/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import measure_theory.function.conditional_expectation import topology.instances.discrete /-! # Filtration and stopping time This file defines some standard definition from the theory of stochastic processes including filtrations and stopping times. These definitions are used to model the amount of information at a specific time and is the first step in formalizing stochastic processes. ## Main definitions * `measure_theory.filtration`: a filtration on a measurable space * `measure_theory.adapted`: a sequence of functions `u` is said to be adapted to a filtration `f` if at each point in time `i`, `u i` is `f i`-strongly measurable * `measure_theory.prog_measurable`: a sequence of functions `u` is said to be progressively measurable with respect to a filtration `f` if at each point in time `i`, `u` restricted to `set.Iic i × α` is strongly measurable with respect to the product `measurable_space` structure where the σ-algebra used for `α` is `f i`. * `measure_theory.filtration.natural`: the natural filtration with respect to a sequence of measurable functions is the smallest filtration to which it is adapted to * `measure_theory.is_stopping_time`: a stopping time with respect to some filtration `f` is a function `τ` such that for all `i`, the preimage of `{j | j ≤ i}` along `τ` is `f i`-measurable * `measure_theory.is_stopping_time.measurable_space`: the σ-algebra associated with a stopping time ## Main results * `adapted.prog_measurable_of_continuous`: a continuous adapted process is progressively measurable. * `prog_measurable.stopped_process`: the stopped process of a progressively measurable process is progressively measurable. * `mem_ℒp_stopped_process`: if a process belongs to `ℒp` at every time in `ℕ`, then its stopped process belongs to `ℒp` as well. ## Tags filtration, stopping time, stochastic process -/ open filter order topological_space open_locale classical measure_theory nnreal ennreal topological_space big_operators namespace measure_theory /-! ### Filtrations -/ /-- A `filtration` on measurable space `α` with σ-algebra `m` is a monotone sequence of sub-σ-algebras of `m`. -/ structure filtration {α : Type*} (ι : Type*) [preorder ι] (m : measurable_space α) := (seq : ι → measurable_space α) (mono' : monotone seq) (le' : ∀ i : ι, seq i ≤ m) variables {α β ι : Type*} {m : measurable_space α} instance [preorder ι] : has_coe_to_fun (filtration ι m) (λ _, ι → measurable_space α) := ⟨λ f, f.seq⟩ namespace filtration variables [preorder ι] protected lemma mono {i j : ι} (f : filtration ι m) (hij : i ≤ j) : f i ≤ f j := f.mono' hij protected lemma le (f : filtration ι m) (i : ι) : f i ≤ m := f.le' i @[ext] protected lemma ext {f g : filtration ι m} (h : (f : ι → measurable_space α) = g) : f = g := by { cases f, cases g, simp only, exact h, } variable (ι) /-- The constant filtration which is equal to `m` for all `i : ι`. -/ def const (m' : measurable_space α) (hm' : m' ≤ m) : filtration ι m := ⟨λ _, m', monotone_const, λ _, hm'⟩ variable {ι} @[simp] lemma const_apply {m' : measurable_space α} {hm' : m' ≤ m} (i : ι) : const ι m' hm' i = m' := rfl instance : inhabited (filtration ι m) := ⟨const ι m le_rfl⟩ instance : has_le (filtration ι m) := ⟨λ f g, ∀ i, f i ≤ g i⟩ instance : has_bot (filtration ι m) := ⟨const ι ⊥ bot_le⟩ instance : has_top (filtration ι m) := ⟨const ι m le_rfl⟩ instance : has_sup (filtration ι m) := ⟨λ f g, { seq := λ i, f i ⊔ g i, mono' := λ i j hij, sup_le ((f.mono hij).trans le_sup_left) ((g.mono hij).trans le_sup_right), le' := λ i, sup_le (f.le i) (g.le i) }⟩ @[norm_cast] lemma coe_fn_sup {f g : filtration ι m} : ⇑(f ⊔ g) = f ⊔ g := rfl instance : has_inf (filtration ι m) := ⟨λ f g, { seq := λ i, f i ⊓ g i, mono' := λ i j hij, le_inf (inf_le_left.trans (f.mono hij)) (inf_le_right.trans (g.mono hij)), le' := λ i, inf_le_left.trans (f.le i) }⟩ @[norm_cast] lemma coe_fn_inf {f g : filtration ι m} : ⇑(f ⊓ g) = f ⊓ g := rfl instance : has_Sup (filtration ι m) := ⟨λ s, { seq := λ i, Sup ((λ f : filtration ι m, f i) '' s), mono' := λ i j hij, begin refine Sup_le (λ m' hm', _), rw [set.mem_image] at hm', obtain ⟨f, hf_mem, hfm'⟩ := hm', rw ← hfm', refine (f.mono hij).trans _, have hfj_mem : f j ∈ ((λ g : filtration ι m, g j) '' s), from ⟨f, hf_mem, rfl⟩, exact le_Sup hfj_mem, end, le' := λ i, begin refine Sup_le (λ m' hm', _), rw [set.mem_image] at hm', obtain ⟨f, hf_mem, hfm'⟩ := hm', rw ← hfm', exact f.le i, end, }⟩ lemma Sup_def (s : set (filtration ι m)) (i : ι) : Sup s i = Sup ((λ f : filtration ι m, f i) '' s) := rfl noncomputable instance : has_Inf (filtration ι m) := ⟨λ s, { seq := λ i, if set.nonempty s then Inf ((λ f : filtration ι m, f i) '' s) else m, mono' := λ i j hij, begin by_cases h_nonempty : set.nonempty s, swap, { simp only [h_nonempty, set.nonempty_image_iff, if_false, le_refl], }, simp only [h_nonempty, if_true, le_Inf_iff, set.mem_image, forall_exists_index, and_imp, forall_apply_eq_imp_iff₂], refine λ f hf_mem, le_trans _ (f.mono hij), have hfi_mem : f i ∈ ((λ g : filtration ι m, g i) '' s), from ⟨f, hf_mem, rfl⟩, exact Inf_le hfi_mem, end, le' := λ i, begin by_cases h_nonempty : set.nonempty s, swap, { simp only [h_nonempty, if_false, le_refl], }, simp only [h_nonempty, if_true], obtain ⟨f, hf_mem⟩ := h_nonempty, exact le_trans (Inf_le ⟨f, hf_mem, rfl⟩) (f.le i), end, }⟩ lemma Inf_def (s : set (filtration ι m)) (i : ι) : Inf s i = if set.nonempty s then Inf ((λ f : filtration ι m, f i) '' s) else m := rfl noncomputable instance : complete_lattice (filtration ι m) := { le := (≤), le_refl := λ f i, le_rfl, le_trans := λ f g h h_fg h_gh i, (h_fg i).trans (h_gh i), le_antisymm := λ f g h_fg h_gf, filtration.ext $ funext $ λ i, (h_fg i).antisymm (h_gf i), sup := (⊔), le_sup_left := λ f g i, le_sup_left, le_sup_right := λ f g i, le_sup_right, sup_le := λ f g h h_fh h_gh i, sup_le (h_fh i) (h_gh _), inf := (⊓), inf_le_left := λ f g i, inf_le_left, inf_le_right := λ f g i, inf_le_right, le_inf := λ f g h h_fg h_fh i, le_inf (h_fg i) (h_fh i), Sup := Sup, le_Sup := λ s f hf_mem i, le_Sup ⟨f, hf_mem, rfl⟩, Sup_le := λ s f h_forall i, Sup_le $ λ m' hm', begin obtain ⟨g, hg_mem, hfm'⟩ := hm', rw ← hfm', exact h_forall g hg_mem i, end, Inf := Inf, Inf_le := λ s f hf_mem i, begin have hs : s.nonempty := ⟨f, hf_mem⟩, simp only [Inf_def, hs, if_true], exact Inf_le ⟨f, hf_mem, rfl⟩, end, le_Inf := λ s f h_forall i, begin by_cases hs : s.nonempty, swap, { simp only [Inf_def, hs, if_false], exact f.le i, }, simp only [Inf_def, hs, if_true, le_Inf_iff, set.mem_image, forall_exists_index, and_imp, forall_apply_eq_imp_iff₂], exact λ g hg_mem, h_forall g hg_mem i, end, top := ⊤, bot := ⊥, le_top := λ f i, f.le' i, bot_le := λ f i, bot_le, } end filtration lemma measurable_set_of_filtration [preorder ι] {f : filtration ι m} {s : set α} {i : ι} (hs : measurable_set[f i] s) : measurable_set[m] s := f.le i s hs /-- A measure is σ-finite with respect to filtration if it is σ-finite with respect to all the sub-σ-algebra of the filtration. -/ class sigma_finite_filtration [preorder ι] (μ : measure α) (f : filtration ι m) : Prop := (sigma_finite : ∀ i : ι, sigma_finite (μ.trim (f.le i))) instance sigma_finite_of_sigma_finite_filtration [preorder ι] (μ : measure α) (f : filtration ι m) [hf : sigma_finite_filtration μ f] (i : ι) : sigma_finite (μ.trim (f.le i)) := by apply hf.sigma_finite -- can't exact here @[priority 100] instance is_finite_measure.sigma_finite_filtration [preorder ι] (μ : measure α) (f : filtration ι m) [is_finite_measure μ] : sigma_finite_filtration μ f := ⟨λ n, by apply_instance⟩ /-- Given a integrable function `g`, the conditional expectations of `g` with respect to a filtration is uniformly integrable. -/ lemma integrable.uniform_integrable_condexp_filtration [preorder ι] {μ : measure α} [is_finite_measure μ] {f : filtration ι m} {g : α → ℝ} (hg : integrable g μ) : uniform_integrable (λ i, μ[g | f i]) 1 μ := hg.uniform_integrable_condexp f.le section adapted_process variables [topological_space β] [preorder ι] {u v : ι → α → β} {f : filtration ι m} /-- A sequence of functions `u` is adapted to a filtration `f` if for all `i`, `u i` is `f i`-measurable. -/ def adapted (f : filtration ι m) (u : ι → α → β) : Prop := ∀ i : ι, strongly_measurable[f i] (u i) namespace adapted @[protected, to_additive] lemma mul [has_mul β] [has_continuous_mul β] (hu : adapted f u) (hv : adapted f v) : adapted f (u * v) := λ i, (hu i).mul (hv i) @[protected, to_additive] lemma inv [group β] [topological_group β] (hu : adapted f u) : adapted f u⁻¹ := λ i, (hu i).inv @[protected] lemma smul [has_smul ℝ β] [has_continuous_smul ℝ β] (c : ℝ) (hu : adapted f u) : adapted f (c • u) := λ i, (hu i).const_smul c @[protected] lemma strongly_measurable {i : ι} (hf : adapted f u) : strongly_measurable[m] (u i) := (hf i).mono (f.le i) lemma strongly_measurable_le {i j : ι} (hf : adapted f u) (hij : i ≤ j) : strongly_measurable[f j] (u i) := (hf i).mono (f.mono hij) end adapted variable (β) lemma adapted_zero [has_zero β] (f : filtration ι m) : adapted f (0 : ι → α → β) := λ i, @strongly_measurable_zero α β (f i) _ _ variable {β} /-- Progressively measurable process. A sequence of functions `u` is said to be progressively measurable with respect to a filtration `f` if at each point in time `i`, `u` restricted to `set.Iic i × α` is measurable with respect to the product `measurable_space` structure where the σ-algebra used for `α` is `f i`. The usual definition uses the interval `[0,i]`, which we replace by `set.Iic i`. We recover the usual definition for index types `ℝ≥0` or `ℕ`. -/ def prog_measurable [measurable_space ι] (f : filtration ι m) (u : ι → α → β) : Prop := ∀ i, strongly_measurable[subtype.measurable_space.prod (f i)] (λ p : set.Iic i × α, u p.1 p.2) lemma prog_measurable_const [measurable_space ι] (f : filtration ι m) (b : β) : prog_measurable f ((λ _ _, b) : ι → α → β) := λ i, @strongly_measurable_const _ _ (subtype.measurable_space.prod (f i)) _ _ namespace prog_measurable variables [measurable_space ι] protected lemma adapted (h : prog_measurable f u) : adapted f u := begin intro i, have : u i = (λ p : set.Iic i × α, u p.1 p.2) ∘ (λ x, (⟨i, set.mem_Iic.mpr le_rfl⟩, x)) := rfl, rw this, exact (h i).comp_measurable measurable_prod_mk_left, end protected lemma comp {t : ι → α → ι} [topological_space ι] [borel_space ι] [metrizable_space ι] (h : prog_measurable f u) (ht : prog_measurable f t) (ht_le : ∀ i x, t i x ≤ i) : prog_measurable f (λ i x, u (t i x) x) := begin intro i, have : (λ p : ↥(set.Iic i) × α, u (t (p.fst : ι) p.snd) p.snd) = (λ p : ↥(set.Iic i) × α, u (p.fst : ι) p.snd) ∘ (λ p : ↥(set.Iic i) × α, (⟨t (p.fst : ι) p.snd, set.mem_Iic.mpr ((ht_le _ _).trans p.fst.prop)⟩, p.snd)) := rfl, rw this, exact (h i).comp_measurable ((ht i).measurable.subtype_mk.prod_mk measurable_snd), end section arithmetic @[to_additive] protected lemma mul [has_mul β] [has_continuous_mul β] (hu : prog_measurable f u) (hv : prog_measurable f v) : prog_measurable f (λ i x, u i x * v i x) := λ i, (hu i).mul (hv i) @[to_additive] protected lemma finset_prod' {γ} [comm_monoid β] [has_continuous_mul β] {U : γ → ι → α → β} {s : finset γ} (h : ∀ c ∈ s, prog_measurable f (U c)) : prog_measurable f (∏ c in s, U c) := finset.prod_induction U (prog_measurable f) (λ _ _, prog_measurable.mul) (prog_measurable_const _ 1) h @[to_additive] protected lemma finset_prod {γ} [comm_monoid β] [has_continuous_mul β] {U : γ → ι → α → β} {s : finset γ} (h : ∀ c ∈ s, prog_measurable f (U c)) : prog_measurable f (λ i a, ∏ c in s, U c i a) := by { convert prog_measurable.finset_prod' h, ext i a, simp only [finset.prod_apply], } @[to_additive] protected lemma inv [group β] [topological_group β] (hu : prog_measurable f u) : prog_measurable f (λ i x, (u i x)⁻¹) := λ i, (hu i).inv @[to_additive] protected lemma div [group β] [topological_group β] (hu : prog_measurable f u) (hv : prog_measurable f v) : prog_measurable f (λ i x, u i x / v i x) := λ i, (hu i).div (hv i) end arithmetic end prog_measurable lemma prog_measurable_of_tendsto' {γ} [measurable_space ι] [metrizable_space β] (fltr : filter γ) [fltr.ne_bot] [fltr.is_countably_generated] {U : γ → ι → α → β} (h : ∀ l, prog_measurable f (U l)) (h_tendsto : tendsto U fltr (𝓝 u)) : prog_measurable f u := begin assume i, apply @strongly_measurable_of_tendsto (set.Iic i × α) β γ (measurable_space.prod _ (f i)) _ _ fltr _ _ _ _ (λ l, h l i), rw tendsto_pi_nhds at h_tendsto ⊢, intro x, specialize h_tendsto x.fst, rw tendsto_nhds at h_tendsto ⊢, exact λ s hs h_mem, h_tendsto {g | g x.snd ∈ s} (hs.preimage (continuous_apply x.snd)) h_mem, end lemma prog_measurable_of_tendsto [measurable_space ι] [metrizable_space β] {U : ℕ → ι → α → β} (h : ∀ l, prog_measurable f (U l)) (h_tendsto : tendsto U at_top (𝓝 u)) : prog_measurable f u := prog_measurable_of_tendsto' at_top h h_tendsto /-- A continuous and adapted process is progressively measurable. -/ theorem adapted.prog_measurable_of_continuous [topological_space ι] [metrizable_space ι] [measurable_space ι] [second_countable_topology ι] [opens_measurable_space ι] [metrizable_space β] (h : adapted f u) (hu_cont : ∀ x, continuous (λ i, u i x)) : prog_measurable f u := λ i, @strongly_measurable_uncurry_of_continuous_of_strongly_measurable _ _ (set.Iic i) _ _ _ _ _ _ _ (f i) _ (λ x, (hu_cont x).comp continuous_induced_dom) (λ j, (h j).mono (f.mono j.prop)) end adapted_process namespace filtration variables [topological_space β] [metrizable_space β] [mβ : measurable_space β] [borel_space β] [preorder ι] include mβ /-- Given a sequence of functions, the natural filtration is the smallest sequence of σ-algebras such that that sequence of functions is measurable with respect to the filtration. -/ def natural (u : ι → α → β) (hum : ∀ i, strongly_measurable (u i)) : filtration ι m := { seq := λ i, ⨆ j ≤ i, measurable_space.comap (u j) mβ, mono' := λ i j hij, bsupr_mono $ λ k, ge_trans hij, le' := λ i, begin refine supr₂_le _, rintros j hj s ⟨t, ht, rfl⟩, exact (hum j).measurable ht, end } lemma adapted_natural {u : ι → α → β} (hum : ∀ i, strongly_measurable[m] (u i)) : adapted (natural u hum) u := begin assume i, refine strongly_measurable.mono _ (le_supr₂_of_le i (le_refl i) le_rfl), rw strongly_measurable_iff_measurable_separable, exact ⟨measurable_iff_comap_le.2 le_rfl, (hum i).is_separable_range⟩ end end filtration /-! ### Stopping times -/ /-- A stopping time with respect to some filtration `f` is a function `τ` such that for all `i`, the preimage of `{j | j ≤ i}` along `τ` is measurable with respect to `f i`. Intuitively, the stopping time `τ` describes some stopping rule such that at time `i`, we may determine it with the information we have at time `i`. -/ def is_stopping_time [preorder ι] (f : filtration ι m) (τ : α → ι) := ∀ i : ι, measurable_set[f i] $ {x | τ x ≤ i} lemma is_stopping_time_const [preorder ι] (f : filtration ι m) (i : ι) : is_stopping_time f (λ x, i) := λ j, by simp only [measurable_set.const] section measurable_set section preorder variables [preorder ι] {f : filtration ι m} {τ : α → ι} protected lemma is_stopping_time.measurable_set_le (hτ : is_stopping_time f τ) (i : ι) : measurable_set[f i] {x | τ x ≤ i} := hτ i lemma is_stopping_time.measurable_set_lt_of_pred [pred_order ι] (hτ : is_stopping_time f τ) (i : ι) : measurable_set[f i] {x | τ x < i} := begin by_cases hi_min : is_min i, { suffices : {x : α | τ x < i} = ∅, by { rw this, exact @measurable_set.empty _ (f i), }, ext1 x, simp only [set.mem_set_of_eq, set.mem_empty_eq, iff_false], rw is_min_iff_forall_not_lt at hi_min, exact hi_min (τ x), }, have : {x : α | τ x < i} = τ ⁻¹' (set.Iio i) := rfl, rw [this, ←Iic_pred_of_not_is_min hi_min], exact f.mono (pred_le i) _ (hτ.measurable_set_le $ pred i), end end preorder section countable_stopping_time namespace is_stopping_time variables [partial_order ι] {τ : α → ι} {f : filtration ι m} protected lemma measurable_set_eq_of_countable (hτ : is_stopping_time f τ) (h_countable : (set.range τ).countable) (i : ι) : measurable_set[f i] {a | τ a = i} := begin have : {a | τ a = i} = {a | τ a ≤ i} \ (⋃ (j ∈ set.range τ) (hj : j < i), {a | τ a ≤ j}), { ext1 a, simp only [set.mem_set_of_eq, set.mem_range, set.Union_exists, set.Union_Union_eq', set.mem_diff, set.mem_Union, exists_prop, not_exists, not_and, not_le], split; intro h, { simp only [h, lt_iff_le_not_le, le_refl, and_imp, imp_self, implies_true_iff, and_self], }, { have h_lt_or_eq : τ a < i ∨ τ a = i := lt_or_eq_of_le h.1, rcases h_lt_or_eq with h_lt | rfl, { exfalso, exact h.2 a h_lt (le_refl (τ a)), }, { refl, }, }, }, rw this, refine (hτ.measurable_set_le i).diff _, refine measurable_set.bUnion h_countable (λ j hj, _), by_cases hji : j < i, { simp only [hji, set.Union_true], exact f.mono hji.le _ (hτ.measurable_set_le j), }, { simp only [hji, set.Union_false], exact @measurable_set.empty _ (f i), }, end protected lemma measurable_set_eq_of_encodable [encodable ι] (hτ : is_stopping_time f τ) (i : ι) : measurable_set[f i] {a | τ a = i} := hτ.measurable_set_eq_of_countable (set.to_countable _) i protected lemma measurable_set_lt_of_countable (hτ : is_stopping_time f τ) (h_countable : (set.range τ).countable) (i : ι) : measurable_set[f i] {a | τ a < i} := begin have : {a | τ a < i} = {a | τ a ≤ i} \ {a | τ a = i}, { ext1 x, simp [lt_iff_le_and_ne], }, rw this, exact (hτ.measurable_set_le i).diff (hτ.measurable_set_eq_of_countable h_countable i), end protected lemma measurable_set_lt_of_encodable [encodable ι] (hτ : is_stopping_time f τ) (i : ι) : measurable_set[f i] {a | τ a < i} := hτ.measurable_set_lt_of_countable (set.to_countable _) i protected lemma measurable_set_ge_of_countable {ι} [linear_order ι] {τ : α → ι} {f : filtration ι m} (hτ : is_stopping_time f τ) (h_countable : (set.range τ).countable) (i : ι) : measurable_set[f i] {a | i ≤ τ a} := begin have : {x | i ≤ τ x} = {x | τ x < i}ᶜ, { ext1 x, simp only [set.mem_set_of_eq, set.mem_compl_eq, not_lt], }, rw this, exact (hτ.measurable_set_lt_of_countable h_countable i).compl, end protected lemma measurable_set_ge_of_encodable {ι} [linear_order ι] {τ : α → ι} {f : filtration ι m} [encodable ι] (hτ : is_stopping_time f τ) (i : ι) : measurable_set[f i] {a | i ≤ τ a} := hτ.measurable_set_ge_of_countable (set.to_countable _) i end is_stopping_time end countable_stopping_time section linear_order variables [linear_order ι] {f : filtration ι m} {τ : α → ι} lemma is_stopping_time.measurable_set_gt (hτ : is_stopping_time f τ) (i : ι) : measurable_set[f i] {x | i < τ x} := begin have : {x | i < τ x} = {x | τ x ≤ i}ᶜ, { ext1 x, simp only [set.mem_set_of_eq, set.mem_compl_eq, not_le], }, rw this, exact (hτ.measurable_set_le i).compl, end section topological_space variables [topological_space ι] [order_topology ι] [first_countable_topology ι] /-- Auxiliary lemma for `is_stopping_time.measurable_set_lt`. -/ lemma is_stopping_time.measurable_set_lt_of_is_lub (hτ : is_stopping_time f τ) (i : ι) (h_lub : is_lub (set.Iio i) i) : measurable_set[f i] {x | τ x < i} := begin by_cases hi_min : is_min i, { suffices : {x : α | τ x < i} = ∅, by { rw this, exact @measurable_set.empty _ (f i), }, ext1 x, simp only [set.mem_set_of_eq, set.mem_empty_eq, iff_false], exact is_min_iff_forall_not_lt.mp hi_min (τ x), }, obtain ⟨seq, -, -, h_tendsto, h_bound⟩ : ∃ seq : ℕ → ι, monotone seq ∧ (∀ j, seq j ≤ i) ∧ tendsto seq at_top (𝓝 i) ∧ (∀ j, seq j < i), from h_lub.exists_seq_monotone_tendsto (not_is_min_iff.mp hi_min), have h_Ioi_eq_Union : set.Iio i = ⋃ j, { k | k ≤ seq j}, { ext1 k, simp only [set.mem_Iio, set.mem_Union, set.mem_set_of_eq], refine ⟨λ hk_lt_i, _, λ h_exists_k_le_seq, _⟩, { rw tendsto_at_top' at h_tendsto, have h_nhds : set.Ici k ∈ 𝓝 i, from mem_nhds_iff.mpr ⟨set.Ioi k, set.Ioi_subset_Ici le_rfl, is_open_Ioi, hk_lt_i⟩, obtain ⟨a, ha⟩ : ∃ (a : ℕ), ∀ (b : ℕ), b ≥ a → k ≤ seq b := h_tendsto (set.Ici k) h_nhds, exact ⟨a, ha a le_rfl⟩, }, { obtain ⟨j, hk_seq_j⟩ := h_exists_k_le_seq, exact hk_seq_j.trans_lt (h_bound j), }, }, have h_lt_eq_preimage : {x : α | τ x < i} = τ ⁻¹' (set.Iio i), { ext1 x, simp only [set.mem_set_of_eq, set.mem_preimage, set.mem_Iio], }, rw [h_lt_eq_preimage, h_Ioi_eq_Union], simp only [set.preimage_Union, set.preimage_set_of_eq], exact measurable_set.Union (λ n, f.mono (h_bound n).le _ (hτ.measurable_set_le (seq n))), end lemma is_stopping_time.measurable_set_lt (hτ : is_stopping_time f τ) (i : ι) : measurable_set[f i] {x | τ x < i} := begin obtain ⟨i', hi'_lub⟩ : ∃ i', is_lub (set.Iio i) i', from exists_lub_Iio i, cases lub_Iio_eq_self_or_Iio_eq_Iic i hi'_lub with hi'_eq_i h_Iio_eq_Iic, { rw ← hi'_eq_i at hi'_lub ⊢, exact hτ.measurable_set_lt_of_is_lub i' hi'_lub, }, { have h_lt_eq_preimage : {x : α | τ x < i} = τ ⁻¹' (set.Iio i) := rfl, rw [h_lt_eq_preimage, h_Iio_eq_Iic], exact f.mono (lub_Iio_le i hi'_lub) _ (hτ.measurable_set_le i'), }, end lemma is_stopping_time.measurable_set_ge (hτ : is_stopping_time f τ) (i : ι) : measurable_set[f i] {x | i ≤ τ x} := begin have : {x | i ≤ τ x} = {x | τ x < i}ᶜ, { ext1 x, simp only [set.mem_set_of_eq, set.mem_compl_eq, not_lt], }, rw this, exact (hτ.measurable_set_lt i).compl, end lemma is_stopping_time.measurable_set_eq (hτ : is_stopping_time f τ) (i : ι) : measurable_set[f i] {x | τ x = i} := begin have : {x | τ x = i} = {x | τ x ≤ i} ∩ {x | τ x ≥ i}, { ext1 x, simp only [set.mem_set_of_eq, ge_iff_le, set.mem_inter_eq, le_antisymm_iff], }, rw this, exact (hτ.measurable_set_le i).inter (hτ.measurable_set_ge i), end lemma is_stopping_time.measurable_set_eq_le (hτ : is_stopping_time f τ) {i j : ι} (hle : i ≤ j) : measurable_set[f j] {x | τ x = i} := f.mono hle _ $ hτ.measurable_set_eq i lemma is_stopping_time.measurable_set_lt_le (hτ : is_stopping_time f τ) {i j : ι} (hle : i ≤ j) : measurable_set[f j] {x | τ x < i} := f.mono hle _ $ hτ.measurable_set_lt i end topological_space end linear_order section encodable lemma is_stopping_time_of_measurable_set_eq [preorder ι] [encodable ι] {f : filtration ι m} {τ : α → ι} (hτ : ∀ i, measurable_set[f i] {x | τ x = i}) : is_stopping_time f τ := begin intro i, rw show {x | τ x ≤ i} = ⋃ k ≤ i, {x | τ x = k}, by { ext, simp }, refine measurable_set.bUnion (set.to_countable _) (λ k hk, _), exact f.mono hk _ (hτ k), end end encodable end measurable_set namespace is_stopping_time protected lemma max [linear_order ι] {f : filtration ι m} {τ π : α → ι} (hτ : is_stopping_time f τ) (hπ : is_stopping_time f π) : is_stopping_time f (λ x, max (τ x) (π x)) := begin intro i, simp_rw [max_le_iff, set.set_of_and], exact (hτ i).inter (hπ i), end protected lemma max_const [linear_order ι] {f : filtration ι m} {τ : α → ι} (hτ : is_stopping_time f τ) (i : ι) : is_stopping_time f (λ x, max (τ x) i) := hτ.max (is_stopping_time_const f i) protected lemma min [linear_order ι] {f : filtration ι m} {τ π : α → ι} (hτ : is_stopping_time f τ) (hπ : is_stopping_time f π) : is_stopping_time f (λ x, min (τ x) (π x)) := begin intro i, simp_rw [min_le_iff, set.set_of_or], exact (hτ i).union (hπ i), end protected lemma min_const [linear_order ι] {f : filtration ι m} {τ : α → ι} (hτ : is_stopping_time f τ) (i : ι) : is_stopping_time f (λ x, min (τ x) i) := hτ.min (is_stopping_time_const f i) lemma add_const [add_group ι] [preorder ι] [covariant_class ι ι (function.swap (+)) (≤)] [covariant_class ι ι (+) (≤)] {f : filtration ι m} {τ : α → ι} (hτ : is_stopping_time f τ) {i : ι} (hi : 0 ≤ i) : is_stopping_time f (λ x, τ x + i) := begin intro j, simp_rw [← le_sub_iff_add_le], exact f.mono (sub_le_self j hi) _ (hτ (j - i)), end lemma add_const_nat {f : filtration ℕ m} {τ : α → ℕ} (hτ : is_stopping_time f τ) {i : ℕ} : is_stopping_time f (λ x, τ x + i) := begin refine is_stopping_time_of_measurable_set_eq (λ j, _), by_cases hij : i ≤ j, { simp_rw [eq_comm, ← nat.sub_eq_iff_eq_add hij, eq_comm], exact f.mono (j.sub_le i) _ (hτ.measurable_set_eq (j - i)) }, { rw not_le at hij, convert measurable_set.empty, ext x, simp only [set.mem_empty_eq, iff_false], rintro (hx : τ x + i = j), linarith }, end -- generalize to certain encodable type? lemma add {f : filtration ℕ m} {τ π : α → ℕ} (hτ : is_stopping_time f τ) (hπ : is_stopping_time f π) : is_stopping_time f (τ + π) := begin intro i, rw (_ : {x | (τ + π) x ≤ i} = ⋃ k ≤ i, {x | π x = k} ∩ {x | τ x + k ≤ i}), { exact measurable_set.Union (λ k, measurable_set.Union_Prop (λ hk, (hπ.measurable_set_eq_le hk).inter (hτ.add_const_nat i))) }, ext, simp only [pi.add_apply, set.mem_set_of_eq, set.mem_Union, set.mem_inter_eq, exists_prop], refine ⟨λ h, ⟨π x, by linarith, rfl, h⟩, _⟩, rintro ⟨j, hj, rfl, h⟩, assumption end section preorder variables [preorder ι] {f : filtration ι m} {τ π : α → ι} /-- The associated σ-algebra with a stopping time. -/ protected def measurable_space (hτ : is_stopping_time f τ) : measurable_space α := { measurable_set' := λ s, ∀ i : ι, measurable_set[f i] (s ∩ {x | τ x ≤ i}), measurable_set_empty := λ i, (set.empty_inter {x | τ x ≤ i}).symm ▸ @measurable_set.empty _ (f i), measurable_set_compl := λ s hs i, begin rw (_ : sᶜ ∩ {x | τ x ≤ i} = (sᶜ ∪ {x | τ x ≤ i}ᶜ) ∩ {x | τ x ≤ i}), { refine measurable_set.inter _ _, { rw ← set.compl_inter, exact (hs i).compl }, { exact hτ i} }, { rw set.union_inter_distrib_right, simp only [set.compl_inter_self, set.union_empty] } end, measurable_set_Union := λ s hs i, begin rw forall_swap at hs, rw set.Union_inter, exact measurable_set.Union (hs i), end } protected lemma measurable_set (hτ : is_stopping_time f τ) (s : set α) : measurable_set[hτ.measurable_space] s ↔ ∀ i : ι, measurable_set[f i] (s ∩ {x | τ x ≤ i}) := iff.rfl lemma measurable_space_mono (hτ : is_stopping_time f τ) (hπ : is_stopping_time f π) (hle : τ ≤ π) : hτ.measurable_space ≤ hπ.measurable_space := begin intros s hs i, rw (_ : s ∩ {x | π x ≤ i} = s ∩ {x | τ x ≤ i} ∩ {x | π x ≤ i}), { exact (hs i).inter (hπ i) }, { ext, simp only [set.mem_inter_eq, iff_self_and, and.congr_left_iff, set.mem_set_of_eq], intros hle' _, exact le_trans (hle _) hle' }, end lemma measurable_space_le_of_encodable [encodable ι] (hτ : is_stopping_time f τ) : hτ.measurable_space ≤ m := begin intros s hs, change ∀ i, measurable_set[f i] (s ∩ {x | τ x ≤ i}) at hs, rw (_ : s = ⋃ i, s ∩ {x | τ x ≤ i}), { exact measurable_set.Union (λ i, f.le i _ (hs i)) }, { ext x, split; rw set.mem_Union, { exact λ hx, ⟨τ x, hx, le_rfl⟩ }, { rintro ⟨_, hx, _⟩, exact hx } } end lemma measurable_space_le' [is_countably_generated (at_top : filter ι)] [(at_top : filter ι).ne_bot] (hτ : is_stopping_time f τ) : hτ.measurable_space ≤ m := begin intros s hs, change ∀ i, measurable_set[f i] (s ∩ {x | τ x ≤ i}) at hs, obtain ⟨seq : ℕ → ι, h_seq_tendsto⟩ := at_top.exists_seq_tendsto, rw (_ : s = ⋃ n, s ∩ {x | τ x ≤ seq n}), { exact measurable_set.Union (λ i, f.le (seq i) _ (hs (seq i))), }, { ext x, split; rw set.mem_Union, { intros hx, suffices : ∃ i, τ x ≤ seq i, from ⟨this.some, hx, this.some_spec⟩, rw tendsto_at_top at h_seq_tendsto, exact (h_seq_tendsto (τ x)).exists, }, { rintro ⟨_, hx, _⟩, exact hx }, }, all_goals { apply_instance, }, end lemma measurable_space_le {ι} [semilattice_sup ι] {f : filtration ι m} {τ : α → ι} [is_countably_generated (at_top : filter ι)] (hτ : is_stopping_time f τ) : hτ.measurable_space ≤ m := begin casesI is_empty_or_nonempty ι, { haveI : is_empty α := ⟨λ x, is_empty.false (τ x)⟩, intros s hsτ, suffices hs : s = ∅, by { rw hs, exact measurable_set.empty, }, haveI : unique (set α) := set.unique_empty, rw [unique.eq_default s, unique.eq_default ∅], }, exact measurable_space_le' hτ, end example {f : filtration ℕ m} {τ : α → ℕ} (hτ : is_stopping_time f τ) : hτ.measurable_space ≤ m := hτ.measurable_space_le example {f : filtration ℝ m} {τ : α → ℝ} (hτ : is_stopping_time f τ) : hτ.measurable_space ≤ m := hτ.measurable_space_le @[simp] lemma measurable_space_const (f : filtration ι m) (i : ι) : (is_stopping_time_const f i).measurable_space = f i := begin ext1 s, change measurable_set[(is_stopping_time_const f i).measurable_space] s ↔ measurable_set[f i] s, rw is_stopping_time.measurable_set, split; intro h, { specialize h i, simpa only [le_refl, set.set_of_true, set.inter_univ] using h, }, { intro j, by_cases hij : i ≤ j, { simp only [hij, set.set_of_true, set.inter_univ], exact f.mono hij _ h, }, { simp only [hij, set.set_of_false, set.inter_empty, measurable_set.empty], }, }, end lemma measurable_set_inter_eq_iff (hτ : is_stopping_time f τ) (s : set α) (i : ι) : measurable_set[hτ.measurable_space] (s ∩ {x | τ x = i}) ↔ measurable_set[f i] (s ∩ {x | τ x = i}) := begin have : ∀ j, ({x : α | τ x = i} ∩ {x : α | τ x ≤ j}) = {x : α | τ x = i} ∩ {x | i ≤ j}, { intro j, ext1 x, simp only [set.mem_inter_eq, set.mem_set_of_eq, and.congr_right_iff], intro hxi, rw hxi, }, split; intro h, { specialize h i, simpa only [set.inter_assoc, this, le_refl, set.set_of_true, set.inter_univ] using h, }, { intro j, rw [set.inter_assoc, this], by_cases hij : i ≤ j, { simp only [hij, set.set_of_true, set.inter_univ], exact f.mono hij _ h, }, { simp [hij], }, }, end lemma measurable_space_le_of_le_const (hτ : is_stopping_time f τ) {i : ι} (hτ_le : ∀ x, τ x ≤ i) : hτ.measurable_space ≤ f i := (measurable_space_mono hτ _ hτ_le).trans (measurable_space_const _ _).le lemma le_measurable_space_of_const_le (hτ : is_stopping_time f τ) {i : ι} (hτ_le : ∀ x, i ≤ τ x) : f i ≤ hτ.measurable_space := (measurable_space_const _ _).symm.le.trans (measurable_space_mono _ hτ hτ_le) end preorder instance sigma_finite_stopping_time {ι} [semilattice_sup ι] [order_bot ι] [(filter.at_top : filter ι).is_countably_generated] {μ : measure α} {f : filtration ι m} {τ : α → ι} [sigma_finite_filtration μ f] (hτ : is_stopping_time f τ) : sigma_finite (μ.trim hτ.measurable_space_le) := begin refine sigma_finite_trim_mono hτ.measurable_space_le _, { exact f ⊥, }, { exact hτ.le_measurable_space_of_const_le (λ _, bot_le), }, { apply_instance, }, end section linear_order variables [linear_order ι] {f : filtration ι m} {τ π : α → ι} protected lemma measurable_set_le' (hτ : is_stopping_time f τ) (i : ι) : measurable_set[hτ.measurable_space] {x | τ x ≤ i} := begin intro j, have : {x : α | τ x ≤ i} ∩ {x : α | τ x ≤ j} = {x : α | τ x ≤ min i j}, { ext1 x, simp only [set.mem_inter_eq, set.mem_set_of_eq, le_min_iff], }, rw this, exact f.mono (min_le_right i j) _ (hτ _), end protected lemma measurable_set_gt' (hτ : is_stopping_time f τ) (i : ι) : measurable_set[hτ.measurable_space] {x | i < τ x} := begin have : {x : α | i < τ x} = {x : α | τ x ≤ i}ᶜ, by { ext1 x, simp, }, rw this, exact (hτ.measurable_set_le' i).compl, end protected lemma measurable_set_eq' [topological_space ι] [order_topology ι] [first_countable_topology ι] (hτ : is_stopping_time f τ) (i : ι) : measurable_set[hτ.measurable_space] {x | τ x = i} := begin rw [← set.univ_inter {x | τ x = i}, measurable_set_inter_eq_iff, set.univ_inter], exact hτ.measurable_set_eq i, end protected lemma measurable_set_ge' [topological_space ι] [order_topology ι] [first_countable_topology ι] (hτ : is_stopping_time f τ) (i : ι) : measurable_set[hτ.measurable_space] {x | i ≤ τ x} := begin have : {x | i ≤ τ x} = {x | τ x = i} ∪ {x | i < τ x}, { ext1 x, simp only [le_iff_lt_or_eq, set.mem_set_of_eq, set.mem_union_eq], rw [@eq_comm _ i, or_comm], }, rw this, exact (hτ.measurable_set_eq' i).union (hτ.measurable_set_gt' i), end protected lemma measurable_set_lt' [topological_space ι] [order_topology ι] [first_countable_topology ι] (hτ : is_stopping_time f τ) (i : ι) : measurable_set[hτ.measurable_space] {x | τ x < i} := begin have : {x | τ x < i} = {x | τ x ≤ i} \ {x | τ x = i}, { ext1 x, simp only [lt_iff_le_and_ne, set.mem_set_of_eq, set.mem_diff], }, rw this, exact (hτ.measurable_set_le' i).diff (hτ.measurable_set_eq' i), end section countable protected lemma measurable_set_eq_of_countable' (hτ : is_stopping_time f τ) (h_countable : (set.range τ).countable) (i : ι) : measurable_set[hτ.measurable_space] {x | τ x = i} := begin rw [← set.univ_inter {x | τ x = i}, measurable_set_inter_eq_iff, set.univ_inter], exact hτ.measurable_set_eq_of_countable h_countable i, end protected lemma measurable_set_eq_of_encodable' [encodable ι] (hτ : is_stopping_time f τ) (i : ι) : measurable_set[hτ.measurable_space] {a | τ a = i} := hτ.measurable_set_eq_of_countable' (set.to_countable _) i protected lemma measurable_set_ge_of_countable' (hτ : is_stopping_time f τ) (h_countable : (set.range τ).countable) (i : ι) : measurable_set[hτ.measurable_space] {x | i ≤ τ x} := begin have : {x | i ≤ τ x} = {x | τ x = i} ∪ {x | i < τ x}, { ext1 x, simp only [le_iff_lt_or_eq, set.mem_set_of_eq, set.mem_union_eq], rw [@eq_comm _ i, or_comm], }, rw this, exact (hτ.measurable_set_eq_of_countable' h_countable i).union (hτ.measurable_set_gt' i), end protected lemma measurable_set_ge_of_encodable' [encodable ι] (hτ : is_stopping_time f τ) (i : ι) : measurable_set[hτ.measurable_space] {a | i ≤ τ a} := hτ.measurable_set_ge_of_countable' (set.to_countable _) i protected lemma measurable_set_lt_of_countable' (hτ : is_stopping_time f τ) (h_countable : (set.range τ).countable) (i : ι) : measurable_set[hτ.measurable_space] {x | τ x < i} := begin have : {x | τ x < i} = {x | τ x ≤ i} \ {x | τ x = i}, { ext1 x, simp only [lt_iff_le_and_ne, set.mem_set_of_eq, set.mem_diff], }, rw this, exact (hτ.measurable_set_le' i).diff (hτ.measurable_set_eq_of_countable' h_countable i), end protected lemma measurable_set_lt_of_encodable' [encodable ι] (hτ : is_stopping_time f τ) (i : ι) : measurable_set[hτ.measurable_space] {a | τ a < i} := hτ.measurable_set_lt_of_countable' (set.to_countable _) i protected lemma measurable_space_le_of_countable (hτ : is_stopping_time f τ) (h_countable : (set.range τ).countable) : hτ.measurable_space ≤ m := begin intros s hs, change ∀ i, measurable_set[f i] (s ∩ {x | τ x ≤ i}) at hs, rw (_ : s = ⋃ (i ∈ set.range τ), s ∩ {x | τ x ≤ i}), { exact measurable_set.bUnion h_countable (λ i _, f.le i _ (hs i)), }, { ext x, split; rw set.mem_Union, { exact λ hx, ⟨τ x, by simpa using hx⟩,}, { rintro ⟨i, hx⟩, simp only [set.mem_range, set.Union_exists, set.mem_Union, set.mem_inter_eq, set.mem_set_of_eq, exists_prop, exists_and_distrib_right] at hx, exact hx.1.2, } } end end countable protected lemma measurable [topological_space ι] [measurable_space ι] [borel_space ι] [order_topology ι] [second_countable_topology ι] (hτ : is_stopping_time f τ) : measurable[hτ.measurable_space] τ := @measurable_of_Iic ι α _ _ _ hτ.measurable_space _ _ _ _ (λ i, hτ.measurable_set_le' i) protected lemma measurable_of_le [topological_space ι] [measurable_space ι] [borel_space ι] [order_topology ι] [second_countable_topology ι] (hτ : is_stopping_time f τ) {i : ι} (hτ_le : ∀ x, τ x ≤ i) : measurable[f i] τ := hτ.measurable.mono (measurable_space_le_of_le_const _ hτ_le) le_rfl lemma measurable_space_min (hτ : is_stopping_time f τ) (hπ : is_stopping_time f π) : (hτ.min hπ).measurable_space = hτ.measurable_space ⊓ hπ.measurable_space := begin refine le_antisymm _ _, { exact le_inf (measurable_space_mono _ hτ (λ _, min_le_left _ _)) (measurable_space_mono _ hπ (λ _, min_le_right _ _)), }, { intro s, change measurable_set[hτ.measurable_space] s ∧ measurable_set[hπ.measurable_space] s → measurable_set[(hτ.min hπ).measurable_space] s, simp_rw is_stopping_time.measurable_set, have : ∀ i, {x | min (τ x) (π x) ≤ i} = {x | τ x ≤ i} ∪ {x | π x ≤ i}, { intro i, ext1 x, simp, }, simp_rw [this, set.inter_union_distrib_left], exact λ h i, (h.left i).union (h.right i), }, end lemma measurable_set_min_iff (hτ : is_stopping_time f τ) (hπ : is_stopping_time f π) (s : set α) : measurable_set[(hτ.min hπ).measurable_space] s ↔ measurable_set[hτ.measurable_space] s ∧ measurable_set[hπ.measurable_space] s := by { rw measurable_space_min, refl, } lemma measurable_space_min_const (hτ : is_stopping_time f τ) {i : ι} : (hτ.min_const i).measurable_space = hτ.measurable_space ⊓ f i := by rw [hτ.measurable_space_min (is_stopping_time_const _ i), measurable_space_const] lemma measurable_set_min_const_iff (hτ : is_stopping_time f τ) (s : set α) {i : ι} : measurable_set[(hτ.min_const i).measurable_space] s ↔ measurable_set[hτ.measurable_space] s ∧ measurable_set[f i] s := by rw [measurable_space_min_const, measurable_space.measurable_set_inf] lemma measurable_set_inter_le [topological_space ι] [second_countable_topology ι] [order_topology ι] [measurable_space ι] [borel_space ι] (hτ : is_stopping_time f τ) (hπ : is_stopping_time f π) (s : set α) (hs : measurable_set[hτ.measurable_space] s) : measurable_set[(hτ.min hπ).measurable_space] (s ∩ {x | τ x ≤ π x}) := begin simp_rw is_stopping_time.measurable_set at ⊢ hs, intro i, have : (s ∩ {x | τ x ≤ π x} ∩ {x | min (τ x) (π x) ≤ i}) = (s ∩ {x | τ x ≤ i}) ∩ {x | min (τ x) (π x) ≤ i} ∩ {x | min (τ x) i ≤ min (min (τ x) (π x)) i}, { ext1 x, simp only [min_le_iff, set.mem_inter_eq, set.mem_set_of_eq, le_min_iff, le_refl, true_and, and_true, true_or, or_true], by_cases hτi : τ x ≤ i, { simp only [hτi, true_or, and_true, and.congr_right_iff], intro hx, split; intro h, { exact or.inl h, }, { cases h, { exact h, }, { exact hτi.trans h, }, }, }, simp only [hτi, false_or, and_false, false_and, iff_false, not_and, not_le, and_imp], refine λ hx hτ_le_π, lt_of_lt_of_le _ hτ_le_π, rw ← not_le, exact hτi, }, rw this, refine ((hs i).inter ((hτ.min hπ) i)).inter _, apply measurable_set_le, { exact (hτ.min_const i).measurable_of_le (λ _, min_le_right _ _), }, { exact ((hτ.min hπ).min_const i).measurable_of_le (λ _, min_le_right _ _), }, end lemma measurable_set_inter_le_iff [topological_space ι] [second_countable_topology ι] [order_topology ι] [measurable_space ι] [borel_space ι] (hτ : is_stopping_time f τ) (hπ : is_stopping_time f π) (s : set α) : measurable_set[hτ.measurable_space] (s ∩ {x | τ x ≤ π x}) ↔ measurable_set[(hτ.min hπ).measurable_space] (s ∩ {x | τ x ≤ π x}) := begin split; intro h, { have : s ∩ {x | τ x ≤ π x} = s ∩ {x | τ x ≤ π x} ∩ {x | τ x ≤ π x}, by rw [set.inter_assoc, set.inter_self], rw this, exact measurable_set_inter_le _ _ _ h, }, { rw measurable_set_min_iff at h, exact h.1, }, end lemma measurable_set_le_stopping_time [topological_space ι] [second_countable_topology ι] [order_topology ι] [measurable_space ι] [borel_space ι] (hτ : is_stopping_time f τ) (hπ : is_stopping_time f π) : measurable_set[hτ.measurable_space] {x | τ x ≤ π x} := begin rw hτ.measurable_set, intro j, have : {x | τ x ≤ π x} ∩ {x | τ x ≤ j} = {x | min (τ x) j ≤ min (π x) j} ∩ {x | τ x ≤ j}, { ext1 x, simp only [set.mem_inter_eq, set.mem_set_of_eq, min_le_iff, le_min_iff, le_refl, and_true, and.congr_left_iff], intro h, simp only [h, or_self, and_true], by_cases hj : j ≤ π x, { simp only [hj, h.trans hj, or_self], }, { simp only [hj, or_false], }, }, rw this, refine measurable_set.inter _ (hτ.measurable_set_le j), apply measurable_set_le, { exact (hτ.min_const j).measurable_of_le (λ _, min_le_right _ _), }, { exact (hπ.min_const j).measurable_of_le (λ _, min_le_right _ _), }, end lemma measurable_set_stopping_time_le [topological_space ι] [second_countable_topology ι] [order_topology ι] [measurable_space ι] [borel_space ι] (hτ : is_stopping_time f τ) (hπ : is_stopping_time f π) : measurable_set[hπ.measurable_space] {x | τ x ≤ π x} := begin suffices : measurable_set[(hτ.min hπ).measurable_space] {x : α | τ x ≤ π x}, by { rw measurable_set_min_iff hτ hπ at this, exact this.2, }, rw [← set.univ_inter {x : α | τ x ≤ π x}, ← hτ.measurable_set_inter_le_iff hπ, set.univ_inter], exact measurable_set_le_stopping_time hτ hπ, end lemma measurable_set_eq_stopping_time [add_group ι] [topological_space ι] [measurable_space ι] [borel_space ι] [order_topology ι] [measurable_singleton_class ι] [second_countable_topology ι] [has_measurable_sub₂ ι] (hτ : is_stopping_time f τ) (hπ : is_stopping_time f π) : measurable_set[hτ.measurable_space] {x | τ x = π x} := begin rw hτ.measurable_set, intro j, have : {x | τ x = π x} ∩ {x | τ x ≤ j} = {x | min (τ x) j = min (π x) j} ∩ {x | τ x ≤ j} ∩ {x | π x ≤ j}, { ext1 x, simp only [set.mem_inter_eq, set.mem_set_of_eq], refine ⟨λ h, ⟨⟨_, h.2⟩, _⟩, λ h, ⟨_, h.1.2⟩⟩, { rw h.1, }, { rw ← h.1, exact h.2, }, { cases h with h' hσ_le, cases h' with h_eq hτ_le, rwa [min_eq_left hτ_le, min_eq_left hσ_le] at h_eq, }, }, rw this, refine measurable_set.inter (measurable_set.inter _ (hτ.measurable_set_le j)) (hπ.measurable_set_le j), apply measurable_set_eq_fun, { exact (hτ.min_const j).measurable_of_le (λ _, min_le_right _ _), }, { exact (hπ.min_const j).measurable_of_le (λ _, min_le_right _ _), }, end lemma measurable_set_eq_stopping_time_of_encodable [encodable ι] [topological_space ι] [measurable_space ι] [borel_space ι] [order_topology ι] [measurable_singleton_class ι] [second_countable_topology ι] (hτ : is_stopping_time f τ) (hπ : is_stopping_time f π) : measurable_set[hτ.measurable_space] {x | τ x = π x} := begin rw hτ.measurable_set, intro j, have : {x | τ x = π x} ∩ {x | τ x ≤ j} = {x | min (τ x) j = min (π x) j} ∩ {x | τ x ≤ j} ∩ {x | π x ≤ j}, { ext1 x, simp only [set.mem_inter_eq, set.mem_set_of_eq], refine ⟨λ h, ⟨⟨_, h.2⟩, _⟩, λ h, ⟨_, h.1.2⟩⟩, { rw h.1, }, { rw ← h.1, exact h.2, }, { cases h with h' hπ_le, cases h' with h_eq hτ_le, rwa [min_eq_left hτ_le, min_eq_left hπ_le] at h_eq, }, }, rw this, refine measurable_set.inter (measurable_set.inter _ (hτ.measurable_set_le j)) (hπ.measurable_set_le j), apply measurable_set_eq_fun_of_encodable, { exact (hτ.min_const j).measurable_of_le (λ _, min_le_right _ _), }, { exact (hπ.min_const j).measurable_of_le (λ _, min_le_right _ _), }, end end linear_order end is_stopping_time section linear_order /-! ## Stopped value and stopped process -/ /-- Given a map `u : ι → α → E`, its stopped value with respect to the stopping time `τ` is the map `x ↦ u (τ x) x`. -/ def stopped_value (u : ι → α → β) (τ : α → ι) : α → β := λ x, u (τ x) x lemma stopped_value_const (u : ι → α → β) (i : ι) : stopped_value u (λ x, i) = u i := rfl variable [linear_order ι] /-- Given a map `u : ι → α → E`, the stopped process with respect to `τ` is `u i x` if `i ≤ τ x`, and `u (τ x) x` otherwise. Intuitively, the stopped process stops evolving once the stopping time has occured. -/ def stopped_process (u : ι → α → β) (τ : α → ι) : ι → α → β := λ i x, u (min i (τ x)) x lemma stopped_process_eq_of_le {u : ι → α → β} {τ : α → ι} {i : ι} {x : α} (h : i ≤ τ x) : stopped_process u τ i x = u i x := by simp [stopped_process, min_eq_left h] lemma stopped_process_eq_of_ge {u : ι → α → β} {τ : α → ι} {i : ι} {x : α} (h : τ x ≤ i) : stopped_process u τ i x = u (τ x) x := by simp [stopped_process, min_eq_right h] section prog_measurable variables [measurable_space ι] [topological_space ι] [order_topology ι] [second_countable_topology ι] [borel_space ι] [topological_space β] {u : ι → α → β} {τ : α → ι} {f : filtration ι m} lemma prog_measurable_min_stopping_time [metrizable_space ι] (hτ : is_stopping_time f τ) : prog_measurable f (λ i x, min i (τ x)) := begin intro i, let m_prod : measurable_space (set.Iic i × α) := measurable_space.prod _ (f i), let m_set : ∀ t : set (set.Iic i × α), measurable_space t := λ _, @subtype.measurable_space (set.Iic i × α) _ m_prod, let s := {p : set.Iic i × α | τ p.2 ≤ i}, have hs : measurable_set[m_prod] s, from @measurable_snd (set.Iic i) α _ (f i) _ (hτ i), have h_meas_fst : ∀ t : set (set.Iic i × α), measurable[m_set t] (λ x : t, ((x : set.Iic i × α).fst : ι)), from λ t, (@measurable_subtype_coe (set.Iic i × α) m_prod _).fst.subtype_coe, apply measurable.strongly_measurable, refine measurable_of_restrict_of_restrict_compl hs _ _, { refine @measurable.min _ _ _ _ _ (m_set s) _ _ _ _ _ (h_meas_fst s) _, refine @measurable_of_Iic ι s _ _ _ (m_set s) _ _ _ _ (λ j, _), have h_set_eq : (λ x : s, τ (x : set.Iic i × α).snd) ⁻¹' set.Iic j = (λ x : s, (x : set.Iic i × α).snd) ⁻¹' {x | τ x ≤ min i j}, { ext1 x, simp only [set.mem_preimage, set.mem_Iic, iff_and_self, le_min_iff, set.mem_set_of_eq], exact λ _, x.prop, }, rw h_set_eq, suffices h_meas : @measurable _ _ (m_set s) (f i) (λ x : s, (x : set.Iic i × α).snd), from h_meas (f.mono (min_le_left _ _) _ (hτ.measurable_set_le (min i j))), exact measurable_snd.comp (@measurable_subtype_coe _ m_prod _), }, { suffices h_min_eq_left : (λ x : sᶜ, min ↑((x : set.Iic i × α).fst) (τ (x : set.Iic i × α).snd)) = λ x : sᶜ, ↑((x : set.Iic i × α).fst), { rw [set.restrict, h_min_eq_left], exact h_meas_fst _, }, ext1 x, rw min_eq_left, have hx_fst_le : ↑(x : set.Iic i × α).fst ≤ i, from (x : set.Iic i × α).fst.prop, refine hx_fst_le.trans (le_of_lt _), convert x.prop, simp only [not_le, set.mem_compl_eq, set.mem_set_of_eq], }, end lemma prog_measurable.stopped_process [metrizable_space ι] (h : prog_measurable f u) (hτ : is_stopping_time f τ) : prog_measurable f (stopped_process u τ) := h.comp (prog_measurable_min_stopping_time hτ) (λ i x, min_le_left _ _) lemma prog_measurable.adapted_stopped_process [metrizable_space ι] (h : prog_measurable f u) (hτ : is_stopping_time f τ) : adapted f (stopped_process u τ) := (h.stopped_process hτ).adapted lemma prog_measurable.strongly_measurable_stopped_process [metrizable_space ι] (hu : prog_measurable f u) (hτ : is_stopping_time f τ) (i : ι) : strongly_measurable (stopped_process u τ i) := (hu.adapted_stopped_process hτ i).mono (f.le _) lemma strongly_measurable_stopped_value_of_le (h : prog_measurable f u) (hτ : is_stopping_time f τ) {n : ι} (hτ_le : ∀ x, τ x ≤ n) : strongly_measurable[f n] (stopped_value u τ) := begin have : stopped_value u τ = (λ (p : set.Iic n × α), u ↑(p.fst) p.snd) ∘ (λ x, (⟨τ x, hτ_le x⟩, x)), { ext1 x, simp only [stopped_value, function.comp_app, subtype.coe_mk], }, rw this, refine strongly_measurable.comp_measurable (h n) _, exact (hτ.measurable_of_le hτ_le).subtype_mk.prod_mk measurable_id, end lemma measurable_stopped_value [metrizable_space β] [measurable_space β] [borel_space β] (hf_prog : prog_measurable f u) (hτ : is_stopping_time f τ) : measurable[hτ.measurable_space] (stopped_value u τ) := begin have h_str_meas : ∀ i, strongly_measurable[f i] (stopped_value u (λ x, min (τ x) i)), from λ i, strongly_measurable_stopped_value_of_le hf_prog (hτ.min_const i) (λ _, min_le_right _ _), intros t ht i, suffices : stopped_value u τ ⁻¹' t ∩ {x : α | τ x ≤ i} = stopped_value u (λ x, min (τ x) i) ⁻¹' t ∩ {x : α | τ x ≤ i}, by { rw this, exact ((h_str_meas i).measurable ht).inter (hτ.measurable_set_le i), }, ext1 x, simp only [stopped_value, set.mem_inter_eq, set.mem_preimage, set.mem_set_of_eq, and.congr_left_iff], intro h, rw min_eq_left h, end end prog_measurable end linear_order section nat /-! ### Filtrations indexed by `ℕ` -/ open filtration variables {f : filtration ℕ m} {u : ℕ → α → β} {τ π : α → ℕ} lemma stopped_value_sub_eq_sum [add_comm_group β] (hle : τ ≤ π) : stopped_value u π - stopped_value u τ = λ x, (∑ i in finset.Ico (τ x) (π x), (u (i + 1) - u i)) x := begin ext x, rw [finset.sum_Ico_eq_sub _ (hle x), finset.sum_range_sub, finset.sum_range_sub], simp [stopped_value], end lemma stopped_value_sub_eq_sum' [add_comm_group β] (hle : τ ≤ π) {N : ℕ} (hbdd : ∀ x, π x ≤ N) : stopped_value u π - stopped_value u τ = λ x, (∑ i in finset.range (N + 1), set.indicator {x | τ x ≤ i ∧ i < π x} (u (i + 1) - u i)) x := begin rw stopped_value_sub_eq_sum hle, ext x, simp only [finset.sum_apply, finset.sum_indicator_eq_sum_filter], refine finset.sum_congr _ (λ _ _, rfl), ext i, simp only [finset.mem_filter, set.mem_set_of_eq, finset.mem_range, finset.mem_Ico], exact ⟨λ h, ⟨lt_trans h.2 (nat.lt_succ_iff.2 $ hbdd _), h⟩, λ h, h.2⟩ end section add_comm_monoid variables [add_comm_monoid β] /-- For filtrations indexed by `ℕ`, `adapted` and `prog_measurable` are equivalent. This lemma provides `adapted f u → prog_measurable f u`. See `prog_measurable.adapted` for the reverse direction, which is true more generally. -/ lemma adapted.prog_measurable_of_nat [topological_space β] [has_continuous_add β] (h : adapted f u) : prog_measurable f u := begin intro i, have : (λ p : ↥(set.Iic i) × α, u ↑(p.fst) p.snd) = λ p : ↥(set.Iic i) × α, ∑ j in finset.range (i + 1), if ↑p.fst = j then u j p.snd else 0, { ext1 p, rw finset.sum_ite_eq, have hp_mem : (p.fst : ℕ) ∈ finset.range (i + 1) := finset.mem_range_succ_iff.mpr p.fst.prop, simp only [hp_mem, if_true], }, rw this, refine finset.strongly_measurable_sum _ (λ j hj, strongly_measurable.ite _ _ _), { suffices h_meas : measurable[measurable_space.prod _ (f i)] (λ a : ↥(set.Iic i) × α, (a.fst : ℕ)), from h_meas (measurable_set_singleton j), exact measurable_fst.subtype_coe, }, { have h_le : j ≤ i, from finset.mem_range_succ_iff.mp hj, exact (strongly_measurable.mono (h j) (f.mono h_le)).comp_measurable measurable_snd, }, { exact strongly_measurable_const, }, end /-- For filtrations indexed by `ℕ`, the stopped process obtained from an adapted process is adapted. -/ lemma adapted.stopped_process_of_nat [topological_space β] [has_continuous_add β] (hu : adapted f u) (hτ : is_stopping_time f τ) : adapted f (stopped_process u τ) := (hu.prog_measurable_of_nat.stopped_process hτ).adapted lemma adapted.strongly_measurable_stopped_process_of_nat [topological_space β] [has_continuous_add β] (hτ : is_stopping_time f τ) (hu : adapted f u) (n : ℕ) : strongly_measurable (stopped_process u τ n) := hu.prog_measurable_of_nat.strongly_measurable_stopped_process hτ n lemma stopped_value_eq {N : ℕ} (hbdd : ∀ x, τ x ≤ N) : stopped_value u τ = λ x, (∑ i in finset.range (N + 1), set.indicator {x | τ x = i} (u i)) x := begin ext y, rw [stopped_value, finset.sum_apply, finset.sum_eq_single (τ y)], { rw set.indicator_of_mem, exact rfl }, { exact λ i hi hneq, set.indicator_of_not_mem hneq.symm _ }, { intro hy, rw set.indicator_of_not_mem, exact λ _, hy (finset.mem_range.2 $ lt_of_le_of_lt (hbdd _) (nat.lt_succ_self _)) } end lemma stopped_process_eq (n : ℕ) : stopped_process u τ n = set.indicator {a | n ≤ τ a} (u n) + ∑ i in finset.range n, set.indicator {a | τ a = i} (u i) := begin ext x, rw [pi.add_apply, finset.sum_apply], cases le_or_lt n (τ x), { rw [stopped_process_eq_of_le h, set.indicator_of_mem, finset.sum_eq_zero, add_zero], { intros m hm, rw finset.mem_range at hm, exact set.indicator_of_not_mem ((lt_of_lt_of_le hm h).ne.symm) _ }, { exact h } }, { rw [stopped_process_eq_of_ge (le_of_lt h), finset.sum_eq_single_of_mem (τ x)], { rw [set.indicator_of_not_mem, zero_add, set.indicator_of_mem], { exact rfl }, -- refl does not work { exact not_le.2 h } }, { rwa [finset.mem_range] }, { intros b hb hneq, rw set.indicator_of_not_mem, exact hneq.symm } }, end end add_comm_monoid section normed_add_comm_group variables [normed_add_comm_group β] {p : ℝ≥0∞} {μ : measure α} lemma mem_ℒp_stopped_process (hτ : is_stopping_time f τ) (hu : ∀ n, mem_ℒp (u n) p μ) (n : ℕ) : mem_ℒp (stopped_process u τ n) p μ := begin rw stopped_process_eq, refine mem_ℒp.add _ _, { exact mem_ℒp.indicator (f.le n {a : α | n ≤ τ a} (hτ.measurable_set_ge n)) (hu n) }, { suffices : mem_ℒp (λ x, ∑ (i : ℕ) in finset.range n, {a : α | τ a = i}.indicator (u i) x) p μ, { convert this, ext1 x, simp only [finset.sum_apply] }, refine mem_ℒp_finset_sum _ (λ i hi, mem_ℒp.indicator _ (hu i)), exact f.le i {a : α | τ a = i} (hτ.measurable_set_eq i) }, end lemma integrable_stopped_process (hτ : is_stopping_time f τ) (hu : ∀ n, integrable (u n) μ) (n : ℕ) : integrable (stopped_process u τ n) μ := by { simp_rw ← mem_ℒp_one_iff_integrable at hu ⊢, exact mem_ℒp_stopped_process hτ hu n, } lemma mem_ℒp_stopped_value (hτ : is_stopping_time f τ) (hu : ∀ n, mem_ℒp (u n) p μ) {N : ℕ} (hbdd : ∀ x, τ x ≤ N) : mem_ℒp (stopped_value u τ) p μ := begin rw stopped_value_eq hbdd, suffices : mem_ℒp (λ x, ∑ (i : ℕ) in finset.range (N + 1), {a : α | τ a = i}.indicator (u i) x) p μ, { convert this, ext1 x, simp only [finset.sum_apply] }, refine mem_ℒp_finset_sum _ (λ i hi, mem_ℒp.indicator _ (hu i)), exact f.le i {a : α | τ a = i} (hτ.measurable_set_eq i) end lemma integrable_stopped_value (hτ : is_stopping_time f τ) (hu : ∀ n, integrable (u n) μ) {N : ℕ} (hbdd : ∀ x, τ x ≤ N) : integrable (stopped_value u τ) μ := by { simp_rw ← mem_ℒp_one_iff_integrable at hu ⊢, exact mem_ℒp_stopped_value hτ hu hbdd, } end normed_add_comm_group end nat section piecewise_const variables [preorder ι] {𝒢 : filtration ι m} {τ η : α → ι} {i j : ι} {s : set α} [decidable_pred (∈ s)] /-- Given stopping times `τ` and `η` which are bounded below, `set.piecewise s τ η` is also a stopping time with respect to the same filtration. -/ lemma is_stopping_time.piecewise_of_le (hτ_st : is_stopping_time 𝒢 τ) (hη_st : is_stopping_time 𝒢 η) (hτ : ∀ x, i ≤ τ x) (hη : ∀ x, i ≤ η x) (hs : measurable_set[𝒢 i] s) : is_stopping_time 𝒢 (s.piecewise τ η) := begin intro n, have : {x | s.piecewise τ η x ≤ n} = (s ∩ {x | τ x ≤ n}) ∪ (sᶜ ∩ {x | η x ≤ n}), { ext1 x, simp only [set.piecewise, set.mem_inter_eq, set.mem_set_of_eq, and.congr_right_iff], by_cases hx : x ∈ s; simp [hx], }, rw this, by_cases hin : i ≤ n, { have hs_n : measurable_set[𝒢 n] s, from 𝒢.mono hin _ hs, exact (hs_n.inter (hτ_st n)).union (hs_n.compl.inter (hη_st n)), }, { have hτn : ∀ x, ¬ τ x ≤ n := λ x hτn, hin ((hτ x).trans hτn), have hηn : ∀ x, ¬ η x ≤ n := λ x hηn, hin ((hη x).trans hηn), simp [hτn, hηn], }, end lemma is_stopping_time_piecewise_const (hij : i ≤ j) (hs : measurable_set[𝒢 i] s) : is_stopping_time 𝒢 (s.piecewise (λ _, i) (λ _, j)) := (is_stopping_time_const 𝒢 i).piecewise_of_le (is_stopping_time_const 𝒢 j) (λ x, le_rfl) (λ _, hij) hs lemma stopped_value_piecewise_const {ι' : Type*} {i j : ι'} {f : ι' → α → ℝ} : stopped_value f (s.piecewise (λ _, i) (λ _, j)) = s.piecewise (f i) (f j) := by { ext x, rw stopped_value, by_cases hx : x ∈ s; simp [hx] } lemma stopped_value_piecewise_const' {ι' : Type*} {i j : ι'} {f : ι' → α → ℝ} : stopped_value f (s.piecewise (λ _, i) (λ _, j)) = s.indicator (f i) + sᶜ.indicator (f j) := by { ext x, rw stopped_value, by_cases hx : x ∈ s; simp [hx] } end piecewise_const end measure_theory