/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro, Kevin Buzzard, Yury Kudryashov, Frédéric Dupuis, Heather Macbeth -/ import linear_algebra.basic import order.omega_complete_partial_order /-! # The span of a set of vectors, as a submodule * `submodule.span s` is defined to be the smallest submodule containing the set `s`. ## Notations * We introduce the notation `R ∙ v` for the span of a singleton, `submodule.span R {v}`. This is `\.`, not the same as the scalar multiplication `•`/`\bub`. -/ variables {R R₂ K M M₂ V S : Type*} namespace submodule open function set open_locale pointwise section add_comm_monoid variables [semiring R] [add_comm_monoid M] [module R M] variables {x : M} (p p' : submodule R M) variables [semiring R₂] {σ₁₂ : R →+* R₂} variables [add_comm_monoid M₂] [module R₂ M₂] section variables (R) /-- The span of a set `s ⊆ M` is the smallest submodule of M that contains `s`. -/ def span (s : set M) : submodule R M := Inf {p | s ⊆ p} end variables {s t : set M} lemma mem_span : x ∈ span R s ↔ ∀ p : submodule R M, s ⊆ p → x ∈ p := mem_Inter₂ lemma subset_span : s ⊆ span R s := λ x h, mem_span.2 $ λ p hp, hp h lemma span_le {p} : span R s ≤ p ↔ s ⊆ p := ⟨subset.trans subset_span, λ ss x h, mem_span.1 h _ ss⟩ lemma span_mono (h : s ⊆ t) : span R s ≤ span R t := span_le.2 $ subset.trans h subset_span lemma span_eq_of_le (h₁ : s ⊆ p) (h₂ : p ≤ span R s) : span R s = p := le_antisymm (span_le.2 h₁) h₂ lemma span_eq : span R (p : set M) = p := span_eq_of_le _ (subset.refl _) subset_span lemma span_eq_span (hs : s ⊆ span R t) (ht : t ⊆ span R s) : span R s = span R t := le_antisymm (span_le.2 hs) (span_le.2 ht) /-- A version of `submodule.span_eq` for when the span is by a smaller ring. -/ @[simp] lemma span_coe_eq_restrict_scalars [semiring S] [has_smul S R] [module S M] [is_scalar_tower S R M] : span S (p : set M) = p.restrict_scalars S := span_eq (p.restrict_scalars S) lemma map_span [ring_hom_surjective σ₁₂] (f : M →ₛₗ[σ₁₂] M₂) (s : set M) : (span R s).map f = span R₂ (f '' s) := eq.symm $ span_eq_of_le _ (set.image_subset f subset_span) $ map_le_iff_le_comap.2 $ span_le.2 $ λ x hx, subset_span ⟨x, hx, rfl⟩ alias submodule.map_span ← _root_.linear_map.map_span lemma map_span_le [ring_hom_surjective σ₁₂] (f : M →ₛₗ[σ₁₂] M₂) (s : set M) (N : submodule R₂ M₂) : map f (span R s) ≤ N ↔ ∀ m ∈ s, f m ∈ N := begin rw [f.map_span, span_le, set.image_subset_iff], exact iff.rfl end alias submodule.map_span_le ← _root_.linear_map.map_span_le @[simp] lemma span_insert_zero : span R (insert (0 : M) s) = span R s := begin refine le_antisymm _ (submodule.span_mono (set.subset_insert 0 s)), rw [span_le, set.insert_subset], exact ⟨by simp only [set_like.mem_coe, submodule.zero_mem], submodule.subset_span⟩, end /- See also `span_preimage_eq` below. -/ lemma span_preimage_le (f : M →ₛₗ[σ₁₂] M₂) (s : set M₂) : span R (f ⁻¹' s) ≤ (span R₂ s).comap f := by { rw [span_le, comap_coe], exact preimage_mono (subset_span), } alias submodule.span_preimage_le ← _root_.linear_map.span_preimage_le lemma closure_subset_span {s : set M} : (add_submonoid.closure s : set M) ⊆ span R s := (@add_submonoid.closure_le _ _ _ (span R s).to_add_submonoid).mpr subset_span lemma closure_le_to_add_submonoid_span {s : set M} : add_submonoid.closure s ≤ (span R s).to_add_submonoid := closure_subset_span @[simp] lemma span_closure {s : set M} : span R (add_submonoid.closure s : set M) = span R s := le_antisymm (span_le.mpr closure_subset_span) (span_mono add_submonoid.subset_closure) /-- An induction principle for span membership. If `p` holds for 0 and all elements of `s`, and is preserved under addition and scalar multiplication, then `p` holds for all elements of the span of `s`. -/ @[elab_as_eliminator] lemma span_induction {p : M → Prop} (h : x ∈ span R s) (Hs : ∀ x ∈ s, p x) (H0 : p 0) (H1 : ∀ x y, p x → p y → p (x + y)) (H2 : ∀ (a:R) x, p x → p (a • x)) : p x := (@span_le _ _ _ _ _ _ ⟨p, H1, H0, H2⟩).2 Hs h /-- A dependent version of `submodule.span_induction`. -/ lemma span_induction' {p : Π x, x ∈ span R s → Prop} (Hs : ∀ x (h : x ∈ s), p x (subset_span h)) (H0 : p 0 (submodule.zero_mem _)) (H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (submodule.add_mem _ ‹_› ‹_›)) (H2 : ∀ (a : R) x hx, p x hx → p (a • x) (submodule.smul_mem _ _ ‹_›)) {x} (hx : x ∈ span R s) : p x hx := begin refine exists.elim _ (λ (hx : x ∈ span R s) (hc : p x hx), hc), refine span_induction hx (λ m hm, ⟨subset_span hm, Hs m hm⟩) ⟨zero_mem _, H0⟩ (λ x y hx hy, exists.elim hx $ λ hx' hx, exists.elim hy $ λ hy' hy, ⟨add_mem hx' hy', H1 _ _ _ _ hx hy⟩) (λ r x hx, exists.elim hx $ λ hx' hx, ⟨smul_mem _ _ hx', H2 r _ _ hx⟩) end @[simp] lemma span_span_coe_preimage : span R ((coe : span R s → M) ⁻¹' s) = ⊤ := eq_top_iff.2 $ λ x, subtype.rec_on x $ λ x hx _, begin refine span_induction' (λ x hx, _) _ (λ x y _ _, _) (λ r x _, _) hx, { exact subset_span hx }, { exact zero_mem _ }, { exact add_mem }, { exact smul_mem _ _ } end lemma span_nat_eq_add_submonoid_closure (s : set M) : (span ℕ s).to_add_submonoid = add_submonoid.closure s := begin refine eq.symm (add_submonoid.closure_eq_of_le subset_span _), apply add_submonoid.to_nat_submodule.symm.to_galois_connection.l_le _, rw span_le, exact add_submonoid.subset_closure, end @[simp] lemma span_nat_eq (s : add_submonoid M) : (span ℕ (s : set M)).to_add_submonoid = s := by rw [span_nat_eq_add_submonoid_closure, s.closure_eq] lemma span_int_eq_add_subgroup_closure {M : Type*} [add_comm_group M] (s : set M) : (span ℤ s).to_add_subgroup = add_subgroup.closure s := eq.symm $ add_subgroup.closure_eq_of_le _ subset_span $ λ x hx, span_induction hx (λ x hx, add_subgroup.subset_closure hx) (add_subgroup.zero_mem _) (λ _ _, add_subgroup.add_mem _) (λ _ _ _, add_subgroup.zsmul_mem _ ‹_› _) @[simp] lemma span_int_eq {M : Type*} [add_comm_group M] (s : add_subgroup M) : (span ℤ (s : set M)).to_add_subgroup = s := by rw [span_int_eq_add_subgroup_closure, s.closure_eq] section variables (R M) /-- `span` forms a Galois insertion with the coercion from submodule to set. -/ protected def gi : galois_insertion (@span R M _ _ _) coe := { choice := λ s _, span R s, gc := λ s t, span_le, le_l_u := λ s, subset_span, choice_eq := λ s h, rfl } end @[simp] lemma span_empty : span R (∅ : set M) = ⊥ := (submodule.gi R M).gc.l_bot @[simp] lemma span_univ : span R (univ : set M) = ⊤ := eq_top_iff.2 $ set_like.le_def.2 $ subset_span lemma span_union (s t : set M) : span R (s ∪ t) = span R s ⊔ span R t := (submodule.gi R M).gc.l_sup lemma span_Union {ι} (s : ι → set M) : span R (⋃ i, s i) = ⨆ i, span R (s i) := (submodule.gi R M).gc.l_supr lemma span_Union₂ {ι} {κ : ι → Sort*} (s : Π i, κ i → set M) : span R (⋃ i j, s i j) = ⨆ i j, span R (s i j) := (submodule.gi R M).gc.l_supr₂ lemma span_attach_bUnion [decidable_eq M] {α : Type*} (s : finset α) (f : s → finset M) : span R (s.attach.bUnion f : set M) = ⨆ x, span R (f x) := by simpa [span_Union] lemma sup_span : p ⊔ span R s = span R (p ∪ s) := by rw [submodule.span_union, p.span_eq] lemma span_sup : span R s ⊔ p = span R (s ∪ p) := by rw [submodule.span_union, p.span_eq] /- Note that the character `∙` U+2219 used below is different from the scalar multiplication character `•` U+2022 and the matrix multiplication character `⬝` U+2B1D. -/ notation R`∙`:1000 x := span R (@singleton _ _ set.has_singleton x) lemma span_eq_supr_of_singleton_spans (s : set M) : span R s = ⨆ x ∈ s, R ∙ x := by simp only [←span_Union, set.bUnion_of_singleton s] lemma span_range_eq_supr {ι : Type*} {v : ι → M} : span R (range v) = ⨆ i, R ∙ v i := by rw [span_eq_supr_of_singleton_spans, supr_range] lemma span_smul_le (s : set M) (r : R) : span R (r • s) ≤ span R s := begin rw span_le, rintros _ ⟨x, hx, rfl⟩, exact smul_mem (span R s) r (subset_span hx), end lemma subset_span_trans {U V W : set M} (hUV : U ⊆ submodule.span R V) (hVW : V ⊆ submodule.span R W) : U ⊆ submodule.span R W := (submodule.gi R M).gc.le_u_l_trans hUV hVW /-- See `submodule.span_smul_eq` (in `ring_theory.ideal.operations`) for `span R (r • s) = r • span R s` that holds for arbitrary `r` in a `comm_semiring`. -/ lemma span_smul_eq_of_is_unit (s : set M) (r : R) (hr : is_unit r) : span R (r • s) = span R s := begin apply le_antisymm, { apply span_smul_le }, { convert span_smul_le (r • s) ((hr.unit ⁻¹ : _) : R), rw smul_smul, erw hr.unit.inv_val, rw one_smul } end @[simp] theorem coe_supr_of_directed {ι} [hι : nonempty ι] (S : ι → submodule R M) (H : directed (≤) S) : ((supr S : submodule R M) : set M) = ⋃ i, S i := begin refine subset.antisymm _ (Union_subset $ le_supr S), suffices : (span R (⋃ i, (S i : set M)) : set M) ⊆ ⋃ (i : ι), ↑(S i), by simpa only [span_Union, span_eq] using this, refine (λ x hx, span_induction hx (λ _, id) _ _ _); simp only [mem_Union, exists_imp_distrib], { exact hι.elim (λ i, ⟨i, (S i).zero_mem⟩) }, { intros x y i hi j hj, rcases H i j with ⟨k, ik, jk⟩, exact ⟨k, add_mem (ik hi) (jk hj)⟩ }, { exact λ a x i hi, ⟨i, smul_mem _ a hi⟩ }, end @[simp] theorem mem_supr_of_directed {ι} [nonempty ι] (S : ι → submodule R M) (H : directed (≤) S) {x} : x ∈ supr S ↔ ∃ i, x ∈ S i := by { rw [← set_like.mem_coe, coe_supr_of_directed S H, mem_Union], refl } theorem mem_Sup_of_directed {s : set (submodule R M)} {z} (hs : s.nonempty) (hdir : directed_on (≤) s) : z ∈ Sup s ↔ ∃ y ∈ s, z ∈ y := begin haveI : nonempty s := hs.to_subtype, simp only [Sup_eq_supr', mem_supr_of_directed _ hdir.directed_coe, set_coe.exists, subtype.coe_mk] end @[norm_cast, simp] lemma coe_supr_of_chain (a : ℕ →o submodule R M) : (↑(⨆ k, a k) : set M) = ⋃ k, (a k : set M) := coe_supr_of_directed a a.monotone.directed_le /-- We can regard `coe_supr_of_chain` as the statement that `coe : (submodule R M) → set M` is Scott continuous for the ω-complete partial order induced by the complete lattice structures. -/ lemma coe_scott_continuous : omega_complete_partial_order.continuous' (coe : submodule R M → set M) := ⟨set_like.coe_mono, coe_supr_of_chain⟩ @[simp] lemma mem_supr_of_chain (a : ℕ →o submodule R M) (m : M) : m ∈ (⨆ k, a k) ↔ ∃ k, m ∈ a k := mem_supr_of_directed a a.monotone.directed_le section variables {p p'} lemma mem_sup : x ∈ p ⊔ p' ↔ ∃ (y ∈ p) (z ∈ p'), y + z = x := ⟨λ h, begin rw [← span_eq p, ← span_eq p', ← span_union] at h, apply span_induction h, { rintro y (h | h), { exact ⟨y, h, 0, by simp, by simp⟩ }, { exact ⟨0, by simp, y, h, by simp⟩ } }, { exact ⟨0, by simp, 0, by simp⟩ }, { rintro _ _ ⟨y₁, hy₁, z₁, hz₁, rfl⟩ ⟨y₂, hy₂, z₂, hz₂, rfl⟩, exact ⟨_, add_mem hy₁ hy₂, _, add_mem hz₁ hz₂, by simp [add_assoc]; cc⟩ }, { rintro a _ ⟨y, hy, z, hz, rfl⟩, exact ⟨_, smul_mem _ a hy, _, smul_mem _ a hz, by simp [smul_add]⟩ } end, by rintro ⟨y, hy, z, hz, rfl⟩; exact add_mem ((le_sup_left : p ≤ p ⊔ p') hy) ((le_sup_right : p' ≤ p ⊔ p') hz)⟩ lemma mem_sup' : x ∈ p ⊔ p' ↔ ∃ (y : p) (z : p'), (y:M) + z = x := mem_sup.trans $ by simp only [set_like.exists, coe_mk] variables (p p') lemma coe_sup : ↑(p ⊔ p') = (p + p' : set M) := by { ext, rw [set_like.mem_coe, mem_sup, set.mem_add], simp, } lemma sup_to_add_submonoid : (p ⊔ p').to_add_submonoid = p.to_add_submonoid ⊔ p'.to_add_submonoid := begin ext x, rw [mem_to_add_submonoid, mem_sup, add_submonoid.mem_sup], refl, end lemma sup_to_add_subgroup {R M : Type*} [ring R] [add_comm_group M] [module R M] (p p' : submodule R M) : (p ⊔ p').to_add_subgroup = p.to_add_subgroup ⊔ p'.to_add_subgroup := begin ext x, rw [mem_to_add_subgroup, mem_sup, add_subgroup.mem_sup], refl, end end lemma mem_span_singleton_self (x : M) : x ∈ R ∙ x := subset_span rfl lemma nontrivial_span_singleton {x : M} (h : x ≠ 0) : nontrivial (R ∙ x) := ⟨begin use [0, x, submodule.mem_span_singleton_self x], intros H, rw [eq_comm, submodule.mk_eq_zero] at H, exact h H end⟩ lemma mem_span_singleton {y : M} : x ∈ (R ∙ y) ↔ ∃ a:R, a • y = x := ⟨λ h, begin apply span_induction h, { rintro y (rfl|⟨⟨⟩⟩), exact ⟨1, by simp⟩ }, { exact ⟨0, by simp⟩ }, { rintro _ _ ⟨a, rfl⟩ ⟨b, rfl⟩, exact ⟨a + b, by simp [add_smul]⟩ }, { rintro a _ ⟨b, rfl⟩, exact ⟨a * b, by simp [smul_smul]⟩ } end, by rintro ⟨a, y, rfl⟩; exact smul_mem _ _ (subset_span $ by simp)⟩ lemma le_span_singleton_iff {s : submodule R M} {v₀ : M} : s ≤ (R ∙ v₀) ↔ ∀ v ∈ s, ∃ r : R, r • v₀ = v := by simp_rw [set_like.le_def, mem_span_singleton] variables (R) lemma span_singleton_eq_top_iff (x : M) : (R ∙ x) = ⊤ ↔ ∀ v, ∃ r : R, r • x = v := by { rw [eq_top_iff, le_span_singleton_iff], tauto } @[simp] lemma span_zero_singleton : (R ∙ (0:M)) = ⊥ := by { ext, simp [mem_span_singleton, eq_comm] } lemma span_singleton_eq_range (y : M) : ↑(R ∙ y) = range ((• y) : R → M) := set.ext $ λ x, mem_span_singleton lemma span_singleton_smul_le {S} [monoid S] [has_smul S R] [mul_action S M] [is_scalar_tower S R M] (r : S) (x : M) : (R ∙ (r • x)) ≤ R ∙ x := begin rw [span_le, set.singleton_subset_iff, set_like.mem_coe], exact smul_of_tower_mem _ _ (mem_span_singleton_self _) end lemma span_singleton_group_smul_eq {G} [group G] [has_smul G R] [mul_action G M] [is_scalar_tower G R M] (g : G) (x : M) : (R ∙ (g • x)) = R ∙ x := begin refine le_antisymm (span_singleton_smul_le R g x) _, convert span_singleton_smul_le R (g⁻¹) (g • x), exact (inv_smul_smul g x).symm end variables {R} lemma span_singleton_smul_eq {r : R} (hr : is_unit r) (x : M) : (R ∙ (r • x)) = R ∙ x := begin lift r to Rˣ using hr, rw ←units.smul_def, exact span_singleton_group_smul_eq R r x, end lemma disjoint_span_singleton {K E : Type*} [division_ring K] [add_comm_group E] [module K E] {s : submodule K E} {x : E} : disjoint s (K ∙ x) ↔ (x ∈ s → x = 0) := begin refine disjoint_def.trans ⟨λ H hx, H x hx $ subset_span $ mem_singleton x, _⟩, assume H y hy hyx, obtain ⟨c, rfl⟩ := mem_span_singleton.1 hyx, by_cases hc : c = 0, { rw [hc, zero_smul] }, { rw [s.smul_mem_iff hc] at hy, rw [H hy, smul_zero] } end lemma disjoint_span_singleton' {K E : Type*} [division_ring K] [add_comm_group E] [module K E] {p : submodule K E} {x : E} (x0 : x ≠ 0) : disjoint p (K ∙ x) ↔ x ∉ p := disjoint_span_singleton.trans ⟨λ h₁ h₂, x0 (h₁ h₂), λ h₁ h₂, (h₁ h₂).elim⟩ lemma mem_span_singleton_trans {x y z : M} (hxy : x ∈ R ∙ y) (hyz : y ∈ R ∙ z) : x ∈ R ∙ z := begin rw [← set_like.mem_coe, ← singleton_subset_iff] at *, exact submodule.subset_span_trans hxy hyz end lemma mem_span_insert {y} : x ∈ span R (insert y s) ↔ ∃ (a:R) (z ∈ span R s), x = a • y + z := begin simp only [← union_singleton, span_union, mem_sup, mem_span_singleton, exists_prop, exists_exists_eq_and], rw [exists_comm], simp only [eq_comm, add_comm, exists_and_distrib_left] end lemma span_insert (x) (s : set M) : span R (insert x s) = span R ({x} : set M) ⊔ span R s := by rw [insert_eq, span_union] lemma span_insert_eq_span (h : x ∈ span R s) : span R (insert x s) = span R s := span_eq_of_le _ (set.insert_subset.mpr ⟨h, subset_span⟩) (span_mono $ subset_insert _ _) lemma span_span : span R (span R s : set M) = span R s := span_eq _ variables (R S s) /-- If `R` is "smaller" ring than `S` then the span by `R` is smaller than the span by `S`. -/ lemma span_le_restrict_scalars [semiring S] [has_smul R S] [module S M] [is_scalar_tower R S M] : span R s ≤ (span S s).restrict_scalars R := submodule.span_le.2 submodule.subset_span /-- A version of `submodule.span_le_restrict_scalars` with coercions. -/ @[simp] lemma span_subset_span [semiring S] [has_smul R S] [module S M] [is_scalar_tower R S M] : ↑(span R s) ⊆ (span S s : set M) := span_le_restrict_scalars R S s /-- Taking the span by a large ring of the span by the small ring is the same as taking the span by just the large ring. -/ lemma span_span_of_tower [semiring S] [has_smul R S] [module S M] [is_scalar_tower R S M] : span S (span R s : set M) = span S s := le_antisymm (span_le.2 $ span_subset_span R S s) (span_mono subset_span) variables {R S s} lemma span_eq_bot : span R (s : set M) = ⊥ ↔ ∀ x ∈ s, (x:M) = 0 := eq_bot_iff.trans ⟨ λ H x h, (mem_bot R).1 $ H $ subset_span h, λ H, span_le.2 (λ x h, (mem_bot R).2 $ H x h)⟩ @[simp] lemma span_singleton_eq_bot : (R ∙ x) = ⊥ ↔ x = 0 := span_eq_bot.trans $ by simp @[simp] lemma span_zero : span R (0 : set M) = ⊥ := by rw [←singleton_zero, span_singleton_eq_bot] lemma span_singleton_eq_span_singleton {R M : Type*} [ring R] [add_comm_group M] [module R M] [no_zero_smul_divisors R M] {x y : M} : (R ∙ x) = (R ∙ y) ↔ ∃ z : Rˣ, z • x = y := begin by_cases hx : x = 0, { rw [hx, span_zero_singleton, eq_comm, span_singleton_eq_bot], exact ⟨λ hy, ⟨1, by rw [hy, smul_zero]⟩, λ ⟨_, hz⟩, by rw [← hz, smul_zero]⟩ }, by_cases hy : y = 0, { rw [hy, span_zero_singleton, span_singleton_eq_bot], exact ⟨λ hx, ⟨1, by rw [hx, smul_zero]⟩, λ ⟨z, hz⟩, (smul_eq_zero_iff_eq z).mp hz⟩ }, split, { intro hxy, cases mem_span_singleton.mp (by { rw [hxy], apply mem_span_singleton_self }) with v hv, cases mem_span_singleton.mp (by { rw [← hxy], apply mem_span_singleton_self }) with i hi, have vi : v * i = 1 := by { rw [← one_smul R y, ← hi, smul_smul] at hv, exact smul_left_injective R hy hv }, have iv : i * v = 1 := by { rw [← one_smul R x, ← hv, smul_smul] at hi, exact smul_left_injective R hx hi }, exact ⟨⟨v, i, vi, iv⟩, hv⟩ }, { rintro ⟨v, rfl⟩, rw span_singleton_group_smul_eq } end @[simp] lemma span_image [ring_hom_surjective σ₁₂] (f : M →ₛₗ[σ₁₂] M₂) : span R₂ (f '' s) = map f (span R s) := (map_span f s).symm lemma apply_mem_span_image_of_mem_span [ring_hom_surjective σ₁₂] (f : M →ₛₗ[σ₁₂] M₂) {x : M} {s : set M} (h : x ∈ submodule.span R s) : f x ∈ submodule.span R₂ (f '' s) := begin rw submodule.span_image, exact submodule.mem_map_of_mem h end @[simp] lemma map_subtype_span_singleton {p : submodule R M} (x : p) : map p.subtype (R ∙ x) = R ∙ (x : M) := by simp [← span_image] /-- `f` is an explicit argument so we can `apply` this theorem and obtain `h` as a new goal. -/ lemma not_mem_span_of_apply_not_mem_span_image [ring_hom_surjective σ₁₂] (f : M →ₛₗ[σ₁₂] M₂) {x : M} {s : set M} (h : f x ∉ submodule.span R₂ (f '' s)) : x ∉ submodule.span R s := h.imp (apply_mem_span_image_of_mem_span f) lemma supr_eq_span {ι : Sort*} (p : ι → submodule R M) : (⨆ (i : ι), p i) = submodule.span R (⋃ (i : ι), ↑(p i)) := le_antisymm (supr_le $ assume i, subset.trans (assume m hm, set.mem_Union.mpr ⟨i, hm⟩) subset_span) (span_le.mpr $ Union_subset_iff.mpr $ assume i m hm, mem_supr_of_mem i hm) lemma supr_to_add_submonoid {ι : Sort*} (p : ι → submodule R M) : (⨆ i, p i).to_add_submonoid = ⨆ i, (p i).to_add_submonoid := begin refine le_antisymm (λ x, _) (supr_le $ λ i, to_add_submonoid_mono $ le_supr _ i), simp_rw [supr_eq_span, add_submonoid.supr_eq_closure, mem_to_add_submonoid, coe_to_add_submonoid], intros hx, refine submodule.span_induction hx (λ x hx, _) _ (λ x y hx hy, _) (λ r x hx, _), { exact add_submonoid.subset_closure hx }, { exact add_submonoid.zero_mem _ }, { exact add_submonoid.add_mem _ hx hy }, { apply add_submonoid.closure_induction hx, { rintros x ⟨_, ⟨i, rfl⟩, hix : x ∈ p i⟩, apply add_submonoid.subset_closure (set.mem_Union.mpr ⟨i, _⟩), exact smul_mem _ r hix }, { rw smul_zero, exact add_submonoid.zero_mem _ }, { intros x y hx hy, rw smul_add, exact add_submonoid.add_mem _ hx hy, } } end /-- An induction principle for elements of `⨆ i, p i`. If `C` holds for `0` and all elements of `p i` for all `i`, and is preserved under addition, then it holds for all elements of the supremum of `p`. -/ @[elab_as_eliminator] lemma supr_induction {ι : Sort*} (p : ι → submodule R M) {C : M → Prop} {x : M} (hx : x ∈ ⨆ i, p i) (hp : ∀ i (x ∈ p i), C x) (h0 : C 0) (hadd : ∀ x y, C x → C y → C (x + y)) : C x := begin rw [←mem_to_add_submonoid, supr_to_add_submonoid] at hx, exact add_submonoid.supr_induction _ hx hp h0 hadd, end /-- A dependent version of `submodule.supr_induction`. -/ @[elab_as_eliminator] lemma supr_induction' {ι : Sort*} (p : ι → submodule R M) {C : Π x, (x ∈ ⨆ i, p i) → Prop} (hp : ∀ i (x ∈ p i), C x (mem_supr_of_mem i ‹_›)) (h0 : C 0 (zero_mem _)) (hadd : ∀ x y hx hy, C x hx → C y hy → C (x + y) (add_mem ‹_› ‹_›)) {x : M} (hx : x ∈ ⨆ i, p i) : C x hx := begin refine exists.elim _ (λ (hx : x ∈ ⨆ i, p i) (hc : C x hx), hc), refine supr_induction p hx (λ i x hx, _) _ (λ x y, _), { exact ⟨_, hp _ _ hx⟩ }, { exact ⟨_, h0⟩ }, { rintro ⟨_, Cx⟩ ⟨_, Cy⟩, refine ⟨_, hadd _ _ _ _ Cx Cy⟩ }, end @[simp] lemma span_singleton_le_iff_mem (m : M) (p : submodule R M) : (R ∙ m) ≤ p ↔ m ∈ p := by rw [span_le, singleton_subset_iff, set_like.mem_coe] lemma singleton_span_is_compact_element (x : M) : complete_lattice.is_compact_element (span R {x} : submodule R M) := begin rw complete_lattice.is_compact_element_iff_le_of_directed_Sup_le, intros d hemp hdir hsup, have : x ∈ Sup d, from (set_like.le_def.mp hsup) (mem_span_singleton_self x), obtain ⟨y, ⟨hyd, hxy⟩⟩ := (mem_Sup_of_directed hemp hdir).mp this, exact ⟨y, ⟨hyd, by simpa only [span_le, singleton_subset_iff]⟩⟩, end /-- The span of a finite subset is compact in the lattice of submodules. -/ lemma finset_span_is_compact_element (S : finset M) : complete_lattice.is_compact_element (span R S : submodule R M) := begin rw span_eq_supr_of_singleton_spans, simp only [finset.mem_coe], rw ←finset.sup_eq_supr, exact complete_lattice.finset_sup_compact_of_compact S (λ x _, singleton_span_is_compact_element x), end /-- The span of a finite subset is compact in the lattice of submodules. -/ lemma finite_span_is_compact_element (S : set M) (h : S.finite) : complete_lattice.is_compact_element (span R S : submodule R M) := finite.coe_to_finset h ▸ (finset_span_is_compact_element h.to_finset) instance : is_compactly_generated (submodule R M) := ⟨λ s, ⟨(λ x, span R {x}) '' s, ⟨λ t ht, begin rcases (set.mem_image _ _ _).1 ht with ⟨x, hx, rfl⟩, apply singleton_span_is_compact_element, end, by rw [Sup_eq_supr, supr_image, ←span_eq_supr_of_singleton_spans, span_eq]⟩⟩⟩ /-- A submodule is equal to the supremum of the spans of the submodule's nonzero elements. -/ lemma submodule_eq_Sup_le_nonzero_spans (p : submodule R M) : p = Sup {T : submodule R M | ∃ (m : M) (hm : m ∈ p) (hz : m ≠ 0), T = span R {m}} := begin let S := {T : submodule R M | ∃ (m : M) (hm : m ∈ p) (hz : m ≠ 0), T = span R {m}}, apply le_antisymm, { intros m hm, by_cases h : m = 0, { rw h, simp }, { exact @le_Sup _ _ S _ ⟨m, ⟨hm, ⟨h, rfl⟩⟩⟩ m (mem_span_singleton_self m) } }, { rw Sup_le_iff, rintros S ⟨_, ⟨_, ⟨_, rfl⟩⟩⟩, rwa span_singleton_le_iff_mem } end lemma lt_sup_iff_not_mem {I : submodule R M} {a : M} : I < I ⊔ (R ∙ a) ↔ a ∉ I := begin split, { intro h, by_contra akey, have h1 : I ⊔ (R ∙ a) ≤ I, { simp only [sup_le_iff], split, { exact le_refl I, }, { exact (span_singleton_le_iff_mem a I).mpr akey, } }, have h2 := gt_of_ge_of_gt h1 h, exact lt_irrefl I h2, }, { intro h, apply set_like.lt_iff_le_and_exists.mpr, split, simp only [le_sup_left], use a, split, swap, { assumption, }, { have : (R ∙ a) ≤ I ⊔ (R ∙ a) := le_sup_right, exact this (mem_span_singleton_self a), } }, end lemma mem_supr {ι : Sort*} (p : ι → submodule R M) {m : M} : (m ∈ ⨆ i, p i) ↔ (∀ N, (∀ i, p i ≤ N) → m ∈ N) := begin rw [← span_singleton_le_iff_mem, le_supr_iff], simp only [span_singleton_le_iff_mem], end section open_locale classical /-- For every element in the span of a set, there exists a finite subset of the set such that the element is contained in the span of the subset. -/ lemma mem_span_finite_of_mem_span {S : set M} {x : M} (hx : x ∈ span R S) : ∃ T : finset M, ↑T ⊆ S ∧ x ∈ span R (T : set M) := begin refine span_induction hx (λ x hx, _) _ _ _, { refine ⟨{x}, _, _⟩, { rwa [finset.coe_singleton, set.singleton_subset_iff] }, { rw finset.coe_singleton, exact submodule.mem_span_singleton_self x } }, { use ∅, simp }, { rintros x y ⟨X, hX, hxX⟩ ⟨Y, hY, hyY⟩, refine ⟨X ∪ Y, _, _⟩, { rw finset.coe_union, exact set.union_subset hX hY }, rw [finset.coe_union, span_union, mem_sup], exact ⟨x, hxX, y, hyY, rfl⟩, }, { rintros a x ⟨T, hT, h2⟩, exact ⟨T, hT, smul_mem _ _ h2⟩ } end end variables {M' : Type*} [add_comm_monoid M'] [module R M'] (q₁ q₁' : submodule R M') /-- The product of two submodules is a submodule. -/ def prod : submodule R (M × M') := { carrier := (p : set M) ×ˢ (q₁ : set M'), smul_mem' := by rintro a ⟨x, y⟩ ⟨hx, hy⟩; exact ⟨smul_mem _ a hx, smul_mem _ a hy⟩, .. p.to_add_submonoid.prod q₁.to_add_submonoid } @[simp] lemma prod_coe : (prod p q₁ : set (M × M')) = (p : set M) ×ˢ (q₁ : set M') := rfl @[simp] lemma mem_prod {p : submodule R M} {q : submodule R M'} {x : M × M'} : x ∈ prod p q ↔ x.1 ∈ p ∧ x.2 ∈ q := set.mem_prod lemma span_prod_le (s : set M) (t : set M') : span R (s ×ˢ t) ≤ prod (span R s) (span R t) := span_le.2 $ set.prod_mono subset_span subset_span @[simp] lemma prod_top : (prod ⊤ ⊤ : submodule R (M × M')) = ⊤ := by ext; simp @[simp] lemma prod_bot : (prod ⊥ ⊥ : submodule R (M × M')) = ⊥ := by ext ⟨x, y⟩; simp [prod.zero_eq_mk] lemma prod_mono {p p' : submodule R M} {q q' : submodule R M'} : p ≤ p' → q ≤ q' → prod p q ≤ prod p' q' := prod_mono @[simp] lemma prod_inf_prod : prod p q₁ ⊓ prod p' q₁' = prod (p ⊓ p') (q₁ ⊓ q₁') := set_like.coe_injective set.prod_inter_prod @[simp] lemma prod_sup_prod : prod p q₁ ⊔ prod p' q₁' = prod (p ⊔ p') (q₁ ⊔ q₁') := begin refine le_antisymm (sup_le (prod_mono le_sup_left le_sup_left) (prod_mono le_sup_right le_sup_right)) _, simp [set_like.le_def], intros xx yy hxx hyy, rcases mem_sup.1 hxx with ⟨x, hx, x', hx', rfl⟩, rcases mem_sup.1 hyy with ⟨y, hy, y', hy', rfl⟩, refine mem_sup.2 ⟨(x, y), ⟨hx, hy⟩, (x', y'), ⟨hx', hy'⟩, rfl⟩ end end add_comm_monoid section add_comm_group variables [ring R] [add_comm_group M] [module R M] @[simp] lemma span_neg (s : set M) : span R (-s) = span R s := calc span R (-s) = span R ((-linear_map.id : M →ₗ[R] M) '' s) : by simp ... = map (-linear_map.id) (span R s) : ((-linear_map.id).map_span _).symm ... = span R s : by simp lemma mem_span_insert' {x y} {s : set M} : x ∈ span R (insert y s) ↔ ∃(a:R), x + a • y ∈ span R s := begin rw mem_span_insert, split, { rintro ⟨a, z, hz, rfl⟩, exact ⟨-a, by simp [hz, add_assoc]⟩ }, { rintro ⟨a, h⟩, exact ⟨-a, _, h, by simp [add_comm, add_left_comm]⟩ } end instance : is_modular_lattice (submodule R M) := ⟨λ x y z xz a ha, begin rw [mem_inf, mem_sup] at ha, rcases ha with ⟨⟨b, hb, c, hc, rfl⟩, haz⟩, rw mem_sup, refine ⟨b, hb, c, mem_inf.2 ⟨hc, _⟩, rfl⟩, rw [← add_sub_cancel c b, add_comm], apply z.sub_mem haz (xz hb), end⟩ end add_comm_group section add_comm_group variables [semiring R] [semiring R₂] variables [add_comm_group M] [module R M] [add_comm_group M₂] [module R₂ M₂] variables {τ₁₂ : R →+* R₂} [ring_hom_surjective τ₁₂] lemma comap_map_eq (f : M →ₛₗ[τ₁₂] M₂) (p : submodule R M) : comap f (map f p) = p ⊔ f.ker := begin refine le_antisymm _ (sup_le (le_comap_map _ _) (comap_mono bot_le)), rintro x ⟨y, hy, e⟩, exact mem_sup.2 ⟨y, hy, x - y, by simpa using sub_eq_zero.2 e.symm, by simp⟩ end lemma comap_map_eq_self {f : M →ₛₗ[τ₁₂] M₂} {p : submodule R M} (h : f.ker ≤ p) : comap f (map f p) = p := by rw [submodule.comap_map_eq, sup_of_le_left h] end add_comm_group end submodule namespace linear_map open submodule function section add_comm_group variables [semiring R] [semiring R₂] variables [add_comm_group M] [add_comm_group M₂] variables [module R M] [module R₂ M₂] variables {τ₁₂ : R →+* R₂} [ring_hom_surjective τ₁₂] include R protected lemma map_le_map_iff (f : M →ₛₗ[τ₁₂] M₂) {p p'} : map f p ≤ map f p' ↔ p ≤ p' ⊔ ker f := by rw [map_le_iff_le_comap, submodule.comap_map_eq] theorem map_le_map_iff' {f : M →ₛₗ[τ₁₂] M₂} (hf : ker f = ⊥) {p p'} : map f p ≤ map f p' ↔ p ≤ p' := by rw [linear_map.map_le_map_iff, hf, sup_bot_eq] theorem map_injective {f : M →ₛₗ[τ₁₂] M₂} (hf : ker f = ⊥) : injective (map f) := λ p p' h, le_antisymm ((map_le_map_iff' hf).1 (le_of_eq h)) ((map_le_map_iff' hf).1 (ge_of_eq h)) theorem map_eq_top_iff {f : M →ₛₗ[τ₁₂] M₂} (hf : range f = ⊤) {p : submodule R M} : p.map f = ⊤ ↔ p ⊔ f.ker = ⊤ := by simp_rw [← top_le_iff, ← hf, range_eq_map, linear_map.map_le_map_iff] end add_comm_group section variables (R) (M) [semiring R] [add_comm_monoid M] [module R M] /-- Given an element `x` of a module `M` over `R`, the natural map from `R` to scalar multiples of `x`.-/ @[simps] def to_span_singleton (x : M) : R →ₗ[R] M := linear_map.id.smul_right x /-- The range of `to_span_singleton x` is the span of `x`.-/ lemma span_singleton_eq_range (x : M) : (R ∙ x) = (to_span_singleton R M x).range := submodule.ext $ λ y, by {refine iff.trans _ linear_map.mem_range.symm, exact mem_span_singleton } @[simp] lemma to_span_singleton_one (x : M) : to_span_singleton R M x 1 = x := one_smul _ _ @[simp] lemma to_span_singleton_zero : to_span_singleton R M 0 = 0 := by { ext, simp, } end section add_comm_monoid variables [semiring R] [add_comm_monoid M] [module R M] variables [semiring R₂] [add_comm_monoid M₂] [module R₂ M₂] variables {σ₁₂ : R →+* R₂} /-- If two linear maps are equal on a set `s`, then they are equal on `submodule.span s`. See also `linear_map.eq_on_span'` for a version using `set.eq_on`. -/ lemma eq_on_span {s : set M} {f g : M →ₛₗ[σ₁₂] M₂} (H : set.eq_on f g s) ⦃x⦄ (h : x ∈ span R s) : f x = g x := by apply span_induction h H; simp {contextual := tt} /-- If two linear maps are equal on a set `s`, then they are equal on `submodule.span s`. This version uses `set.eq_on`, and the hidden argument will expand to `h : x ∈ (span R s : set M)`. See `linear_map.eq_on_span` for a version that takes `h : x ∈ span R s` as an argument. -/ lemma eq_on_span' {s : set M} {f g : M →ₛₗ[σ₁₂] M₂} (H : set.eq_on f g s) : set.eq_on f g (span R s : set M) := eq_on_span H /-- If `s` generates the whole module and linear maps `f`, `g` are equal on `s`, then they are equal. -/ lemma ext_on {s : set M} {f g : M →ₛₗ[σ₁₂] M₂} (hv : span R s = ⊤) (h : set.eq_on f g s) : f = g := linear_map.ext (λ x, eq_on_span h (eq_top_iff'.1 hv _)) /-- If the range of `v : ι → M` generates the whole module and linear maps `f`, `g` are equal at each `v i`, then they are equal. -/ lemma ext_on_range {ι : Type*} {v : ι → M} {f g : M →ₛₗ[σ₁₂] M₂} (hv : span R (set.range v) = ⊤) (h : ∀i, f (v i) = g (v i)) : f = g := ext_on hv (set.forall_range_iff.2 h) end add_comm_monoid section field variables {K V} [field K] [add_comm_group V] [module K V] noncomputable theory open_locale classical lemma span_singleton_sup_ker_eq_top (f : V →ₗ[K] K) {x : V} (hx : f x ≠ 0) : (K ∙ x) ⊔ f.ker = ⊤ := eq_top_iff.2 (λ y hy, submodule.mem_sup.2 ⟨(f y * (f x)⁻¹) • x, submodule.mem_span_singleton.2 ⟨f y * (f x)⁻¹, rfl⟩, ⟨y - (f y * (f x)⁻¹) • x, by rw [linear_map.mem_ker, f.map_sub, f.map_smul, smul_eq_mul, mul_assoc, inv_mul_cancel hx, mul_one, sub_self], by simp only [add_sub_cancel'_right]⟩⟩) variables (K V) lemma ker_to_span_singleton {x : V} (h : x ≠ 0) : (to_span_singleton K V x).ker = ⊥ := begin ext c, split, { intros hc, rw submodule.mem_bot, rw mem_ker at hc, by_contra hc', have : x = 0, calc x = c⁻¹ • (c • x) : by rw [← mul_smul, inv_mul_cancel hc', one_smul] ... = c⁻¹ • ((to_span_singleton K V x) c) : rfl ... = 0 : by rw [hc, smul_zero], tauto }, { rw [mem_ker, submodule.mem_bot], intros h, rw h, simp } end end field end linear_map open linear_map namespace linear_equiv section field variables (K V) [field K] [add_comm_group V] [module K V] /-- Given a nonzero element `x` of a vector space `V` over a field `K`, the natural map from `K` to the span of `x`, with invertibility check to consider it as an isomorphism.-/ def to_span_nonzero_singleton (x : V) (h : x ≠ 0) : K ≃ₗ[K] (K ∙ x) := linear_equiv.trans (linear_equiv.of_injective (linear_map.to_span_singleton K V x) (ker_eq_bot.1 $ linear_map.ker_to_span_singleton K V h)) (linear_equiv.of_eq (to_span_singleton K V x).range (K ∙ x) (span_singleton_eq_range K V x).symm) lemma to_span_nonzero_singleton_one (x : V) (h : x ≠ 0) : linear_equiv.to_span_nonzero_singleton K V x h 1 = (⟨x, submodule.mem_span_singleton_self x⟩ : K ∙ x) := begin apply set_like.coe_eq_coe.mp, have : ↑(to_span_nonzero_singleton K V x h 1) = to_span_singleton K V x 1 := rfl, rw [this, to_span_singleton_one, submodule.coe_mk], end /-- Given a nonzero element `x` of a vector space `V` over a field `K`, the natural map from the span of `x` to `K`.-/ abbreviation coord (x : V) (h : x ≠ 0) : (K ∙ x) ≃ₗ[K] K := (to_span_nonzero_singleton K V x h).symm lemma coord_self (x : V) (h : x ≠ 0) : (coord K V x h) (⟨x, submodule.mem_span_singleton_self x⟩ : K ∙ x) = 1 := by rw [← to_span_nonzero_singleton_one K V x h, linear_equiv.symm_apply_apply] end field end linear_equiv