/- Copyright (c) 2022 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import probability.variance /-! # Moments and moment generating function ## Main definitions * `probability_theory.moment X p μ`: `p`th moment of a real random variable `X` with respect to measure `μ`, `μ[X^p]` * `probability_theory.central_moment X p μ`:`p`th central moment of `X` with respect to measure `μ`, `μ[(X - μ[X])^p]` * `probability_theory.mgf X μ t`: moment generating function of `X` with respect to measure `μ`, `μ[exp(t*X)]` * `probability_theory.cgf X μ t`: cumulant generating function, logarithm of the moment generating function ## Main results * `probability_theory.indep_fun.mgf_add`: if two real random variables `X` and `Y` are independent and their mgf are defined at `t`, then `mgf (X + Y) μ t = mgf X μ t * mgf Y μ t` * `probability_theory.indep_fun.cgf_add`: if two real random variables `X` and `Y` are independent and their mgf are defined at `t`, then `cgf (X + Y) μ t = cgf X μ t + cgf Y μ t` * `probability_theory.measure_ge_le_exp_cgf` and `probability_theory.measure_le_le_exp_cgf`: Chernoff bound on the upper (resp. lower) tail of a random variable. For `t` nonnegative such that the cgf exists, `ℙ(ε ≤ X) ≤ exp(- t*ε + cgf X ℙ t)`. See also `probability_theory.measure_ge_le_exp_mul_mgf` and `probability_theory.measure_le_le_exp_mul_mgf` for versions of these results using `mgf` instead of `cgf`. -/ open measure_theory filter finset real noncomputable theory open_locale big_operators measure_theory probability_theory ennreal nnreal namespace probability_theory variables {Ω ι : Type*} {m : measurable_space Ω} {X : Ω → ℝ} {p : ℕ} {μ : measure Ω} include m /-- Moment of a real random variable, `μ[X ^ p]`. -/ def moment (X : Ω → ℝ) (p : ℕ) (μ : measure Ω) : ℝ := μ[X ^ p] /-- Central moment of a real random variable, `μ[(X - μ[X]) ^ p]`. -/ def central_moment (X : Ω → ℝ) (p : ℕ) (μ : measure Ω) : ℝ := μ[(X - (λ x, μ[X])) ^ p] @[simp] lemma moment_zero (hp : p ≠ 0) : moment 0 p μ = 0 := by simp only [moment, hp, zero_pow', ne.def, not_false_iff, pi.zero_apply, integral_const, algebra.id.smul_eq_mul, mul_zero] @[simp] lemma central_moment_zero (hp : p ≠ 0) : central_moment 0 p μ = 0 := by simp only [central_moment, hp, pi.zero_apply, integral_const, algebra.id.smul_eq_mul, mul_zero, zero_sub, pi.pow_apply, pi.neg_apply, neg_zero', zero_pow', ne.def, not_false_iff] lemma central_moment_one' [is_finite_measure μ] (h_int : integrable X μ) : central_moment X 1 μ = (1 - (μ set.univ).to_real) * μ[X] := begin simp only [central_moment, pi.sub_apply, pow_one], rw integral_sub h_int (integrable_const _), simp only [sub_mul, integral_const, algebra.id.smul_eq_mul, one_mul], end @[simp] lemma central_moment_one [is_probability_measure μ] : central_moment X 1 μ = 0 := begin by_cases h_int : integrable X μ, { rw central_moment_one' h_int, simp only [measure_univ, ennreal.one_to_real, sub_self, zero_mul], }, { simp only [central_moment, pi.sub_apply, pow_one], have : ¬ integrable (λ x, X x - integral μ X) μ, { refine λ h_sub, h_int _, have h_add : X = (λ x, X x - integral μ X) + (λ x, integral μ X), { ext1 x, simp, }, rw h_add, exact h_sub.add (integrable_const _), }, rw integral_undef this, }, end @[simp] lemma central_moment_two_eq_variance : central_moment X 2 μ = variance X μ := rfl section moment_generating_function variables {t : ℝ} /-- Moment generating function of a real random variable `X`: `λ t, μ[exp(t*X)]`. -/ def mgf (X : Ω → ℝ) (μ : measure Ω) (t : ℝ) : ℝ := μ[λ ω, exp (t * X ω)] /-- Cumulant generating function of a real random variable `X`: `λ t, log μ[exp(t*X)]`. -/ def cgf (X : Ω → ℝ) (μ : measure Ω) (t : ℝ) : ℝ := log (mgf X μ t) @[simp] lemma mgf_zero_fun : mgf 0 μ t = (μ set.univ).to_real := by simp only [mgf, pi.zero_apply, mul_zero, exp_zero, integral_const, algebra.id.smul_eq_mul, mul_one] @[simp] lemma cgf_zero_fun : cgf 0 μ t = log (μ set.univ).to_real := by simp only [cgf, mgf_zero_fun] @[simp] lemma mgf_zero_measure : mgf X (0 : measure Ω) t = 0 := by simp only [mgf, integral_zero_measure] @[simp] lemma cgf_zero_measure : cgf X (0 : measure Ω) t = 0 := by simp only [cgf, log_zero, mgf_zero_measure] @[simp] lemma mgf_const' (c : ℝ) : mgf (λ _, c) μ t = (μ set.univ).to_real * exp (t * c) := by simp only [mgf, integral_const, algebra.id.smul_eq_mul] @[simp] lemma mgf_const (c : ℝ) [is_probability_measure μ] : mgf (λ _, c) μ t = exp (t * c) := by simp only [mgf_const', measure_univ, ennreal.one_to_real, one_mul] @[simp] lemma cgf_const' [is_finite_measure μ] (hμ : μ ≠ 0) (c : ℝ) : cgf (λ _, c) μ t = log (μ set.univ).to_real + t * c := begin simp only [cgf, mgf_const'], rw log_mul _ (exp_pos _).ne', { rw log_exp _, }, { rw [ne.def, ennreal.to_real_eq_zero_iff, measure.measure_univ_eq_zero], simp only [hμ, measure_ne_top μ set.univ, or_self, not_false_iff], }, end @[simp] lemma cgf_const [is_probability_measure μ] (c : ℝ) : cgf (λ _, c) μ t = t * c := by simp only [cgf, mgf_const, log_exp] @[simp] lemma mgf_zero' : mgf X μ 0 = (μ set.univ).to_real := by simp only [mgf, zero_mul, exp_zero, integral_const, algebra.id.smul_eq_mul, mul_one] @[simp] lemma mgf_zero [is_probability_measure μ] : mgf X μ 0 = 1 := by simp only [mgf_zero', measure_univ, ennreal.one_to_real] @[simp] lemma cgf_zero' : cgf X μ 0 = log (μ set.univ).to_real := by simp only [cgf, mgf_zero'] @[simp] lemma cgf_zero [is_probability_measure μ] : cgf X μ 0 = 0 := by simp only [cgf_zero', measure_univ, ennreal.one_to_real, log_one] lemma mgf_undef (hX : ¬ integrable (λ ω, exp (t * X ω)) μ) : mgf X μ t = 0 := by simp only [mgf, integral_undef hX] lemma cgf_undef (hX : ¬ integrable (λ ω, exp (t * X ω)) μ) : cgf X μ t = 0 := by simp only [cgf, mgf_undef hX, log_zero] lemma mgf_nonneg : 0 ≤ mgf X μ t := begin refine integral_nonneg _, intro ω, simp only [pi.zero_apply], exact (exp_pos _).le, end lemma mgf_pos' (hμ : μ ≠ 0) (h_int_X : integrable (λ ω, exp (t * X ω)) μ) : 0 < mgf X μ t := begin simp_rw mgf, have : ∫ (x : Ω), exp (t * X x) ∂μ = ∫ (x : Ω) in set.univ, exp (t * X x) ∂μ, { simp only [measure.restrict_univ], }, rw [this, set_integral_pos_iff_support_of_nonneg_ae _ _], { have h_eq_univ : function.support (λ (x : Ω), exp (t * X x)) = set.univ, { ext1 x, simp only [function.mem_support, set.mem_univ, iff_true], exact (exp_pos _).ne', }, rw [h_eq_univ, set.inter_univ _], refine ne.bot_lt _, simp only [hμ, ennreal.bot_eq_zero, ne.def, measure.measure_univ_eq_zero, not_false_iff], }, { refine eventually_of_forall (λ x, _), rw pi.zero_apply, exact (exp_pos _).le, }, { rwa integrable_on_univ, }, end lemma mgf_pos [is_probability_measure μ] (h_int_X : integrable (λ ω, exp (t * X ω)) μ) : 0 < mgf X μ t := mgf_pos' (is_probability_measure.ne_zero μ) h_int_X lemma mgf_neg : mgf (-X) μ t = mgf X μ (-t) := by simp_rw [mgf, pi.neg_apply, mul_neg, neg_mul] lemma cgf_neg : cgf (-X) μ t = cgf X μ (-t) := by simp_rw [cgf, mgf_neg] /-- This is a trivial application of `indep_fun.comp` but it will come up frequently. -/ lemma indep_fun.exp_mul {X Y : Ω → ℝ} (h_indep : indep_fun X Y μ) (s t : ℝ) : indep_fun (λ ω, exp (s * X ω)) (λ ω, exp (t * Y ω)) μ := begin have h_meas : ∀ t, measurable (λ x, exp (t * x)) := λ t, (measurable_id'.const_mul t).exp, change indep_fun ((λ x, exp (s * x)) ∘ X) ((λ x, exp (t * x)) ∘ Y) μ, exact indep_fun.comp h_indep (h_meas s) (h_meas t), end lemma indep_fun.mgf_add {X Y : Ω → ℝ} (h_indep : indep_fun X Y μ) (h_int_X : integrable (λ ω, exp (t * X ω)) μ) (h_int_Y : integrable (λ ω, exp (t * Y ω)) μ) : mgf (X + Y) μ t = mgf X μ t * mgf Y μ t := begin simp_rw [mgf, pi.add_apply, mul_add, exp_add], exact (h_indep.exp_mul t t).integral_mul_of_integrable' h_int_X h_int_Y, end lemma indep_fun.cgf_add {X Y : Ω → ℝ} (h_indep : indep_fun X Y μ) (h_int_X : integrable (λ ω, exp (t * X ω)) μ) (h_int_Y : integrable (λ ω, exp (t * Y ω)) μ) : cgf (X + Y) μ t = cgf X μ t + cgf Y μ t := begin by_cases hμ : μ = 0, { simp [hμ], }, simp only [cgf, h_indep.mgf_add h_int_X h_int_Y], exact log_mul (mgf_pos' hμ h_int_X).ne' (mgf_pos' hμ h_int_Y).ne', end lemma indep_fun.integrable_exp_mul_add {X Y : Ω → ℝ} (h_indep : indep_fun X Y μ) (h_int_X : integrable (λ ω, exp (t * X ω)) μ) (h_int_Y : integrable (λ ω, exp (t * Y ω)) μ) : integrable (λ ω, exp (t * (X + Y) ω)) μ := begin simp_rw [pi.add_apply, mul_add, exp_add], exact (h_indep.exp_mul t t).integrable_mul h_int_X h_int_Y, end lemma Indep_fun.integrable_exp_mul_sum [is_probability_measure μ] {X : ι → Ω → ℝ} (h_indep : Indep_fun (λ i, infer_instance) X μ) (h_meas : ∀ i, measurable (X i)) {s : finset ι} (h_int : ∀ i ∈ s, integrable (λ ω, exp (t * X i ω)) μ) : integrable (λ ω, exp (t * (∑ i in s, X i) ω)) μ := begin classical, induction s using finset.induction_on with i s hi_notin_s h_rec h_int, { simp only [pi.zero_apply, sum_apply, sum_empty, mul_zero, exp_zero], exact integrable_const _, }, { have : ∀ (i : ι), i ∈ s → integrable (λ (ω : Ω), exp (t * X i ω)) μ, from λ i hi, h_int i (mem_insert_of_mem hi), specialize h_rec this, rw sum_insert hi_notin_s, refine indep_fun.integrable_exp_mul_add _ (h_int i (mem_insert_self _ _)) h_rec, exact (h_indep.indep_fun_finset_sum_of_not_mem h_meas hi_notin_s).symm, }, end lemma Indep_fun.mgf_sum [is_probability_measure μ] {X : ι → Ω → ℝ} (h_indep : Indep_fun (λ i, infer_instance) X μ) (h_meas : ∀ i, measurable (X i)) {s : finset ι} (h_int : ∀ i ∈ s, integrable (λ ω, exp (t * X i ω)) μ) : mgf (∑ i in s, X i) μ t = ∏ i in s, mgf (X i) μ t := begin classical, induction s using finset.induction_on with i s hi_notin_s h_rec h_int, { simp only [sum_empty, mgf_zero_fun, measure_univ, ennreal.one_to_real, prod_empty], }, { have h_int' : ∀ (i : ι), i ∈ s → integrable (λ (ω : Ω), exp (t * X i ω)) μ, from λ i hi, h_int i (mem_insert_of_mem hi), rw [sum_insert hi_notin_s, indep_fun.mgf_add (h_indep.indep_fun_finset_sum_of_not_mem h_meas hi_notin_s).symm (h_int i (mem_insert_self _ _)) (h_indep.integrable_exp_mul_sum h_meas h_int'), h_rec h_int', prod_insert hi_notin_s], }, end lemma Indep_fun.cgf_sum [is_probability_measure μ] {X : ι → Ω → ℝ} (h_indep : Indep_fun (λ i, infer_instance) X μ) (h_meas : ∀ i, measurable (X i)) {s : finset ι} (h_int : ∀ i ∈ s, integrable (λ ω, exp (t * X i ω)) μ) : cgf (∑ i in s, X i) μ t = ∑ i in s, cgf (X i) μ t := begin simp_rw cgf, rw ← log_prod _ _ (λ j hj, _), { rw h_indep.mgf_sum h_meas h_int, }, { exact (mgf_pos (h_int j hj)).ne', }, end /-- **Chernoff bound** on the upper tail of a real random variable. -/ lemma measure_ge_le_exp_mul_mgf [is_finite_measure μ] (ε : ℝ) (ht : 0 ≤ t) (h_int : integrable (λ ω, exp (t * X ω)) μ) : (μ {ω | ε ≤ X ω}).to_real ≤ exp (- t * ε) * mgf X μ t := begin cases ht.eq_or_lt with ht_zero_eq ht_pos, { rw ht_zero_eq.symm, simp only [neg_zero', zero_mul, exp_zero, mgf_zero', one_mul], rw ennreal.to_real_le_to_real (measure_ne_top μ _) (measure_ne_top μ _), exact measure_mono (set.subset_univ _), }, calc (μ {ω | ε ≤ X ω}).to_real = (μ {ω | exp (t * ε) ≤ exp (t * X ω)}).to_real : begin congr' with ω, simp only [exp_le_exp, eq_iff_iff], exact ⟨λ h, mul_le_mul_of_nonneg_left h ht_pos.le, λ h, le_of_mul_le_mul_left h ht_pos⟩, end ... ≤ (exp (t * ε))⁻¹ * μ[λ ω, exp (t * X ω)] : begin have : exp (t * ε) * (μ {ω | exp (t * ε) ≤ exp (t * X ω)}).to_real ≤ μ[λ ω, exp (t * X ω)], from mul_meas_ge_le_integral_of_nonneg (λ x, (exp_pos _).le) h_int _, rwa [mul_comm (exp (t * ε))⁻¹, ← div_eq_mul_inv, le_div_iff' (exp_pos _)], end ... = exp (- t * ε) * mgf X μ t : by { rw [neg_mul, exp_neg], refl, }, end /-- **Chernoff bound** on the lower tail of a real random variable. -/ lemma measure_le_le_exp_mul_mgf [is_finite_measure μ] (ε : ℝ) (ht : t ≤ 0) (h_int : integrable (λ ω, exp (t * X ω)) μ) : (μ {ω | X ω ≤ ε}).to_real ≤ exp (- t * ε) * mgf X μ t := begin rw [← neg_neg t, ← mgf_neg, neg_neg, ← neg_mul_neg (-t)], refine eq.trans_le _ (measure_ge_le_exp_mul_mgf (-ε) (neg_nonneg.mpr ht) _), { congr' with ω, simp only [pi.neg_apply, neg_le_neg_iff], }, { simp_rw [pi.neg_apply, neg_mul_neg], exact h_int, }, end /-- **Chernoff bound** on the upper tail of a real random variable. -/ lemma measure_ge_le_exp_cgf [is_finite_measure μ] (ε : ℝ) (ht : 0 ≤ t) (h_int : integrable (λ ω, exp (t * X ω)) μ) : (μ {ω | ε ≤ X ω}).to_real ≤ exp (- t * ε + cgf X μ t) := begin refine (measure_ge_le_exp_mul_mgf ε ht h_int).trans _, rw exp_add, exact mul_le_mul le_rfl (le_exp_log _) mgf_nonneg (exp_pos _).le, end /-- **Chernoff bound** on the lower tail of a real random variable. -/ lemma measure_le_le_exp_cgf [is_finite_measure μ] (ε : ℝ) (ht : t ≤ 0) (h_int : integrable (λ ω, exp (t * X ω)) μ) : (μ {ω | X ω ≤ ε}).to_real ≤ exp (- t * ε + cgf X μ t) := begin refine (measure_le_le_exp_mul_mgf ε ht h_int).trans _, rw exp_add, exact mul_le_mul le_rfl (le_exp_log _) mgf_nonneg (exp_pos _).le, end end moment_generating_function end probability_theory