/- Copyright (c) 2020 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov -/ import linear_algebra.quotient import linear_algebra.prod /-! # Projection to a subspace In this file we define * `linear_proj_of_is_compl (p q : submodule R E) (h : is_compl p q)`: the projection of a module `E` to a submodule `p` along its complement `q`; it is the unique linear map `f : E → p` such that `f x = x` for `x ∈ p` and `f x = 0` for `x ∈ q`. * `is_compl_equiv_proj p`: equivalence between submodules `q` such that `is_compl p q` and projections `f : E → p`, `∀ x ∈ p, f x = x`. We also provide some lemmas justifying correctness of our definitions. ## Tags projection, complement subspace -/ section ring variables {R : Type*} [ring R] {E : Type*} [add_comm_group E] [module R E] {F : Type*} [add_comm_group F] [module R F] {G : Type*} [add_comm_group G] [module R G] (p q : submodule R E) variables {S : Type*} [semiring S] {M : Type*} [add_comm_monoid M] [module S M] (m : submodule S M) noncomputable theory namespace linear_map variable {p} open submodule lemma ker_id_sub_eq_of_proj {f : E →ₗ[R] p} (hf : ∀ x : p, f x = x) : ker (id - p.subtype.comp f) = p := begin ext x, simp only [comp_apply, mem_ker, subtype_apply, sub_apply, id_apply, sub_eq_zero], exact ⟨λ h, h.symm ▸ submodule.coe_mem _, λ hx, by erw [hf ⟨x, hx⟩, subtype.coe_mk]⟩ end lemma range_eq_of_proj {f : E →ₗ[R] p} (hf : ∀ x : p, f x = x) : range f = ⊤ := range_eq_top.2 $ λ x, ⟨x, hf x⟩ lemma is_compl_of_proj {f : E →ₗ[R] p} (hf : ∀ x : p, f x = x) : is_compl p f.ker := begin split, { rintros x ⟨hpx, hfx⟩, erw [set_like.mem_coe, mem_ker, hf ⟨x, hpx⟩, mk_eq_zero] at hfx, simp only [hfx, set_like.mem_coe, zero_mem] }, { intros x hx, rw [mem_sup'], refine ⟨f x, ⟨x - f x, _⟩, add_sub_cancel'_right _ _⟩, rw [mem_ker, linear_map.map_sub, hf, sub_self] } end end linear_map namespace submodule open linear_map /-- If `q` is a complement of `p`, then `M/p ≃ q`. -/ def quotient_equiv_of_is_compl (h : is_compl p q) : (E ⧸ p) ≃ₗ[R] q := linear_equiv.symm $ linear_equiv.of_bijective (p.mkq.comp q.subtype) (by simp only [← ker_eq_bot, ker_comp, ker_mkq, disjoint_iff_comap_eq_bot.1 h.symm.disjoint]) (by simp only [← range_eq_top, range_comp, range_subtype, map_mkq_eq_top, h.sup_eq_top]) @[simp] lemma quotient_equiv_of_is_compl_symm_apply (h : is_compl p q) (x : q) : (quotient_equiv_of_is_compl p q h).symm x = quotient.mk x := rfl @[simp] lemma quotient_equiv_of_is_compl_apply_mk_coe (h : is_compl p q) (x : q) : quotient_equiv_of_is_compl p q h (quotient.mk x) = x := (quotient_equiv_of_is_compl p q h).apply_symm_apply x @[simp] lemma mk_quotient_equiv_of_is_compl_apply (h : is_compl p q) (x : E ⧸ p) : (quotient.mk (quotient_equiv_of_is_compl p q h x) : E ⧸ p) = x := (quotient_equiv_of_is_compl p q h).symm_apply_apply x /-- If `q` is a complement of `p`, then `p × q` is isomorphic to `E`. It is the unique linear map `f : E → p` such that `f x = x` for `x ∈ p` and `f x = 0` for `x ∈ q`. -/ def prod_equiv_of_is_compl (h : is_compl p q) : (p × q) ≃ₗ[R] E := begin apply linear_equiv.of_bijective (p.subtype.coprod q.subtype), { simp only [←ker_eq_bot, ker_eq_bot', prod.forall, subtype_apply, prod.mk_eq_zero, coprod_apply], -- TODO: if I add `submodule.forall`, it unfolds the outer `∀` but not the inner one. rintros ⟨x, hx⟩ ⟨y, hy⟩, simp only [coe_mk, mk_eq_zero, ← eq_neg_iff_add_eq_zero], rintro rfl, rw [neg_mem_iff] at hx, simp [disjoint_def.1 h.disjoint y hx hy] }, { rw [← range_eq_top, ← sup_eq_range, h.sup_eq_top] } end @[simp] lemma coe_prod_equiv_of_is_compl (h : is_compl p q) : (prod_equiv_of_is_compl p q h : (p × q) →ₗ[R] E) = p.subtype.coprod q.subtype := rfl @[simp] lemma coe_prod_equiv_of_is_compl' (h : is_compl p q) (x : p × q) : prod_equiv_of_is_compl p q h x = x.1 + x.2 := rfl @[simp] lemma prod_equiv_of_is_compl_symm_apply_left (h : is_compl p q) (x : p) : (prod_equiv_of_is_compl p q h).symm x = (x, 0) := (prod_equiv_of_is_compl p q h).symm_apply_eq.2 $ by simp @[simp] lemma prod_equiv_of_is_compl_symm_apply_right (h : is_compl p q) (x : q) : (prod_equiv_of_is_compl p q h).symm x = (0, x) := (prod_equiv_of_is_compl p q h).symm_apply_eq.2 $ by simp @[simp] lemma prod_equiv_of_is_compl_symm_apply_fst_eq_zero (h : is_compl p q) {x : E} : ((prod_equiv_of_is_compl p q h).symm x).1 = 0 ↔ x ∈ q := begin conv_rhs { rw [← (prod_equiv_of_is_compl p q h).apply_symm_apply x] }, rw [coe_prod_equiv_of_is_compl', submodule.add_mem_iff_left _ (submodule.coe_mem _), mem_right_iff_eq_zero_of_disjoint h.disjoint] end @[simp] lemma prod_equiv_of_is_compl_symm_apply_snd_eq_zero (h : is_compl p q) {x : E} : ((prod_equiv_of_is_compl p q h).symm x).2 = 0 ↔ x ∈ p := begin conv_rhs { rw [← (prod_equiv_of_is_compl p q h).apply_symm_apply x] }, rw [coe_prod_equiv_of_is_compl', submodule.add_mem_iff_right _ (submodule.coe_mem _), mem_left_iff_eq_zero_of_disjoint h.disjoint] end @[simp] lemma prod_comm_trans_prod_equiv_of_is_compl (h : is_compl p q) : linear_equiv.prod_comm R q p ≪≫ₗ prod_equiv_of_is_compl p q h = prod_equiv_of_is_compl q p h.symm := linear_equiv.ext $ λ _, add_comm _ _ /-- Projection to a submodule along its complement. -/ def linear_proj_of_is_compl (h : is_compl p q) : E →ₗ[R] p := (linear_map.fst R p q) ∘ₗ ↑(prod_equiv_of_is_compl p q h).symm variables {p q} @[simp] lemma linear_proj_of_is_compl_apply_left (h : is_compl p q) (x : p) : linear_proj_of_is_compl p q h x = x := by simp [linear_proj_of_is_compl] @[simp] lemma linear_proj_of_is_compl_range (h : is_compl p q) : (linear_proj_of_is_compl p q h).range = ⊤ := range_eq_of_proj (linear_proj_of_is_compl_apply_left h) @[simp] lemma linear_proj_of_is_compl_apply_eq_zero_iff (h : is_compl p q) {x : E} : linear_proj_of_is_compl p q h x = 0 ↔ x ∈ q:= by simp [linear_proj_of_is_compl] lemma linear_proj_of_is_compl_apply_right' (h : is_compl p q) (x : E) (hx : x ∈ q) : linear_proj_of_is_compl p q h x = 0 := (linear_proj_of_is_compl_apply_eq_zero_iff h).2 hx @[simp] lemma linear_proj_of_is_compl_apply_right (h : is_compl p q) (x : q) : linear_proj_of_is_compl p q h x = 0 := linear_proj_of_is_compl_apply_right' h x x.2 @[simp] lemma linear_proj_of_is_compl_ker (h : is_compl p q) : (linear_proj_of_is_compl p q h).ker = q := ext $ λ x, mem_ker.trans (linear_proj_of_is_compl_apply_eq_zero_iff h) lemma linear_proj_of_is_compl_comp_subtype (h : is_compl p q) : (linear_proj_of_is_compl p q h).comp p.subtype = id := linear_map.ext $ linear_proj_of_is_compl_apply_left h lemma linear_proj_of_is_compl_idempotent (h : is_compl p q) (x : E) : linear_proj_of_is_compl p q h (linear_proj_of_is_compl p q h x) = linear_proj_of_is_compl p q h x := linear_proj_of_is_compl_apply_left h _ lemma exists_unique_add_of_is_compl_prod (hc : is_compl p q) (x : E) : ∃! (u : p × q), (u.fst : E) + u.snd = x := (prod_equiv_of_is_compl _ _ hc).to_equiv.bijective.exists_unique _ lemma exists_unique_add_of_is_compl (hc : is_compl p q) (x : E) : ∃ (u : p) (v : q), ((u : E) + v = x ∧ ∀ (r : p) (s : q), (r : E) + s = x → r = u ∧ s = v) := let ⟨u, hu₁, hu₂⟩ := exists_unique_add_of_is_compl_prod hc x in ⟨u.1, u.2, hu₁, λ r s hrs, prod.eq_iff_fst_eq_snd_eq.1 (hu₂ ⟨r, s⟩ hrs)⟩ lemma linear_proj_add_linear_proj_of_is_compl_eq_self (hpq : is_compl p q) (x : E) : (p.linear_proj_of_is_compl q hpq x + q.linear_proj_of_is_compl p hpq.symm x : E) = x := begin dunfold linear_proj_of_is_compl, rw ←prod_comm_trans_prod_equiv_of_is_compl _ _ hpq, exact (prod_equiv_of_is_compl _ _ hpq).apply_symm_apply x, end end submodule namespace linear_map open submodule /-- Given linear maps `φ` and `ψ` from complement submodules, `of_is_compl` is the induced linear map over the entire module. -/ def of_is_compl {p q : submodule R E} (h : is_compl p q) (φ : p →ₗ[R] F) (ψ : q →ₗ[R] F) : E →ₗ[R] F := (linear_map.coprod φ ψ) ∘ₗ ↑(submodule.prod_equiv_of_is_compl _ _ h).symm variables {p q} @[simp] lemma of_is_compl_left_apply (h : is_compl p q) {φ : p →ₗ[R] F} {ψ : q →ₗ[R] F} (u : p) : of_is_compl h φ ψ (u : E) = φ u := by simp [of_is_compl] @[simp] lemma of_is_compl_right_apply (h : is_compl p q) {φ : p →ₗ[R] F} {ψ : q →ₗ[R] F} (v : q) : of_is_compl h φ ψ (v : E) = ψ v := by simp [of_is_compl] lemma of_is_compl_eq (h : is_compl p q) {φ : p →ₗ[R] F} {ψ : q →ₗ[R] F} {χ : E →ₗ[R] F} (hφ : ∀ u, φ u = χ u) (hψ : ∀ u, ψ u = χ u) : of_is_compl h φ ψ = χ := begin ext x, obtain ⟨_, _, rfl, _⟩ := exists_unique_add_of_is_compl h x, simp [of_is_compl, hφ, hψ] end lemma of_is_compl_eq' (h : is_compl p q) {φ : p →ₗ[R] F} {ψ : q →ₗ[R] F} {χ : E →ₗ[R] F} (hφ : φ = χ.comp p.subtype) (hψ : ψ = χ.comp q.subtype) : of_is_compl h φ ψ = χ := of_is_compl_eq h (λ _, hφ.symm ▸ rfl) (λ _, hψ.symm ▸ rfl) @[simp] lemma of_is_compl_zero (h : is_compl p q) : (of_is_compl h 0 0 : E →ₗ[R] F) = 0 := of_is_compl_eq _ (λ _, rfl) (λ _, rfl) @[simp] lemma of_is_compl_add (h : is_compl p q) {φ₁ φ₂ : p →ₗ[R] F} {ψ₁ ψ₂ : q →ₗ[R] F} : of_is_compl h (φ₁ + φ₂) (ψ₁ + ψ₂) = of_is_compl h φ₁ ψ₁ + of_is_compl h φ₂ ψ₂ := of_is_compl_eq _ (by simp) (by simp) @[simp] lemma of_is_compl_smul {R : Type*} [comm_ring R] {E : Type*} [add_comm_group E] [module R E] {F : Type*} [add_comm_group F] [module R F] {p q : submodule R E} (h : is_compl p q) {φ : p →ₗ[R] F} {ψ : q →ₗ[R] F} (c : R) : of_is_compl h (c • φ) (c • ψ) = c • of_is_compl h φ ψ := of_is_compl_eq _ (by simp) (by simp) section variables {R₁ : Type*} [comm_ring R₁] [module R₁ E] [module R₁ F] /-- The linear map from `(p →ₗ[R₁] F) × (q →ₗ[R₁] F)` to `E →ₗ[R₁] F`. -/ def of_is_compl_prod {p q : submodule R₁ E} (h : is_compl p q) : ((p →ₗ[R₁] F) × (q →ₗ[R₁] F)) →ₗ[R₁] (E →ₗ[R₁] F) := { to_fun := λ φ, of_is_compl h φ.1 φ.2, map_add' := by { intros φ ψ, rw [prod.snd_add, prod.fst_add, of_is_compl_add] }, map_smul' := by { intros c φ, simp [prod.smul_snd, prod.smul_fst, of_is_compl_smul] } } @[simp] lemma of_is_compl_prod_apply {p q : submodule R₁ E} (h : is_compl p q) (φ : (p →ₗ[R₁] F) × (q →ₗ[R₁] F)) : of_is_compl_prod h φ = of_is_compl h φ.1 φ.2 := rfl /-- The natural linear equivalence between `(p →ₗ[R₁] F) × (q →ₗ[R₁] F)` and `E →ₗ[R₁] F`. -/ def of_is_compl_prod_equiv {p q : submodule R₁ E} (h : is_compl p q) : ((p →ₗ[R₁] F) × (q →ₗ[R₁] F)) ≃ₗ[R₁] (E →ₗ[R₁] F) := { inv_fun := λ φ, ⟨φ.dom_restrict p, φ.dom_restrict q⟩, left_inv := begin intros φ, ext, { exact of_is_compl_left_apply h x }, { exact of_is_compl_right_apply h x } end, right_inv := begin intro φ, ext, obtain ⟨a, b, hab, _⟩ := exists_unique_add_of_is_compl h x, rw [← hab], simp, end, .. of_is_compl_prod h } end @[simp] lemma linear_proj_of_is_compl_of_proj (f : E →ₗ[R] p) (hf : ∀ x : p, f x = x) : p.linear_proj_of_is_compl f.ker (is_compl_of_proj hf) = f := begin ext x, have : x ∈ p ⊔ f.ker, { simp only [(is_compl_of_proj hf).sup_eq_top, mem_top] }, rcases mem_sup'.1 this with ⟨x, y, rfl⟩, simp [hf] end /-- If `f : E →ₗ[R] F` and `g : E →ₗ[R] G` are two surjective linear maps and their kernels are complement of each other, then `x ↦ (f x, g x)` defines a linear equivalence `E ≃ₗ[R] F × G`. -/ def equiv_prod_of_surjective_of_is_compl (f : E →ₗ[R] F) (g : E →ₗ[R] G) (hf : f.range = ⊤) (hg : g.range = ⊤) (hfg : is_compl f.ker g.ker) : E ≃ₗ[R] F × G := linear_equiv.of_bijective (f.prod g) (by simp [← ker_eq_bot, hfg.inf_eq_bot]) (by simp [← range_eq_top, range_prod_eq hfg.sup_eq_top, *]) @[simp] lemma coe_equiv_prod_of_surjective_of_is_compl {f : E →ₗ[R] F} {g : E →ₗ[R] G} (hf : f.range = ⊤) (hg : g.range = ⊤) (hfg : is_compl f.ker g.ker) : (equiv_prod_of_surjective_of_is_compl f g hf hg hfg : E →ₗ[R] F × G) = f.prod g := rfl @[simp] lemma equiv_prod_of_surjective_of_is_compl_apply {f : E →ₗ[R] F} {g : E →ₗ[R] G} (hf : f.range = ⊤) (hg : g.range = ⊤) (hfg : is_compl f.ker g.ker) (x : E): equiv_prod_of_surjective_of_is_compl f g hf hg hfg x = (f x, g x) := rfl end linear_map namespace submodule open linear_map /-- Equivalence between submodules `q` such that `is_compl p q` and linear maps `f : E →ₗ[R] p` such that `∀ x : p, f x = x`. -/ def is_compl_equiv_proj : {q // is_compl p q} ≃ {f : E →ₗ[R] p // ∀ x : p, f x = x} := { to_fun := λ q, ⟨linear_proj_of_is_compl p q q.2, linear_proj_of_is_compl_apply_left q.2⟩, inv_fun := λ f, ⟨(f : E →ₗ[R] p).ker, is_compl_of_proj f.2⟩, left_inv := λ ⟨q, hq⟩, by simp only [linear_proj_of_is_compl_ker, subtype.coe_mk], right_inv := λ ⟨f, hf⟩, subtype.eq $ f.linear_proj_of_is_compl_of_proj hf } @[simp] lemma coe_is_compl_equiv_proj_apply (q : {q // is_compl p q}) : (p.is_compl_equiv_proj q : E →ₗ[R] p) = linear_proj_of_is_compl p q q.2 := rfl @[simp] lemma coe_is_compl_equiv_proj_symm_apply (f : {f : E →ₗ[R] p // ∀ x : p, f x = x}) : (p.is_compl_equiv_proj.symm f : submodule R E) = (f : E →ₗ[R] p).ker := rfl end submodule namespace linear_map open submodule /-- A linear endomorphism of a module `E` is a projection onto a submodule `p` if it sends every element of `E` to `p` and fixes every element of `p`. The definition allow more generally any `fun_like` type and not just linear maps, so that it can be used for example with `continuous_linear_map` or `matrix`. -/ structure is_proj {F : Type*} [fun_like F M (λ _, M)] (f : F) : Prop := (map_mem : ∀ x, f x ∈ m) (map_id : ∀ x ∈ m, f x = x) lemma is_proj_iff_idempotent (f : M →ₗ[S] M) : (∃ p : submodule S M, is_proj p f) ↔ f ∘ₗ f = f := begin split, { intro h, obtain ⟨p, hp⟩ := h, ext, rw comp_apply, exact hp.map_id (f x) (hp.map_mem x), }, { intro h, use f.range, split, { intro x, exact mem_range_self f x, }, { intros x hx, obtain ⟨y, hy⟩ := mem_range.1 hx, rw [←hy, ←comp_apply, h], }, }, end namespace is_proj variables {p m} /-- Restriction of the codomain of a projection of onto a subspace `p` to `p` instead of the whole space. -/ def cod_restrict {f : M →ₗ[S] M} (h : is_proj m f) : M →ₗ[S] m := f.cod_restrict m h.map_mem @[simp] lemma cod_restrict_apply {f : M →ₗ[S] M} (h : is_proj m f) (x : M) : ↑(h.cod_restrict x) = f x := f.cod_restrict_apply m x @[simp] lemma cod_restrict_apply_cod {f : M →ₗ[S] M} (h : is_proj m f) (x : m) : h.cod_restrict x = x := by {ext, rw [cod_restrict_apply], exact h.map_id x x.2} lemma cod_restrict_ker {f : M →ₗ[S] M} (h : is_proj m f) : h.cod_restrict.ker = f.ker := f.ker_cod_restrict m _ lemma is_compl {f : E →ₗ[R] E} (h : is_proj p f) : is_compl p f.ker := by { rw ←cod_restrict_ker, exact is_compl_of_proj h.cod_restrict_apply_cod, } lemma eq_conj_prod_map' {f : E →ₗ[R] E} (h : is_proj p f) : f = (p.prod_equiv_of_is_compl f.ker h.is_compl).to_linear_map ∘ₗ prod_map id 0 ∘ₗ (p.prod_equiv_of_is_compl f.ker h.is_compl).symm.to_linear_map := begin refine (linear_map.cancel_right (p.prod_equiv_of_is_compl f.ker h.is_compl).surjective).1 _, ext, { simp only [coe_comp, linear_equiv.coe_to_linear_map, coe_inl, function.comp_app, linear_equiv.of_top_apply, linear_equiv.of_injective_apply, coprod_apply, submodule.coe_subtype, coe_zero, add_zero, prod_equiv_of_is_compl_symm_apply_left, prod_map_apply, id_coe, id.def, zero_apply, coe_prod_equiv_of_is_compl', h.map_id x x.2], }, {simp only [coe_comp, linear_equiv.coe_to_linear_map, coe_inr, function.comp_app, linear_equiv.of_top_apply, linear_equiv.of_injective_apply, coprod_apply, submodule.coe_subtype, coe_zero, zero_add, map_coe_ker, prod_equiv_of_is_compl_symm_apply_right, prod_map_apply, id_coe, id.def, zero_apply, coe_prod_equiv_of_is_compl'], } end end is_proj end linear_map end ring section comm_ring namespace linear_map variables {R : Type*} [comm_ring R] {E : Type*} [add_comm_group E] [module R E] {p : submodule R E} lemma is_proj.eq_conj_prod_map {f : E →ₗ[R] E} (h : is_proj p f) : f = (p.prod_equiv_of_is_compl f.ker h.is_compl).conj (prod_map id 0) := by {rw linear_equiv.conj_apply, exact h.eq_conj_prod_map'} end linear_map end comm_ring