/- Copyright (c) 2021 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies, Violeta Hernández Palacios, Grayson Burton, Floris van Doorn -/ import data.set.intervals.ord_connected /-! # The covering relation This file defines the covering relation in an order. `b` is said to cover `a` if `a < b` and there is no element in between. We say that `b` weakly covers `a` if `a ≤ b` and there is no element between `a` and `b`. In a partial order this is equivalent to `a ⋖ b ∨ a = b`, in a preorder this is equivalent to `a ⋖ b ∨ (a ≤ b ∧ b ≤ a)` ## Notation * `a ⋖ b` means that `b` covers `a`. * `a ⩿ b` means that `b` weakly covers `a`. -/ open set order_dual variables {α β : Type*} section weakly_covers section preorder variables [preorder α] [preorder β] {a b c: α} /-- `wcovby a b` means that `a = b` or `b` covers `a`. This means that `a ≤ b` and there is no element in between. -/ def wcovby (a b : α) : Prop := a ≤ b ∧ ∀ ⦃c⦄, a < c → ¬ c < b infix ` ⩿ `:50 := wcovby lemma wcovby.le (h : a ⩿ b) : a ≤ b := h.1 lemma wcovby.refl (a : α) : a ⩿ a := ⟨le_rfl, λ c hc, hc.not_lt⟩ lemma wcovby.rfl : a ⩿ a := wcovby.refl a protected lemma eq.wcovby (h : a = b) : a ⩿ b := h ▸ wcovby.rfl lemma wcovby_of_le_of_le (h1 : a ≤ b) (h2 : b ≤ a) : a ⩿ b := ⟨h1, λ c hac hcb, (hac.trans hcb).not_le h2⟩ alias wcovby_of_le_of_le ← has_le.le.wcovby_of_le lemma wcovby.wcovby_iff_le (hab : a ⩿ b) : b ⩿ a ↔ b ≤ a := ⟨λ h, h.le, λ h, h.wcovby_of_le hab.le⟩ lemma wcovby_of_eq_or_eq (hab : a ≤ b) (h : ∀ c, a ≤ c → c ≤ b → c = a ∨ c = b) : a ⩿ b := ⟨hab, λ c ha hb, (h c ha.le hb.le).elim ha.ne' hb.ne⟩ /-- If `a ≤ b`, then `b` does not cover `a` iff there's an element in between. -/ lemma not_wcovby_iff (h : a ≤ b) : ¬ a ⩿ b ↔ ∃ c, a < c ∧ c < b := by simp_rw [wcovby, h, true_and, not_forall, exists_prop, not_not] instance wcovby.is_refl : is_refl α (⩿) := ⟨wcovby.refl⟩ lemma wcovby.Ioo_eq (h : a ⩿ b) : Ioo a b = ∅ := eq_empty_iff_forall_not_mem.2 $ λ x hx, h.2 hx.1 hx.2 lemma wcovby.of_image (f : α ↪o β) (h : f a ⩿ f b) : a ⩿ b := ⟨f.le_iff_le.mp h.le, λ c hac hcb, h.2 (f.lt_iff_lt.mpr hac) (f.lt_iff_lt.mpr hcb)⟩ lemma wcovby.image (f : α ↪o β) (hab : a ⩿ b) (h : (range f).ord_connected) : f a ⩿ f b := begin refine ⟨f.monotone hab.le, λ c ha hb, _⟩, obtain ⟨c, rfl⟩ := h.out (mem_range_self _) (mem_range_self _) ⟨ha.le, hb.le⟩, rw f.lt_iff_lt at ha hb, exact hab.2 ha hb, end lemma set.ord_connected.apply_wcovby_apply_iff (f : α ↪o β) (h : (range f).ord_connected) : f a ⩿ f b ↔ a ⩿ b := ⟨λ h2, h2.of_image f, λ hab, hab.image f h⟩ @[simp] lemma apply_wcovby_apply_iff {E : Type*} [order_iso_class E α β] (e : E) : e a ⩿ e b ↔ a ⩿ b := (ord_connected_range (e : α ≃o β)).apply_wcovby_apply_iff ((e : α ≃o β) : α ↪o β) @[simp] lemma to_dual_wcovby_to_dual_iff : to_dual b ⩿ to_dual a ↔ a ⩿ b := and_congr_right' $ forall_congr $ λ c, forall_swap @[simp] lemma of_dual_wcovby_of_dual_iff {a b : αᵒᵈ} : of_dual a ⩿ of_dual b ↔ b ⩿ a := and_congr_right' $ forall_congr $ λ c, forall_swap alias to_dual_wcovby_to_dual_iff ↔ _ wcovby.to_dual alias of_dual_wcovby_of_dual_iff ↔ _ wcovby.of_dual end preorder section partial_order variables [partial_order α] {a b c : α} lemma wcovby.eq_or_eq (h : a ⩿ b) (h2 : a ≤ c) (h3 : c ≤ b) : c = a ∨ c = b := begin rcases h2.eq_or_lt with h2|h2, { exact or.inl h2.symm }, rcases h3.eq_or_lt with h3|h3, { exact or.inr h3 }, exact (h.2 h2 h3).elim end lemma wcovby.le_and_le_iff (h : a ⩿ b) : a ≤ c ∧ c ≤ b ↔ c = a ∨ c = b := begin refine ⟨λ h2, h.eq_or_eq h2.1 h2.2, _⟩, rintro (rfl|rfl), exacts [⟨le_rfl, h.le⟩, ⟨h.le, le_rfl⟩] end lemma wcovby.Icc_eq (h : a ⩿ b) : Icc a b = {a, b} := by { ext c, exact h.le_and_le_iff } lemma wcovby.Ico_subset (h : a ⩿ b) : Ico a b ⊆ {a} := by rw [← Icc_diff_right, h.Icc_eq, diff_singleton_subset_iff, pair_comm] lemma wcovby.Ioc_subset (h : a ⩿ b) : Ioc a b ⊆ {b} := by rw [← Icc_diff_left, h.Icc_eq, diff_singleton_subset_iff] end partial_order end weakly_covers section has_lt variables [has_lt α] {a b : α} /-- `covby a b` means that `b` covers `a`: `a < b` and there is no element in between. -/ def covby (a b : α) : Prop := a < b ∧ ∀ ⦃c⦄, a < c → ¬ c < b infix ` ⋖ `:50 := covby lemma covby.lt (h : a ⋖ b) : a < b := h.1 /-- If `a < b`, then `b` does not cover `a` iff there's an element in between. -/ lemma not_covby_iff (h : a < b) : ¬a ⋖ b ↔ ∃ c, a < c ∧ c < b := by simp_rw [covby, h, true_and, not_forall, exists_prop, not_not] alias not_covby_iff ↔ exists_lt_lt_of_not_covby _ alias exists_lt_lt_of_not_covby ← has_lt.lt.exists_lt_lt /-- In a dense order, nothing covers anything. -/ lemma not_covby [densely_ordered α] : ¬ a ⋖ b := λ h, let ⟨c, hc⟩ := exists_between h.1 in h.2 hc.1 hc.2 lemma densely_ordered_iff_forall_not_covby : densely_ordered α ↔ ∀ a b : α, ¬ a ⋖ b := ⟨λ h a b, @not_covby _ _ _ _ h, λ h, ⟨λ a b hab, exists_lt_lt_of_not_covby hab $ h _ _⟩⟩ @[simp] lemma to_dual_covby_to_dual_iff : to_dual b ⋖ to_dual a ↔ a ⋖ b := and_congr_right' $ forall_congr $ λ c, forall_swap @[simp] lemma of_dual_covby_of_dual_iff {a b : αᵒᵈ} : of_dual a ⋖ of_dual b ↔ b ⋖ a := and_congr_right' $ forall_congr $ λ c, forall_swap alias to_dual_covby_to_dual_iff ↔ _ covby.to_dual alias of_dual_covby_of_dual_iff ↔ _ covby.of_dual end has_lt section preorder variables [preorder α] [preorder β] {a b : α} lemma covby.le (h : a ⋖ b) : a ≤ b := h.1.le protected lemma covby.ne (h : a ⋖ b) : a ≠ b := h.lt.ne lemma covby.ne' (h : a ⋖ b) : b ≠ a := h.lt.ne' protected lemma covby.wcovby (h : a ⋖ b) : a ⩿ b := ⟨h.le, h.2⟩ lemma wcovby.covby_of_not_le (h : a ⩿ b) (h2 : ¬ b ≤ a) : a ⋖ b := ⟨h.le.lt_of_not_le h2, h.2⟩ lemma wcovby.covby_of_lt (h : a ⩿ b) (h2 : a < b) : a ⋖ b := ⟨h2, h.2⟩ lemma covby_iff_wcovby_and_lt : a ⋖ b ↔ a ⩿ b ∧ a < b := ⟨λ h, ⟨h.wcovby, h.lt⟩, λ h, h.1.covby_of_lt h.2⟩ lemma covby_iff_wcovby_and_not_le : a ⋖ b ↔ a ⩿ b ∧ ¬ b ≤ a := ⟨λ h, ⟨h.wcovby, h.lt.not_le⟩, λ h, h.1.covby_of_not_le h.2⟩ lemma wcovby_iff_covby_or_le_and_le : a ⩿ b ↔ a ⋖ b ∨ (a ≤ b ∧ b ≤ a) := ⟨λ h, or_iff_not_imp_right.mpr $ λ h', h.covby_of_not_le $ λ hba, h' ⟨h.le, hba⟩, λ h', h'.elim (λ h, h.wcovby) (λ h, h.1.wcovby_of_le h.2)⟩ instance : is_nonstrict_strict_order α (⩿) (⋖) := ⟨λ a b, covby_iff_wcovby_and_not_le.trans $ and_congr_right $ λ h, h.wcovby_iff_le.not.symm⟩ instance covby.is_irrefl : is_irrefl α (⋖) := ⟨λ a ha, ha.ne rfl⟩ lemma covby.Ioo_eq (h : a ⋖ b) : Ioo a b = ∅ := h.wcovby.Ioo_eq lemma covby.of_image (f : α ↪o β) (h : f a ⋖ f b) : a ⋖ b := ⟨f.lt_iff_lt.mp h.lt, λ c hac hcb, h.2 (f.lt_iff_lt.mpr hac) (f.lt_iff_lt.mpr hcb)⟩ lemma covby.image (f : α ↪o β) (hab : a ⋖ b) (h : (range f).ord_connected) : f a ⋖ f b := (hab.wcovby.image f h).covby_of_lt $ f.strict_mono hab.lt lemma set.ord_connected.apply_covby_apply_iff (f : α ↪o β) (h : (range f).ord_connected) : f a ⋖ f b ↔ a ⋖ b := ⟨covby.of_image f, λ hab, hab.image f h⟩ @[simp] lemma apply_covby_apply_iff {E : Type*} [order_iso_class E α β] (e : E) : e a ⋖ e b ↔ a ⋖ b := (ord_connected_range (e : α ≃o β)).apply_covby_apply_iff ((e : α ≃o β) : α ↪o β) end preorder section partial_order variables [partial_order α] {a b : α} lemma wcovby.covby_of_ne (h : a ⩿ b) (h2 : a ≠ b) : a ⋖ b := ⟨h.le.lt_of_ne h2, h.2⟩ lemma covby_iff_wcovby_and_ne : a ⋖ b ↔ a ⩿ b ∧ a ≠ b := ⟨λ h, ⟨h.wcovby, h.ne⟩, λ h, h.1.covby_of_ne h.2⟩ lemma wcovby_iff_covby_or_eq : a ⩿ b ↔ a ⋖ b ∨ a = b := by rw [le_antisymm_iff, wcovby_iff_covby_or_le_and_le] lemma covby.Ico_eq (h : a ⋖ b) : Ico a b = {a} := by rw [←Ioo_union_left h.lt, h.Ioo_eq, empty_union] lemma covby.Ioc_eq (h : a ⋖ b) : Ioc a b = {b} := by rw [←Ioo_union_right h.lt, h.Ioo_eq, empty_union] lemma covby.Icc_eq (h : a ⋖ b) : Icc a b = {a, b} := h.wcovby.Icc_eq end partial_order section linear_order variables [linear_order α] {a b c : α} lemma covby.Ioi_eq (h : a ⋖ b) : Ioi a = Ici b := by rw [← Ioo_union_Ici_eq_Ioi h.lt, h.Ioo_eq, empty_union] lemma covby.Iio_eq (h : a ⋖ b) : Iio b = Iic a := by rw [← Iic_union_Ioo_eq_Iio h.lt, h.Ioo_eq, union_empty] lemma wcovby.le_of_lt (hab : a ⩿ b) (hcb : c < b) : c ≤ a := not_lt.1 $ λ hac, hab.2 hac hcb lemma wcovby.ge_of_gt (hab : a ⩿ b) (hac : a < c) : b ≤ c := not_lt.1 $ hab.2 hac lemma covby.le_of_lt (hab : a ⋖ b) : c < b → c ≤ a := hab.wcovby.le_of_lt lemma covby.ge_of_gt (hab : a ⋖ b) : a < c → b ≤ c := hab.wcovby.ge_of_gt lemma covby.unique_left (ha : a ⋖ c) (hb : b ⋖ c) : a = b := (hb.le_of_lt ha.lt).antisymm $ ha.le_of_lt hb.lt lemma covby.unique_right (hb : a ⋖ b) (hc : a ⋖ c) : b = c := (hb.ge_of_gt hc.lt).antisymm $ hc.ge_of_gt hb.lt end linear_order namespace set lemma wcovby_insert (x : α) (s : set α) : s ⩿ insert x s := begin refine wcovby_of_eq_or_eq (subset_insert x s) (λ t hst h2t, _), by_cases h : x ∈ t, { exact or.inr (subset_antisymm h2t $ insert_subset.mpr ⟨h, hst⟩) }, { refine or.inl (subset_antisymm _ hst), rwa [← diff_singleton_eq_self h, diff_singleton_subset_iff] } end lemma covby_insert {x : α} {s : set α} (hx : x ∉ s) : s ⋖ insert x s := (wcovby_insert x s).covby_of_lt $ ssubset_insert hx end set namespace prod variables [partial_order α] [partial_order β] {a a₁ a₂ : α} {b b₁ b₂ : β} {x y : α × β} @[simp] lemma swap_wcovby_swap : x.swap ⩿ y.swap ↔ x ⩿ y := apply_wcovby_apply_iff (order_iso.prod_comm : α × β ≃o β × α) @[simp] lemma swap_covby_swap : x.swap ⋖ y.swap ↔ x ⋖ y := apply_covby_apply_iff (order_iso.prod_comm : α × β ≃o β × α) lemma fst_eq_or_snd_eq_of_wcovby : x ⩿ y → x.1 = y.1 ∨ x.2 = y.2 := begin refine λ h, of_not_not (λ hab, _), push_neg at hab, exact h.2 (mk_lt_mk.2 $ or.inl ⟨hab.1.lt_of_le h.1.1, le_rfl⟩) (mk_lt_mk.2 $ or.inr ⟨le_rfl, hab.2.lt_of_le h.1.2⟩), end lemma _root_.wcovby.fst (h : x ⩿ y) : x.1 ⩿ y.1 := ⟨h.1.1, λ c h₁ h₂, h.2 (mk_lt_mk_iff_left.2 h₁) ⟨⟨h₂.le, h.1.2⟩, λ hc, h₂.not_le hc.1⟩⟩ lemma _root_.wcovby.snd (h : x ⩿ y) : x.2 ⩿ y.2 := ⟨h.1.2, λ c h₁ h₂, h.2 (mk_lt_mk_iff_right.2 h₁) ⟨⟨h.1.1, h₂.le⟩, λ hc, h₂.not_le hc.2⟩⟩ lemma mk_wcovby_mk_iff_left : (a₁, b) ⩿ (a₂, b) ↔ a₁ ⩿ a₂ := begin refine ⟨wcovby.fst, and.imp mk_le_mk_iff_left.2 $ λ h c h₁ h₂, _⟩, have : c.2 = b:= h₂.le.2.antisymm h₁.le.2, rw [←@prod.mk.eta _ _ c, this, mk_lt_mk_iff_left] at h₁ h₂, exact h h₁ h₂, end lemma mk_wcovby_mk_iff_right : (a, b₁) ⩿ (a, b₂) ↔ b₁ ⩿ b₂ := swap_wcovby_swap.trans mk_wcovby_mk_iff_left lemma mk_covby_mk_iff_left : (a₁, b) ⋖ (a₂, b) ↔ a₁ ⋖ a₂ := by simp_rw [covby_iff_wcovby_and_lt, mk_wcovby_mk_iff_left, mk_lt_mk_iff_left] lemma mk_covby_mk_iff_right : (a, b₁) ⋖ (a, b₂) ↔ b₁ ⋖ b₂ := by simp_rw [covby_iff_wcovby_and_lt, mk_wcovby_mk_iff_right, mk_lt_mk_iff_right] lemma mk_wcovby_mk_iff : (a₁, b₁) ⩿ (a₂, b₂) ↔ a₁ ⩿ a₂ ∧ b₁ = b₂ ∨ b₁ ⩿ b₂ ∧ a₁ = a₂ := begin refine ⟨λ h, _, _⟩, { obtain rfl | rfl : a₁ = a₂ ∨ b₁ = b₂ := fst_eq_or_snd_eq_of_wcovby h, { exact or.inr ⟨mk_wcovby_mk_iff_right.1 h, rfl⟩ }, { exact or.inl ⟨mk_wcovby_mk_iff_left.1 h, rfl⟩ } }, { rintro (⟨h, rfl⟩ | ⟨h, rfl⟩), { exact mk_wcovby_mk_iff_left.2 h }, { exact mk_wcovby_mk_iff_right.2 h } } end lemma mk_covby_mk_iff : (a₁, b₁) ⋖ (a₂, b₂) ↔ a₁ ⋖ a₂ ∧ b₁ = b₂ ∨ b₁ ⋖ b₂ ∧ a₁ = a₂ := begin refine ⟨λ h, _, _⟩, { obtain rfl | rfl : a₁ = a₂ ∨ b₁ = b₂ := fst_eq_or_snd_eq_of_wcovby h.wcovby, { exact or.inr ⟨mk_covby_mk_iff_right.1 h, rfl⟩ }, { exact or.inl ⟨mk_covby_mk_iff_left.1 h, rfl⟩ } }, { rintro (⟨h, rfl⟩ | ⟨h, rfl⟩), { exact mk_covby_mk_iff_left.2 h }, { exact mk_covby_mk_iff_right.2 h } } end lemma wcovby_iff : x ⩿ y ↔ x.1 ⩿ y.1 ∧ x.2 = y.2 ∨ x.2 ⩿ y.2 ∧ x.1 = y.1 := by { cases x, cases y, exact mk_wcovby_mk_iff } lemma covby_iff : x ⋖ y ↔ x.1 ⋖ y.1 ∧ x.2 = y.2 ∨ x.2 ⋖ y.2 ∧ x.1 = y.1 := by { cases x, cases y, exact mk_covby_mk_iff } end prod