/- Copyright (c) 2021 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import algebra.big_operators.intervals import measure_theory.constructions.pi /-! # Independence of sets of sets and measure spaces (σ-algebras) * A family of sets of sets `π : ι → set (set α)` is independent with respect to a measure `μ` if for any finite set of indices `s = {i_1, ..., i_n}`, for any sets `f i_1 ∈ π i_1, ..., f i_n ∈ π i_n`, `μ (⋂ i in s, f i) = ∏ i in s, μ (f i) `. It will be used for families of π-systems. * A family of measurable space structures (i.e. of σ-algebras) is independent with respect to a measure `μ` (typically defined on a finer σ-algebra) if the family of sets of measurable sets they define is independent. I.e., `m : ι → measurable_space α` is independent with respect to a measure `μ` if for any finite set of indices `s = {i_1, ..., i_n}`, for any sets `f i_1 ∈ m i_1, ..., f i_n ∈ m i_n`, then `μ (⋂ i in s, f i) = ∏ i in s, μ (f i)`. * Independence of sets (or events in probabilistic parlance) is defined as independence of the measurable space structures they generate: a set `s` generates the measurable space structure with measurable sets `∅, s, sᶜ, univ`. * Independence of functions (or random variables) is also defined as independence of the measurable space structures they generate: a function `f` for which we have a measurable space `m` on the codomain generates `measurable_space.comap f m`. ## Main statements * `Indep_sets.Indep`: if π-systems are independent as sets of sets, then the measurable space structures they generate are independent. * `indep_sets.indep`: variant with two π-systems. ## Implementation notes We provide one main definition of independence: * `Indep_sets`: independence of a family of sets of sets `pi : ι → set (set α)`. Three other independence notions are defined using `Indep_sets`: * `Indep`: independence of a family of measurable space structures `m : ι → measurable_space α`, * `Indep_set`: independence of a family of sets `s : ι → set α`, * `Indep_fun`: independence of a family of functions. For measurable spaces `m : Π (i : ι), measurable_space (β i)`, we consider functions `f : Π (i : ι), α → β i`. Additionally, we provide four corresponding statements for two measurable space structures (resp. sets of sets, sets, functions) instead of a family. These properties are denoted by the same names as for a family, but without a capital letter, for example `indep_fun` is the version of `Indep_fun` for two functions. The definition of independence for `Indep_sets` uses finite sets (`finset`). An alternative and equivalent way of defining independence would have been to use countable sets. TODO: prove that equivalence. Most of the definitions and lemma in this file list all variables instead of using the `variables` keyword at the beginning of a section, for example `lemma indep.symm {α} {m₁ m₂ : measurable_space α} [measurable_space α] {μ : measure α} ...` . This is intentional, to be able to control the order of the `measurable_space` variables. Indeed when defining `μ` in the example above, the measurable space used is the last one defined, here `[measurable_space α]`, and not `m₁` or `m₂`. ## References * Williams, David. Probability with martingales. Cambridge university press, 1991. Part A, Chapter 4. -/ open measure_theory measurable_space open_locale big_operators classical measure_theory namespace probability_theory section definitions /-- A family of sets of sets `π : ι → set (set α)` is independent with respect to a measure `μ` if for any finite set of indices `s = {i_1, ..., i_n}`, for any sets `f i_1 ∈ π i_1, ..., f i_n ∈ π i_n`, then `μ (⋂ i in s, f i) = ∏ i in s, μ (f i) `. It will be used for families of pi_systems. -/ def Indep_sets {α ι} [measurable_space α] (π : ι → set (set α)) (μ : measure α . volume_tac) : Prop := ∀ (s : finset ι) {f : ι → set α} (H : ∀ i, i ∈ s → f i ∈ π i), μ (⋂ i ∈ s, f i) = ∏ i in s, μ (f i) /-- Two sets of sets `s₁, s₂` are independent with respect to a measure `μ` if for any sets `t₁ ∈ p₁, t₂ ∈ s₂`, then `μ (t₁ ∩ t₂) = μ (t₁) * μ (t₂)` -/ def indep_sets {α} [measurable_space α] (s1 s2 : set (set α)) (μ : measure α . volume_tac) : Prop := ∀ t1 t2 : set α, t1 ∈ s1 → t2 ∈ s2 → μ (t1 ∩ t2) = μ t1 * μ t2 /-- A family of measurable space structures (i.e. of σ-algebras) is independent with respect to a measure `μ` (typically defined on a finer σ-algebra) if the family of sets of measurable sets they define is independent. `m : ι → measurable_space α` is independent with respect to measure `μ` if for any finite set of indices `s = {i_1, ..., i_n}`, for any sets `f i_1 ∈ m i_1, ..., f i_n ∈ m i_n`, then `μ (⋂ i in s, f i) = ∏ i in s, μ (f i) `. -/ def Indep {α ι} (m : ι → measurable_space α) [measurable_space α] (μ : measure α . volume_tac) : Prop := Indep_sets (λ x, {s | measurable_set[m x] s}) μ /-- Two measurable space structures (or σ-algebras) `m₁, m₂` are independent with respect to a measure `μ` (defined on a third σ-algebra) if for any sets `t₁ ∈ m₁, t₂ ∈ m₂`, `μ (t₁ ∩ t₂) = μ (t₁) * μ (t₂)` -/ def indep {α} (m₁ m₂ : measurable_space α) [measurable_space α] (μ : measure α . volume_tac) : Prop := indep_sets {s | measurable_set[m₁] s} {s | measurable_set[m₂] s} μ /-- A family of sets is independent if the family of measurable space structures they generate is independent. For a set `s`, the generated measurable space has measurable sets `∅, s, sᶜ, univ`. -/ def Indep_set {α ι} [measurable_space α] (s : ι → set α) (μ : measure α . volume_tac) : Prop := Indep (λ i, generate_from {s i}) μ /-- Two sets are independent if the two measurable space structures they generate are independent. For a set `s`, the generated measurable space structure has measurable sets `∅, s, sᶜ, univ`. -/ def indep_set {α} [measurable_space α] (s t : set α) (μ : measure α . volume_tac) : Prop := indep (generate_from {s}) (generate_from {t}) μ /-- A family of functions defined on the same space `α` and taking values in possibly different spaces, each with a measurable space structure, is independent if the family of measurable space structures they generate on `α` is independent. For a function `g` with codomain having measurable space structure `m`, the generated measurable space structure is `measurable_space.comap g m`. -/ def Indep_fun {α ι} [measurable_space α] {β : ι → Type*} (m : Π (x : ι), measurable_space (β x)) (f : Π (x : ι), α → β x) (μ : measure α . volume_tac) : Prop := Indep (λ x, measurable_space.comap (f x) (m x)) μ /-- Two functions are independent if the two measurable space structures they generate are independent. For a function `f` with codomain having measurable space structure `m`, the generated measurable space structure is `measurable_space.comap f m`. -/ def indep_fun {α β γ} [measurable_space α] [mβ : measurable_space β] [mγ : measurable_space γ] (f : α → β) (g : α → γ) (μ : measure α . volume_tac) : Prop := indep (measurable_space.comap f mβ) (measurable_space.comap g mγ) μ end definitions section indep lemma indep_sets.symm {α} {s₁ s₂ : set (set α)} [measurable_space α] {μ : measure α} (h : indep_sets s₁ s₂ μ) : indep_sets s₂ s₁ μ := by { intros t1 t2 ht1 ht2, rw [set.inter_comm, mul_comm], exact h t2 t1 ht2 ht1, } lemma indep.symm {α} {m₁ m₂ : measurable_space α} [measurable_space α] {μ : measure α} (h : indep m₁ m₂ μ) : indep m₂ m₁ μ := indep_sets.symm h lemma indep_sets_of_indep_sets_of_le_left {α} {s₁ s₂ s₃: set (set α)} [measurable_space α] {μ : measure α} (h_indep : indep_sets s₁ s₂ μ) (h31 : s₃ ⊆ s₁) : indep_sets s₃ s₂ μ := λ t1 t2 ht1 ht2, h_indep t1 t2 (set.mem_of_subset_of_mem h31 ht1) ht2 lemma indep_sets_of_indep_sets_of_le_right {α} {s₁ s₂ s₃: set (set α)} [measurable_space α] {μ : measure α} (h_indep : indep_sets s₁ s₂ μ) (h32 : s₃ ⊆ s₂) : indep_sets s₁ s₃ μ := λ t1 t2 ht1 ht2, h_indep t1 t2 ht1 (set.mem_of_subset_of_mem h32 ht2) lemma indep_of_indep_of_le_left {α} {m₁ m₂ m₃: measurable_space α} [measurable_space α] {μ : measure α} (h_indep : indep m₁ m₂ μ) (h31 : m₃ ≤ m₁) : indep m₃ m₂ μ := λ t1 t2 ht1 ht2, h_indep t1 t2 (h31 _ ht1) ht2 lemma indep_of_indep_of_le_right {α} {m₁ m₂ m₃: measurable_space α} [measurable_space α] {μ : measure α} (h_indep : indep m₁ m₂ μ) (h32 : m₃ ≤ m₂) : indep m₁ m₃ μ := λ t1 t2 ht1 ht2, h_indep t1 t2 ht1 (h32 _ ht2) lemma indep_sets.union {α} [measurable_space α] {s₁ s₂ s' : set (set α)} {μ : measure α} (h₁ : indep_sets s₁ s' μ) (h₂ : indep_sets s₂ s' μ) : indep_sets (s₁ ∪ s₂) s' μ := begin intros t1 t2 ht1 ht2, cases (set.mem_union _ _ _).mp ht1 with ht1₁ ht1₂, { exact h₁ t1 t2 ht1₁ ht2, }, { exact h₂ t1 t2 ht1₂ ht2, }, end @[simp] lemma indep_sets.union_iff {α} [measurable_space α] {s₁ s₂ s' : set (set α)} {μ : measure α} : indep_sets (s₁ ∪ s₂) s' μ ↔ indep_sets s₁ s' μ ∧ indep_sets s₂ s' μ := ⟨λ h, ⟨indep_sets_of_indep_sets_of_le_left h (set.subset_union_left s₁ s₂), indep_sets_of_indep_sets_of_le_left h (set.subset_union_right s₁ s₂)⟩, λ h, indep_sets.union h.left h.right⟩ lemma indep_sets.Union {α ι} [measurable_space α] {s : ι → set (set α)} {s' : set (set α)} {μ : measure α} (hyp : ∀ n, indep_sets (s n) s' μ) : indep_sets (⋃ n, s n) s' μ := begin intros t1 t2 ht1 ht2, rw set.mem_Union at ht1, cases ht1 with n ht1, exact hyp n t1 t2 ht1 ht2, end lemma indep_sets.inter {α} [measurable_space α] {s₁ s' : set (set α)} (s₂ : set (set α)) {μ : measure α} (h₁ : indep_sets s₁ s' μ) : indep_sets (s₁ ∩ s₂) s' μ := λ t1 t2 ht1 ht2, h₁ t1 t2 ((set.mem_inter_iff _ _ _).mp ht1).left ht2 lemma indep_sets.Inter {α ι} [measurable_space α] {s : ι → set (set α)} {s' : set (set α)} {μ : measure α} (h : ∃ n, indep_sets (s n) s' μ) : indep_sets (⋂ n, s n) s' μ := by {intros t1 t2 ht1 ht2, cases h with n h, exact h t1 t2 (set.mem_Inter.mp ht1 n) ht2 } lemma indep_sets_singleton_iff {α} [measurable_space α] {s t : set α} {μ : measure α} : indep_sets {s} {t} μ ↔ μ (s ∩ t) = μ s * μ t := ⟨λ h, h s t rfl rfl, λ h s1 t1 hs1 ht1, by rwa [set.mem_singleton_iff.mp hs1, set.mem_singleton_iff.mp ht1]⟩ end indep /-! ### Deducing `indep` from `Indep` -/ section from_Indep_to_indep lemma Indep_sets.indep_sets {α ι} {s : ι → set (set α)} [measurable_space α] {μ : measure α} (h_indep : Indep_sets s μ) {i j : ι} (hij : i ≠ j) : indep_sets (s i) (s j) μ := begin intros t₁ t₂ ht₁ ht₂, have hf_m : ∀ (x : ι), x ∈ {i, j} → (ite (x=i) t₁ t₂) ∈ s x, { intros x hx, cases finset.mem_insert.mp hx with hx hx, { simp [hx, ht₁], }, { simp [finset.mem_singleton.mp hx, hij.symm, ht₂], }, }, have h1 : t₁ = ite (i = i) t₁ t₂, by simp only [if_true, eq_self_iff_true], have h2 : t₂ = ite (j = i) t₁ t₂, by simp only [hij.symm, if_false], have h_inter : (⋂ (t : ι) (H : t ∈ ({i, j} : finset ι)), ite (t = i) t₁ t₂) = (ite (i = i) t₁ t₂) ∩ (ite (j = i) t₁ t₂), by simp only [finset.set_bInter_singleton, finset.set_bInter_insert], have h_prod : (∏ (t : ι) in ({i, j} : finset ι), μ (ite (t = i) t₁ t₂)) = μ (ite (i = i) t₁ t₂) * μ (ite (j = i) t₁ t₂), by simp only [hij, finset.prod_singleton, finset.prod_insert, not_false_iff, finset.mem_singleton], rw h1, nth_rewrite 1 h2, nth_rewrite 3 h2, rw [←h_inter, ←h_prod, h_indep {i, j} hf_m], end lemma Indep.indep {α ι} {m : ι → measurable_space α} [measurable_space α] {μ : measure α} (h_indep : Indep m μ) {i j : ι} (hij : i ≠ j) : indep (m i) (m j) μ := begin change indep_sets ((λ x, measurable_set[m x]) i) ((λ x, measurable_set[m x]) j) μ, exact Indep_sets.indep_sets h_indep hij, end lemma Indep_fun.indep_fun {α ι : Type*} {m₀ : measurable_space α} {μ : measure α} {β : ι → Type*} {m : Π x, measurable_space (β x)} {f : Π i, α → β i} (hf_Indep : Indep_fun m f μ) {i j : ι} (hij : i ≠ j) : indep_fun (f i) (f j) μ := hf_Indep.indep hij end from_Indep_to_indep /-! ## π-system lemma Independence of measurable spaces is equivalent to independence of generating π-systems. -/ section from_measurable_spaces_to_sets_of_sets /-! ### Independence of measurable space structures implies independence of generating π-systems -/ lemma Indep.Indep_sets {α ι} [measurable_space α] {μ : measure α} {m : ι → measurable_space α} {s : ι → set (set α)} (hms : ∀ n, m n = generate_from (s n)) (h_indep : Indep m μ) : Indep_sets s μ := λ S f hfs, h_indep S $ λ x hxS, ((hms x).symm ▸ measurable_set_generate_from (hfs x hxS) : measurable_set[m x] (f x)) lemma indep.indep_sets {α} [measurable_space α] {μ : measure α} {s1 s2 : set (set α)} (h_indep : indep (generate_from s1) (generate_from s2) μ) : indep_sets s1 s2 μ := λ t1 t2 ht1 ht2, h_indep t1 t2 (measurable_set_generate_from ht1) (measurable_set_generate_from ht2) end from_measurable_spaces_to_sets_of_sets section from_pi_systems_to_measurable_spaces /-! ### Independence of generating π-systems implies independence of measurable space structures -/ private lemma indep_sets.indep_aux {α} {m2 : measurable_space α} {m : measurable_space α} {μ : measure α} [is_probability_measure μ] {p1 p2 : set (set α)} (h2 : m2 ≤ m) (hp2 : is_pi_system p2) (hpm2 : m2 = generate_from p2) (hyp : indep_sets p1 p2 μ) {t1 t2 : set α} (ht1 : t1 ∈ p1) (ht2m : measurable_set[m2] t2) : μ (t1 ∩ t2) = μ t1 * μ t2 := begin let μ_inter := μ.restrict t1, let ν := (μ t1) • μ, have h_univ : μ_inter set.univ = ν set.univ, by rw [measure.restrict_apply_univ, measure.smul_apply, smul_eq_mul, measure_univ, mul_one], haveI : is_finite_measure μ_inter := @restrict.is_finite_measure α _ t1 μ ⟨measure_lt_top μ t1⟩, rw [set.inter_comm, ←@measure.restrict_apply α _ μ t1 t2 (h2 t2 ht2m)], refine ext_on_measurable_space_of_generate_finite m p2 (λ t ht, _) h2 hpm2 hp2 h_univ ht2m, have ht2 : measurable_set[m] t, { refine h2 _ _, rw hpm2, exact measurable_set_generate_from ht, }, rw [measure.restrict_apply ht2, measure.smul_apply, set.inter_comm], exact hyp t1 t ht1 ht, end lemma indep_sets.indep {α} {m1 m2 : measurable_space α} {m : measurable_space α} {μ : measure α} [is_probability_measure μ] {p1 p2 : set (set α)} (h1 : m1 ≤ m) (h2 : m2 ≤ m) (hp1 : is_pi_system p1) (hp2 : is_pi_system p2) (hpm1 : m1 = generate_from p1) (hpm2 : m2 = generate_from p2) (hyp : indep_sets p1 p2 μ) : indep m1 m2 μ := begin intros t1 t2 ht1 ht2, let μ_inter := μ.restrict t2, let ν := (μ t2) • μ, have h_univ : μ_inter set.univ = ν set.univ, by rw [measure.restrict_apply_univ, measure.smul_apply, smul_eq_mul, measure_univ, mul_one], haveI : is_finite_measure μ_inter := @restrict.is_finite_measure α _ t2 μ ⟨measure_lt_top μ t2⟩, rw [mul_comm, ←@measure.restrict_apply α _ μ t2 t1 (h1 t1 ht1)], refine ext_on_measurable_space_of_generate_finite m p1 (λ t ht, _) h1 hpm1 hp1 h_univ ht1, have ht1 : measurable_set[m] t, { refine h1 _ _, rw hpm1, exact measurable_set_generate_from ht, }, rw [measure.restrict_apply ht1, measure.smul_apply, smul_eq_mul, mul_comm], exact indep_sets.indep_aux h2 hp2 hpm2 hyp ht ht2, end variables {α ι : Type*} {m0 : measurable_space α} {μ : measure α} lemma Indep_sets.pi_Union_Inter_singleton {π : ι → set (set α)} {a : ι} {S : finset ι} (hp_ind : Indep_sets π μ) (haS : a ∉ S) : indep_sets (pi_Union_Inter π {S}) (π a) μ := begin rintros t1 t2 ⟨s, hs_mem, ft1, hft1_mem, ht1_eq⟩ ht2_mem_pia, rw set.mem_singleton_iff at hs_mem, subst hs_mem, let f := λ n, ite (n = a) t2 (ite (n ∈ s) (ft1 n) set.univ), have h_f_mem : ∀ n ∈ insert a s, f n ∈ π n, { intros n hn_mem_insert, simp_rw f, cases (finset.mem_insert.mp hn_mem_insert) with hn_mem hn_mem, { simp [hn_mem, ht2_mem_pia], }, { have hn_ne_a : n ≠ a, by { rintro rfl, exact haS hn_mem, }, simp [hn_ne_a, hn_mem, hft1_mem n hn_mem], }, }, have h_f_mem_pi : ∀ n ∈ s, f n ∈ π n, from λ x hxS, h_f_mem x (by simp [hxS]), have h_t1 : t1 = ⋂ n ∈ s, f n, { suffices h_forall : ∀ n ∈ s, f n = ft1 n, { rw ht1_eq, congr' with n x, congr' with hns y, simp only [(h_forall n hns).symm], }, intros n hnS, have hn_ne_a : n ≠ a, by { rintro rfl, exact haS hnS, }, simp_rw [f, if_pos hnS, if_neg hn_ne_a], }, have h_μ_t1 : μ t1 = ∏ n in s, μ (f n), by rw [h_t1, ←hp_ind s h_f_mem_pi], have h_t2 : t2 = f a, by { simp_rw [f], simp, }, have h_μ_inter : μ (t1 ∩ t2) = ∏ n in insert a s, μ (f n), { have h_t1_inter_t2 : t1 ∩ t2 = ⋂ n ∈ insert a s, f n, by rw [h_t1, h_t2, finset.set_bInter_insert, set.inter_comm], rw [h_t1_inter_t2, ←hp_ind (insert a s) h_f_mem], }, rw [h_μ_inter, finset.prod_insert haS, h_t2, mul_comm, h_μ_t1], end /-- Auxiliary lemma for `Indep_sets.Indep`. -/ theorem Indep_sets.Indep_aux [is_probability_measure μ] (m : ι → measurable_space α) (h_le : ∀ i, m i ≤ m0) (π : ι → set (set α)) (h_pi : ∀ n, is_pi_system (π n)) (hp_univ : ∀ i, set.univ ∈ π i) (h_generate : ∀ i, m i = generate_from (π i)) (h_ind : Indep_sets π μ) : Indep m μ := begin refine finset.induction (by simp [measure_univ]) _, intros a S ha_notin_S h_rec f hf_m, have hf_m_S : ∀ x ∈ S, measurable_set[m x] (f x) := λ x hx, hf_m x (by simp [hx]), rw [finset.set_bInter_insert, finset.prod_insert ha_notin_S, ←h_rec hf_m_S], let p := pi_Union_Inter π {S}, set m_p := generate_from p with hS_eq_generate, have h_indep : indep m_p (m a) μ, { have hp : is_pi_system p := is_pi_system_pi_Union_Inter π h_pi {S} (sup_closed_singleton S), have h_le' : ∀ i, generate_from (π i) ≤ m0 := λ i, (h_generate i).symm.trans_le (h_le i), have hm_p : m_p ≤ m0 := generate_from_pi_Union_Inter_le π h_le' {S}, exact indep_sets.indep hm_p (h_le a) hp (h_pi a) hS_eq_generate (h_generate a) (h_ind.pi_Union_Inter_singleton ha_notin_S), }, refine h_indep.symm (f a) (⋂ n ∈ S, f n) (hf_m a (finset.mem_insert_self a S)) _, have h_le_p : ∀ i ∈ S, m i ≤ m_p, { intros n hn, rw [hS_eq_generate, h_generate n], exact le_generate_from_pi_Union_Inter {S} hp_univ (set.mem_singleton _) hn, }, have h_S_f : ∀ i ∈ S, measurable_set[m_p] (f i) := λ i hi, (h_le_p i hi) (f i) (hf_m_S i hi), exact S.measurable_set_bInter h_S_f, end /-- The measurable space structures generated by independent pi-systems are independent. -/ theorem Indep_sets.Indep [is_probability_measure μ] (m : ι → measurable_space α) (h_le : ∀ i, m i ≤ m0) (π : ι → set (set α)) (h_pi : ∀ n, is_pi_system (π n)) (h_generate : ∀ i, m i = generate_from (π i)) (h_ind : Indep_sets π μ) : Indep m μ := begin -- We want to apply `Indep_sets.Indep_aux`, but `π i` does not contain `univ`, hence we replace -- `π` with a new augmented pi-system `π'`, and prove all hypotheses for that pi-system. let π' := λ i, insert set.univ (π i), have h_subset : ∀ i, π i ⊆ π' i := λ i, set.subset_insert _ _, have h_pi' : ∀ n, is_pi_system (π' n) := λ n, (h_pi n).insert_univ, have h_univ' : ∀ i, set.univ ∈ π' i, from λ i, set.mem_insert _ _, have h_gen' : ∀ i, m i = generate_from (π' i), { intros i, rw [h_generate i, generate_from_insert_univ (π i)], }, have h_ind' : Indep_sets π' μ, { intros S f hfπ', let S' := finset.filter (λ i, f i ≠ set.univ) S, have h_mem : ∀ i ∈ S', f i ∈ π i, { intros i hi, simp_rw [S', finset.mem_filter] at hi, cases hfπ' i hi.1, { exact absurd h hi.2, }, { exact h, }, }, have h_left : (⋂ i ∈ S, f i) = ⋂ i ∈ S', f i, { ext1 x, simp only [set.mem_Inter, finset.mem_filter, ne.def, and_imp], split, { exact λ h i hiS hif, h i hiS, }, { intros h i hiS, by_cases hfi_univ : f i = set.univ, { rw hfi_univ, exact set.mem_univ _, }, { exact h i hiS hfi_univ, }, }, }, have h_right : ∏ i in S, μ (f i) = ∏ i in S', μ (f i), { rw ← finset.prod_filter_mul_prod_filter_not S (λ i, f i ≠ set.univ), simp only [ne.def, finset.filter_congr_decidable, not_not], suffices : ∏ x in finset.filter (λ x, f x = set.univ) S, μ (f x) = 1, { rw [this, mul_one], }, calc ∏ x in finset.filter (λ x, f x = set.univ) S, μ (f x) = ∏ x in finset.filter (λ x, f x = set.univ) S, μ set.univ : finset.prod_congr rfl (λ x hx, by { rw finset.mem_filter at hx, rw hx.2, }) ... = ∏ x in finset.filter (λ x, f x = set.univ) S, 1 : finset.prod_congr rfl (λ _ _, measure_univ) ... = 1 : finset.prod_const_one, }, rw [h_left, h_right], exact h_ind S' h_mem, }, exact Indep_sets.Indep_aux m h_le π' h_pi' h_univ' h_gen' h_ind', end end from_pi_systems_to_measurable_spaces section indep_set /-! ### Independence of measurable sets We prove the following equivalences on `indep_set`, for measurable sets `s, t`. * `indep_set s t μ ↔ μ (s ∩ t) = μ s * μ t`, * `indep_set s t μ ↔ indep_sets {s} {t} μ`. -/ variables {α : Type*} [measurable_space α] {s t : set α} (S T : set (set α)) lemma indep_set_iff_indep_sets_singleton (hs_meas : measurable_set s) (ht_meas : measurable_set t) (μ : measure α . volume_tac) [is_probability_measure μ] : indep_set s t μ ↔ indep_sets {s} {t} μ := ⟨indep.indep_sets, λ h, indep_sets.indep (generate_from_le (λ u hu, by rwa set.mem_singleton_iff.mp hu)) (generate_from_le (λ u hu, by rwa set.mem_singleton_iff.mp hu)) (is_pi_system.singleton s) (is_pi_system.singleton t) rfl rfl h⟩ lemma indep_set_iff_measure_inter_eq_mul (hs_meas : measurable_set s) (ht_meas : measurable_set t) (μ : measure α . volume_tac) [is_probability_measure μ] : indep_set s t μ ↔ μ (s ∩ t) = μ s * μ t := (indep_set_iff_indep_sets_singleton hs_meas ht_meas μ).trans indep_sets_singleton_iff lemma indep_sets.indep_set_of_mem (hs : s ∈ S) (ht : t ∈ T) (hs_meas : measurable_set s) (ht_meas : measurable_set t) (μ : measure α . volume_tac) [is_probability_measure μ] (h_indep : indep_sets S T μ) : indep_set s t μ := (indep_set_iff_measure_inter_eq_mul hs_meas ht_meas μ).mpr (h_indep s t hs ht) end indep_set section indep_fun /-! ### Independence of random variables -/ variables {α β β' γ γ' : Type*} {mα : measurable_space α} {μ : measure α} {f : α → β} {g : α → β'} lemma indep_fun_iff_measure_inter_preimage_eq_mul {mβ : measurable_space β} {mβ' : measurable_space β'} : indep_fun f g μ ↔ ∀ s t, measurable_set s → measurable_set t → μ (f ⁻¹' s ∩ g ⁻¹' t) = μ (f ⁻¹' s) * μ (g ⁻¹' t) := begin split; intro h, { refine λ s t hs ht, h (f ⁻¹' s) (g ⁻¹' t) ⟨s, hs, rfl⟩ ⟨t, ht, rfl⟩, }, { rintros _ _ ⟨s, hs, rfl⟩ ⟨t, ht, rfl⟩, exact h s t hs ht, }, end lemma Indep_fun_iff_measure_inter_preimage_eq_mul {ι : Type*} {β : ι → Type*} (m : Π x, measurable_space (β x)) (f : Π i, α → β i) : Indep_fun m f μ ↔ ∀ (S : finset ι) {sets : Π i : ι, set (β i)} (H : ∀ i, i ∈ S → measurable_set[m i] (sets i)), μ (⋂ i ∈ S, (f i) ⁻¹' (sets i)) = ∏ i in S, μ ((f i) ⁻¹' (sets i)) := begin refine ⟨λ h S sets h_meas, h _ (λ i hi_mem, ⟨sets i, h_meas i hi_mem, rfl⟩), _⟩, intros h S setsα h_meas, let setsβ : (Π i : ι, set (β i)) := λ i, dite (i ∈ S) (λ hi_mem, (h_meas i hi_mem).some) (λ _, set.univ), have h_measβ : ∀ i ∈ S, measurable_set[m i] (setsβ i), { intros i hi_mem, simp_rw [setsβ, dif_pos hi_mem], exact (h_meas i hi_mem).some_spec.1, }, have h_preim : ∀ i ∈ S, setsα i = (f i) ⁻¹' (setsβ i), { intros i hi_mem, simp_rw [setsβ, dif_pos hi_mem], exact (h_meas i hi_mem).some_spec.2.symm, }, have h_left_eq : μ (⋂ i ∈ S, setsα i) = μ (⋂ i ∈ S, (f i) ⁻¹' (setsβ i)), { congr' with i x, simp only [set.mem_Inter], split; intros h hi_mem; specialize h hi_mem, { rwa h_preim i hi_mem at h, }, { rwa h_preim i hi_mem, }, }, have h_right_eq : (∏ i in S, μ (setsα i)) = ∏ i in S, μ ((f i) ⁻¹' (setsβ i)), { refine finset.prod_congr rfl (λ i hi_mem, _), rw h_preim i hi_mem, }, rw [h_left_eq, h_right_eq], exact h S h_measβ, end lemma indep_fun_iff_indep_set_preimage {mβ : measurable_space β} {mβ' : measurable_space β'} [is_probability_measure μ] (hf : measurable f) (hg : measurable g) : indep_fun f g μ ↔ ∀ s t, measurable_set s → measurable_set t → indep_set (f ⁻¹' s) (g ⁻¹' t) μ := begin refine indep_fun_iff_measure_inter_preimage_eq_mul.trans _, split; intros h s t hs ht; specialize h s t hs ht, { rwa indep_set_iff_measure_inter_eq_mul (hf hs) (hg ht) μ, }, { rwa ← indep_set_iff_measure_inter_eq_mul (hf hs) (hg ht) μ, }, end lemma indep_fun.ae_eq {mβ : measurable_space β} {f g f' g' : α → β} (hfg : indep_fun f g μ) (hf : f =ᵐ[μ] f') (hg : g =ᵐ[μ] g') : indep_fun f' g' μ := begin rintro _ _ ⟨A, hA, rfl⟩ ⟨B, hB, rfl⟩, have h1 : f ⁻¹' A =ᵐ[μ] f' ⁻¹' A := hf.fun_comp A, have h2 : g ⁻¹' B =ᵐ[μ] g' ⁻¹' B := hg.fun_comp B, rw [←measure_congr h1, ←measure_congr h2, ←measure_congr (h1.inter h2)], exact hfg _ _ ⟨_, hA, rfl⟩ ⟨_, hB, rfl⟩ end lemma indep_fun.comp {mβ : measurable_space β} {mβ' : measurable_space β'} {mγ : measurable_space γ} {mγ' : measurable_space γ'} {φ : β → γ} {ψ : β' → γ'} (hfg : indep_fun f g μ) (hφ : measurable φ) (hψ : measurable ψ) : indep_fun (φ ∘ f) (ψ ∘ g) μ := begin rintro _ _ ⟨A, hA, rfl⟩ ⟨B, hB, rfl⟩, apply hfg, { exact ⟨φ ⁻¹' A, hφ hA, set.preimage_comp.symm⟩ }, { exact ⟨ψ ⁻¹' B, hψ hB, set.preimage_comp.symm⟩ } end /-- If `f` is a family of mutually independent random variables (`Indep_fun m f μ`) and `S, T` are two disjoint finite index sets, then the tuple formed by `f i` for `i ∈ S` is independent of the tuple `(f i)_i` for `i ∈ T`. -/ lemma Indep_fun.indep_fun_finset [is_probability_measure μ] {ι : Type*} {β : ι → Type*} {m : Π i, measurable_space (β i)} {f : Π i, α → β i} (S T : finset ι) (hST : disjoint S T) (hf_Indep : Indep_fun m f μ) (hf_meas : ∀ i, measurable (f i)) : indep_fun (λ a (i : S), f i a) (λ a (i : T), f i a) μ := begin -- We introduce π-systems, build from the π-system of boxes which generates `measurable_space.pi`. let πSβ := (set.pi (set.univ : set S) '' (set.pi (set.univ : set S) (λ i, {s : set (β i) | measurable_set[m i] s}))), let πS := {s : set α | ∃ t ∈ πSβ, (λ a (i : S), f i a) ⁻¹' t = s}, have hπS_pi : is_pi_system πS := is_pi_system_pi.comap (λ a i, f i a), have hπS_gen : measurable_space.pi.comap (λ a (i : S), f i a) = generate_from πS, { rw [generate_from_pi.symm, comap_generate_from], { congr' with s, simp only [set.mem_image, set.mem_set_of_eq, exists_prop], }, { exact finset.fintype_coe_sort S, }, }, let πTβ := (set.pi (set.univ : set T) '' (set.pi (set.univ : set T) (λ i, {s : set (β i) | measurable_set[m i] s}))), let πT := {s : set α | ∃ t ∈ πTβ, (λ a (i : T), f i a) ⁻¹' t = s}, have hπT_pi : is_pi_system πT := is_pi_system_pi.comap (λ a i, f i a), have hπT_gen : measurable_space.pi.comap (λ a (i : T), f i a) = generate_from πT, { rw [generate_from_pi.symm, comap_generate_from], { congr' with s, simp only [set.mem_image, set.mem_set_of_eq, exists_prop], }, { exact finset.fintype_coe_sort T, }, }, -- To prove independence, we prove independence of the generating π-systems. refine indep_sets.indep (measurable.comap_le (measurable_pi_iff.mpr (λ i, hf_meas i))) (measurable.comap_le (measurable_pi_iff.mpr (λ i, hf_meas i))) hπS_pi hπT_pi hπS_gen hπT_gen _, rintros _ _ ⟨s, ⟨sets_s, hs1, hs2⟩, rfl⟩ ⟨t, ⟨sets_t, ht1, ht2⟩, rfl⟩, simp only [set.mem_univ_pi, set.mem_set_of_eq] at hs1 ht1, rw [← hs2, ← ht2], let sets_s' : (Π i : ι, set (β i)) := λ i, dite (i ∈ S) (λ hi, sets_s ⟨i, hi⟩) (λ _, set.univ), have h_sets_s'_eq : ∀ {i} (hi : i ∈ S), sets_s' i = sets_s ⟨i, hi⟩, { intros i hi, simp_rw [sets_s', dif_pos hi], }, have h_sets_s'_univ : ∀ {i} (hi : i ∈ T), sets_s' i = set.univ, { intros i hi, simp_rw [sets_s', dif_neg (finset.disjoint_right.mp hST hi)], }, let sets_t' : (Π i : ι, set (β i)) := λ i, dite (i ∈ T) (λ hi, sets_t ⟨i, hi⟩) (λ _, set.univ), have h_sets_t'_univ : ∀ {i} (hi : i ∈ S), sets_t' i = set.univ, { intros i hi, simp_rw [sets_t', dif_neg (finset.disjoint_left.mp hST hi)], }, have h_meas_s' : ∀ i ∈ S, measurable_set (sets_s' i), { intros i hi, rw h_sets_s'_eq hi, exact hs1 _, }, have h_meas_t' : ∀ i ∈ T, measurable_set (sets_t' i), { intros i hi, simp_rw [sets_t', dif_pos hi], exact ht1 _, }, have h_eq_inter_S : (λ (a : α) (i : ↥S), f ↑i a) ⁻¹' set.pi set.univ sets_s = ⋂ i ∈ S, (f i) ⁻¹' (sets_s' i), { ext1 x, simp only [set.mem_preimage, set.mem_univ_pi, set.mem_Inter], split; intro h, { intros i hi, rw [h_sets_s'_eq hi], exact h ⟨i, hi⟩, }, { rintros ⟨i, hi⟩, specialize h i hi, rw [h_sets_s'_eq hi] at h, exact h, }, }, have h_eq_inter_T : (λ (a : α) (i : ↥T), f ↑i a) ⁻¹' set.pi set.univ sets_t = ⋂ i ∈ T, (f i) ⁻¹' (sets_t' i), { ext1 x, simp only [set.mem_preimage, set.mem_univ_pi, set.mem_Inter], split; intro h, { intros i hi, simp_rw [sets_t', dif_pos hi], exact h ⟨i, hi⟩, }, { rintros ⟨i, hi⟩, specialize h i hi, simp_rw [sets_t', dif_pos hi] at h, exact h, }, }, rw Indep_fun_iff_measure_inter_preimage_eq_mul at hf_Indep, rw [h_eq_inter_S, h_eq_inter_T, hf_Indep S h_meas_s', hf_Indep T h_meas_t'], have h_Inter_inter : (⋂ i ∈ S, (f i) ⁻¹' (sets_s' i)) ∩ (⋂ i ∈ T, (f i) ⁻¹' (sets_t' i)) = ⋂ i ∈ (S ∪ T), (f i) ⁻¹' (sets_s' i ∩ sets_t' i), { ext1 x, simp only [set.mem_inter_eq, set.mem_Inter, set.mem_preimage, finset.mem_union], split; intro h, { intros i hi, cases hi, { rw h_sets_t'_univ hi, exact ⟨h.1 i hi, set.mem_univ _⟩, }, { rw h_sets_s'_univ hi, exact ⟨set.mem_univ _, h.2 i hi⟩, }, }, { exact ⟨λ i hi, (h i (or.inl hi)).1, λ i hi, (h i (or.inr hi)).2⟩, }, }, rw [h_Inter_inter, hf_Indep (S ∪ T)], swap, { intros i hi_mem, rw finset.mem_union at hi_mem, cases hi_mem, { rw [h_sets_t'_univ hi_mem, set.inter_univ], exact h_meas_s' i hi_mem, }, { rw [h_sets_s'_univ hi_mem, set.univ_inter], exact h_meas_t' i hi_mem, }, }, rw finset.prod_union hST, congr' 1, { refine finset.prod_congr rfl (λ i hi, _), rw [h_sets_t'_univ hi, set.inter_univ], }, { refine finset.prod_congr rfl (λ i hi, _), rw [h_sets_s'_univ hi, set.univ_inter], }, end lemma Indep_fun.indep_fun_prod [is_probability_measure μ] {ι : Type*} {β : ι → Type*} {m : Π i, measurable_space (β i)} {f : Π i, α → β i} (hf_Indep : Indep_fun m f μ) (hf_meas : ∀ i, measurable (f i)) (i j k : ι) (hik : i ≠ k) (hjk : j ≠ k) : indep_fun (λ a, (f i a, f j a)) (f k) μ := begin classical, have h_right : f k = (λ p : (Π j : ({k} : finset ι), β j), p ⟨k, finset.mem_singleton_self k⟩) ∘ (λ a (j : ({k} : finset ι)), f j a) := rfl, have h_meas_right : measurable (λ p : (Π j : ({k} : finset ι), β j), p ⟨k, finset.mem_singleton_self k⟩), from measurable_pi_apply ⟨k, finset.mem_singleton_self k⟩, let s : finset ι := {i, j}, have h_left : (λ ω, (f i ω, f j ω)) = (λ p : (Π l : s, β l), (p ⟨i, finset.mem_insert_self i _⟩, p ⟨j, finset.mem_insert_of_mem (finset.mem_singleton_self _)⟩)) ∘ (λ a (j : s), f j a), { ext1 a, simp only [prod.mk.inj_iff], split; refl, }, have h_meas_left : measurable (λ p : (Π l : s, β l), (p ⟨i, finset.mem_insert_self i _⟩, p ⟨j, finset.mem_insert_of_mem (finset.mem_singleton_self _)⟩)), from measurable.prod (measurable_pi_apply ⟨i, finset.mem_insert_self i {j}⟩) (measurable_pi_apply ⟨j, finset.mem_insert_of_mem (finset.mem_singleton_self j)⟩), rw [h_left, h_right], refine (hf_Indep.indep_fun_finset s {k} _ hf_meas).comp h_meas_left h_meas_right, intros x hx, simp only [finset.inf_eq_inter, finset.mem_inter, finset.mem_insert, finset.mem_singleton] at hx, simp only [finset.bot_eq_empty, finset.not_mem_empty], cases hx.1 with hx_eq hx_eq; rw hx_eq at hx, { exact hik hx.2, }, { exact hjk hx.2, }, end @[to_additive] lemma Indep_fun.mul [is_probability_measure μ] {ι : Type*} {β : Type*} {m : measurable_space β} [has_mul β] [has_measurable_mul₂ β] {f : ι → α → β} (hf_Indep : Indep_fun (λ _, m) f μ) (hf_meas : ∀ i, measurable (f i)) (i j k : ι) (hik : i ≠ k) (hjk : j ≠ k) : indep_fun (f i * f j) (f k) μ := begin have : indep_fun (λ ω, (f i ω, f j ω)) (f k) μ := hf_Indep.indep_fun_prod hf_meas i j k hik hjk, change indep_fun ((λ p : β × β, p.fst * p.snd) ∘ (λ ω, (f i ω, f j ω))) (id ∘ (f k)) μ, exact indep_fun.comp this (measurable_fst.mul measurable_snd) measurable_id, end @[to_additive] lemma Indep_fun.indep_fun_finset_prod_of_not_mem [is_probability_measure μ] {ι : Type*} {β : Type*} {m : measurable_space β} [comm_monoid β] [has_measurable_mul₂ β] {f : ι → α → β} (hf_Indep : Indep_fun (λ _, m) f μ) (hf_meas : ∀ i, measurable (f i)) {s : finset ι} {i : ι} (hi : i ∉ s) : indep_fun (∏ j in s, f j) (f i) μ := begin classical, have h_right : f i = (λ p : (Π j : ({i} : finset ι), β), p ⟨i, finset.mem_singleton_self i⟩) ∘ (λ a (j : ({i} : finset ι)), f j a) := rfl, have h_meas_right : measurable (λ p : (Π j : ({i} : finset ι), β), p ⟨i, finset.mem_singleton_self i⟩), from measurable_pi_apply ⟨i, finset.mem_singleton_self i⟩, have h_left : (∏ j in s, f j) = (λ p : (Π j : s, β), ∏ j, p j) ∘ (λ a (j : s), f j a), { ext1 a, simp only [function.comp_app], have : (∏ (j : ↥s), f ↑j a) = (∏ (j : ↥s), f ↑j) a, by rw finset.prod_apply, rw [this, finset.prod_coe_sort], }, have h_meas_left : measurable (λ p : (Π j : s, β), ∏ j, p j), from finset.univ.measurable_prod (λ (j : ↥s) (H : j ∈ finset.univ), measurable_pi_apply j), rw [h_left, h_right], exact (hf_Indep.indep_fun_finset s {i} (finset.disjoint_singleton_left.mpr hi).symm hf_meas).comp h_meas_left h_meas_right, end @[to_additive] lemma Indep_fun.indep_fun_prod_range_succ [is_probability_measure μ] {β : Type*} {m : measurable_space β} [comm_monoid β] [has_measurable_mul₂ β] {f : ℕ → α → β} (hf_Indep : Indep_fun (λ _, m) f μ) (hf_meas : ∀ i, measurable (f i)) (n : ℕ) : indep_fun (∏ j in finset.range n, f j) (f n) μ := hf_Indep.indep_fun_finset_prod_of_not_mem hf_meas finset.not_mem_range_self end indep_fun end probability_theory