear_map f.to_linear_map : (α →₀ M) →ₗ[R] _):= linear_map.ext $ λ _, rfl /-- An equivalence of domain and a linear equivalence of codomain induce a linear equivalence of the corresponding finitely supported functions. -/ def lcongr {ι κ : Sort*} (e₁ : ι ≃ κ) (e₂ : M ≃ₗ[R] N) : (ι →₀ M) ≃ₗ[R] (κ →₀ N) := (finsupp.dom_lcongr e₁).trans (map_range.linear_equiv e₂) @[simp] theorem lcongr_single {ι κ : Sort*} (e₁ : ι ≃ κ) (e₂ : M ≃ₗ[R] N) (i : ι) (m : M) : lcongr e₁ e₂ (finsupp.single i m) = finsupp.single (e₁ i) (e₂ m) := by simp [lcongr] @[simp] lemma lcongr_apply_apply {ι κ : Sort*} (e₁ : ι ≃ κ) (e₂ : M ≃ₗ[R] N) (f : ι →₀ M) (k : κ) : lcongr e₁ e₂ f k = e₂ (f (e₁.symm k)) := rfl theorem lcongr_symm_single {ι κ : Sort*} (e₁ : ι ≃ κ) (e₂ : M ≃ₗ[R] N) (k : κ) (n : N) : (lcongr e₁ e₂).symm (finsupp.single k n) = finsupp.single (e₁.symm k) (e₂.symm n) := begin apply_fun lcongr e₁ e₂ using (lcongr e₁ e₂).injective, simp, end @[simp] lemma lcongr_symm {ι κ : Sort*} (e₁ : ι ≃ κ) (e₂ : M ≃ₗ[R] N) : (lcongr e₁ e₂).symm = lcongr e₁.symm e₂.symm := begin ext f i, simp only [equiv.symm_symm, finsupp.lcongr_apply_apply], apply finsupp.induction_linear f, { simp, }, { intros f g hf hg, simp [map_add, hf, hg], }, { intros k m, simp only [finsupp.lcongr_symm_single], simp only [finsupp.single, equiv.symm_apply_eq, finsupp.coe_mk], split_ifs; simp, }, end section sum variables (R) /-- The linear equivalence between `(α ⊕ β) →₀ M` and `(α →₀ M) × (β →₀ M)`. This is the `linear_equiv` version of `finsupp.sum_finsupp_equiv_prod_finsupp`. -/ @[simps apply symm_apply] def sum_finsupp_lequiv_prod_finsupp {α β : Type*} : ((α ⊕ β) →₀ M) ≃ₗ[R] (α →₀ M) × (β →₀ M) := { map_smul' := by { intros, ext; simp only [add_equiv.to_fun_eq_coe, prod.smul_fst, prod.smul_snd, smul_apply, snd_sum_finsupp_add_equiv_prod_finsupp, fst_sum_finsupp_add_equiv_prod_finsupp, ring_hom.id_apply] }, .. sum_finsupp_add_equiv_prod_finsupp } lemma fst_sum_finsupp_lequiv_prod_finsupp {α β : Type*} (f : (α ⊕ β) →₀ M) (x : α) : (sum_finsupp_lequiv_prod_finsupp R f).1 x = f (sum.inl x) := rfl lemma snd_sum_finsupp_lequiv_prod_finsupp {α β : Type*} (f : (α ⊕ β) →₀ M) (y : β) : (sum_finsupp_lequiv_prod_finsupp R f).2 y = f (sum.inr y) := rfl lemma sum_finsupp_lequiv_prod_finsupp_symm_inl {α β : Type*} (fg : (α →₀ M) × (β →₀ M)) (x : α) : ((sum_finsupp_lequiv_prod_finsupp R).symm fg) (sum.inl x) = fg.1 x := rfl lemma sum_finsupp_lequiv_prod_finsupp_symm_inr {α β : Type*} (fg : (α →₀ M) × (β →₀ M)) (y : β) : ((sum_finsupp_lequiv_prod_finsupp R).symm fg) (sum.inr y) = fg.2 y := rfl end sum section sigma variables {η : Type*} [fintype η] {ιs : η → Type*} [has_zero α] variables (R) /-- On a `fintype η`, `finsupp.split` is a linear equivalence between `(Σ (j : η), ιs j) →₀ M` and `Π j, (ιs j →₀ M)`. This is the `linear_equiv` version of `finsupp.sigma_finsupp_add_equiv_pi_finsupp`. -/ noncomputable def sigma_finsupp_lequiv_pi_finsupp {M : Type*} {ιs : η → Type*} [add_comm_monoid M] [module R M] : ((Σ j, ιs j) →₀ M) ≃ₗ[R] Π j, (ιs j →₀ M) := { map_smul' := λ c f, by { ext, simp }, .. sigma_finsupp_add_equiv_pi_finsupp } @[simp] lemma sigma_finsupp_lequiv_pi_finsupp_apply {M : Type*} {ιs : η → Type*} [add_comm_monoid M] [module R M] (f : (Σ j, ιs j) →₀ M) (j i) : sigma_finsupp_lequiv_pi_finsupp R f j i = f ⟨j, i⟩ := rfl @[simp] lemma sigma_finsupp_lequiv_pi_finsupp_symm_apply {M : Type*} {ιs : η → Type*} [add_comm_monoid M] [module R M] (f : Π j, (ιs j →₀ M)) (ji) : (finsupp.sigma_finsupp_lequiv_pi_finsupp R).symm f ji = f ji.1 ji.2 := rfl end sigma section prod /-- The linear equivalence between `α × β →₀ M` and `α →₀ β →₀ M`. This is the `linear_equiv` version of `finsupp.finsupp_prod_equiv`. -/ noncomputable def finsupp_prod_lequiv {α β : Type*} (R : Type*) {M : Type*} [semiring R] [add_comm_monoid M] [module R M] : (α × β →₀ M) ≃ₗ[R] (α →₀ β →₀ M) := { map_add' := λ f g, by { ext, simp [finsupp_prod_equiv, curry_apply] }, map_smul' := λ c f, by { ext, simp [finsupp_prod_equiv, curry_apply] }, .. finsupp_prod_equiv } @[simp] lemma finsupp_prod_lequiv_apply {α β R M : Type*} [semiring R] [add_comm_monoid M] [module R M] (f : α × β →₀ M) (x y) : finsupp_prod_lequiv R f x y = f (x, y) := by rw [finsupp_prod_lequiv, linear_equiv.coe_mk, finsupp_prod_equiv, finsupp.curry_apply] @[simp] lemma finsupp_prod_lequiv_symm_apply {α β R M : Type*} [semiring R] [add_comm_monoid M] [module R M] (f : α →₀ β →₀ M) (xy) : (finsupp_prod_lequiv R).symm f xy = f xy.1 xy.2 := by conv_rhs { rw [← (finsupp_prod_lequiv R).apply_symm_apply f, finsupp_prod_lequiv_apply, prod.mk.eta] } end prod end finsupp variables {R : Type*} {M : Type*} {N : Type*} variables [semiring R] [add_comm_monoid M] [module R M] [add_comm_monoid N] [module R N] section variables (R) /-- Pick some representation of `x : span R w` as a linear combination in `w`, using the axiom of choice. -/ def span.repr (w : set M) (x : span R w) : w →₀ R := ((finsupp.mem_span_iff_total _ _ _).mp x.2).some @[simp] lemma span.finsupp_total_repr {w : set M} (x : span R w) : finsupp.total w M R coe (span.repr R w x) = x := ((finsupp.mem_span_iff_total _ _ _).mp x.2).some_spec attribute [irreducible] span.repr end protected lemma submodule.finsupp_sum_mem {ι β : Type*} [has_zero β] (S : submodule R M) (f : ι →₀ β) (g : ι → β → M) (h : ∀ c, f c ≠ 0 → g c (f c) ∈ S) : f.sum g ∈ S := add_submonoid_class.finsupp_sum_mem S f g h lemma linear_map.map_finsupp_total (f : M →ₗ[R] N) {ι : Type*} {g : ι → M} (l : ι →₀ R) : f (finsupp.total ι M R g l) = finsupp.total ι N R (f ∘ g) l := by simp only [finsupp.total_apply, finsupp.total_apply, finsupp.sum, f.map_sum, f.map_smul] lemma submodule.exists_finset_of_mem_supr {ι : Sort*} (p : ι → submodule R M) {m : M} (hm : m ∈ ⨆ i, p i) : ∃ s : finset ι, m ∈ ⨆ i ∈ s, p i := begin have := complete_lattice.is_compact_element.exists_finset_of_le_supr (submodule R M) (submodule.singleton_span_is_compact_element m) p, simp only [submodule.span_singleton_le_iff_mem] at this, exact this hm, end /-- `submodule.exists_finset_of_mem_supr` as an `iff` -/ lemma submodule.mem_supr_iff_exists_finset {ι : Sort*} {p : ι → submodule R M} {m : M} : (m ∈ ⨆ i, p i) ↔ ∃ s : finset ι, m ∈ ⨆ i ∈ s, p i := ⟨submodule.exists_finset_of_mem_supr p, λ ⟨_, hs⟩, supr_mono (λ i, (supr_const_le : _ ≤ p i)) hs⟩ lemma mem_span_finset {s : finset M} {x : M} : x ∈ span R (↑s : set M) ↔ ∃ f : M → R, ∑ i in s, f i • i = x := ⟨λ hx, let ⟨v, hvs, hvx⟩ := (finsupp.mem_span_image_iff_total _).1 (show x ∈ span R (id '' (↑s : set M)), by rwa set.image_id) in ⟨v, hvx ▸ (finsupp.total_apply_of_mem_supported _ hvs).symm⟩, λ ⟨f, hf⟩, hf ▸ sum_mem (λ i hi, smul_mem _ _ $ subset_span hi)⟩ /-- An element `m ∈ M` is contained in the `R`-submodule spanned by a set `s ⊆ M`, if and only if `m` can be written as a finite `R`-linear combination of elements of `s`. The implementation uses `finsupp.sum`. -/ lemma mem_span_set {m : M} {s : set M} : m ∈ submodule.span R s ↔ ∃ c : M →₀ R, (c.support : set M) ⊆ s ∧ c.sum (λ mi r, r • mi) = m := begin conv_lhs { rw ←set.image_id s }, simp_rw ←exists_prop, exact finsupp.mem_span_image_iff_total R, end /-- If `subsingleton R`, then `M ≃ₗ[R] ι →₀ R` for any type `ι`. -/ @[simps] def module.subsingleton_equiv (R M ι: Type*) [semiring R] [subsingleton R] [add_comm_monoid M] [module R M] : M ≃ₗ[R] ι →₀ R := { to_fun := λ m, 0, inv_fun := λ f, 0, left_inv := λ m, by { letI := module.subsingleton R M, simp only [eq_iff_true_of_subsingleton] }, right_inv := λ f, by simp only [eq_iff_true_of_subsingleton], map_add' := λ m n, (add_zero 0).symm, map_smul' := λ r m, (smul_zero r).symm } namespace linear_map variables {R M} {α : Type*} open finsupp function /-- A surjective linear map to finitely supported functions has a splitting. -/ -- See also `linear_map.splitting_of_fun_on_fintype_surjective` def splitting_of_finsupp_surjective (f : M →ₗ[R] (α →₀ R)) (s : surjective f) : (α →₀ R) →ₗ[R] M := finsupp.lift _ _ _ (λ x : α, (s (finsupp.single x 1)).some) lemma splitting_of_finsupp_surjective_splits (f : M →ₗ[R] (α →₀ R)) (s : surjective f) : f.comp (splitting_of_finsupp_surjective f s) = linear_map.id := begin ext x y, dsimp [splitting_of_finsupp_surjective], congr, rw [sum_single_index, one_smul], { exact (s (finsupp.single x 1)).some_spec, }, { rw zero_smul, }, end lemma left_inverse_splitting_of_finsupp_surjective (f : M →ₗ[R] (α →₀ R)) (s : surjective f) : left_inverse f (splitting_of_finsupp_surjective f s) := λ g, linear_map.congr_fun (splitting_of_finsupp_surjective_splits f s) g lemma splitting_of_finsupp_surjective_injective (f : M →ₗ[R] (α →₀ R)) (s : surjective f) : injective (splitting_of_finsupp_surjective f s) := (left_inverse_splitting_of_finsupp_surjective f s).injective /-- A surjective linear map to functions on a finite type has a splitting. -/ -- See also `linear_map.splitting_of_finsupp_surjective` def splitting_of_fun_on_fintype_surjective [fintype α] (f : M →ₗ[R] (α → R)) (s : surjective f) : (α → R) →ₗ[R] M := (finsupp.lift _ _ _ (λ x : α, (s (finsupp.single x 1)).some)).comp (linear_equiv_fun_on_fintype R R α).symm.to_linear_map lemma splitting_of_fun_on_fintype_surjective_splits [fintype α] (f : M →ₗ[R] (α → R)) (s : surjective f) : f.comp (splitting_of_fun_on_fintype_surjective f s) = linear_map.id := begin ext x y, dsimp [splitting_of_fun_on_fintype_surjective], rw [linear_equiv_fun_on_fintype_symm_single, finsupp.sum_single_index, one_smul, (s (finsupp.single x 1)).some_spec, finsupp.single_eq_pi_single], rw [zero_smul], end lemma left_inverse_splitting_of_fun_on_fintype_surjective [fintype α] (f : M →ₗ[R] (α → R)) (s : surjective f) : left_inverse f (splitting_of_fun_on_fintype_surjective f s) := λ g, linear_map.congr_fun (splitting_of_fun_on_fintype_surjective_splits f s) g lemma splitting_of_fun_on_fintype_surjective_injective [fintype α] (f : M →ₗ[R] (α → R)) (s : surjective f) : injective (splitting_of_fun_on_fintype_surjective f s) := (left_inverse_splitting_of_fun_on_fintype_surjective f s).injective end linear_map