/- Copyright (c) 2022 Sébastien Gouëzel. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Sébastien Gouëzel -/ import probability.ident_distrib import measure_theory.function.l2_space import measure_theory.integral.interval_integral import analysis.specific_limits.floor_pow import analysis.p_series import analysis.asymptotics.specific_asymptotics /-! # The strong law of large numbers We prove the strong law of large numbers, in `probability_theory.strong_law_ae`: If `X n` is a sequence of independent identically distributed integrable real-valued random variables, then `∑ i in range n, X i / n` converges almost surely to `𝔼[X 0]`. We give here the strong version, due to Etemadi, that only requires pairwise independence. This file also contains the Lᵖ version of the strong law of large numbers provided by `probability_theory.strong_law_Lp` which shows `∑ i in range n, X i / n` converges in Lᵖ to `𝔼[X 0]` provided `X n` is independent identically distributed and is Lᵖ. ## Implementation We follow the proof by Etemadi [Etemadi, *An elementary proof of the strong law of large numbers*][etemadi_strong_law], which goes as follows. It suffices to prove the result for nonnegative `X`, as one can prove the general result by splitting a general `X` into its positive part and negative part. Consider `Xₙ` a sequence of nonnegative integrable identically distributed pairwise independent random variables. Let `Yₙ` be the truncation of `Xₙ` up to `n`. We claim that * Almost surely, `Xₙ = Yₙ` for all but finitely many indices. Indeed, `∑ ℙ (Xₙ ≠ Yₙ)` is bounded by `1 + 𝔼[X]` (see `sum_prob_mem_Ioc_le` and `tsum_prob_mem_Ioi_lt_top`). * Let `c > 1`. Along the sequence `n = c ^ k`, then `(∑_{i=0}^{n-1} Yᵢ - 𝔼[Yᵢ])/n` converges almost surely to `0`. This follows from a variance control, as ``` ∑_k ℙ (|∑_{i=0}^{c^k - 1} Yᵢ - 𝔼[Yᵢ]| > c^k ε) ≤ ∑_k (c^k ε)^{-2} ∑_{i=0}^{c^k - 1} Var[Yᵢ] (by Markov inequality) ≤ ∑_i (C/i^2) Var[Yᵢ] (as ∑_{c^k > i} 1/(c^k)^2 ≤ C/i^2) ≤ ∑_i (C/i^2) 𝔼[Yᵢ^2] ≤ 2C 𝔼[X^2] (see `sum_variance_truncation_le`) ``` * As `𝔼[Yᵢ]` converges to `𝔼[X]`, it follows from the two previous items and Cesaro that, along the sequence `n = c^k`, one has `(∑_{i=0}^{n-1} Xᵢ) / n → 𝔼[X]` almost surely. * To generalize it to all indices, we use the fact that `∑_{i=0}^{n-1} Xᵢ` is nondecreasing and that, if `c` is close enough to `1`, the gap between `c^k` and `c^(k+1)` is small. -/ noncomputable theory open measure_theory filter finset asymptotics open set (indicator) open_locale topological_space big_operators measure_theory probability_theory ennreal nnreal namespace probability_theory /-! ### Prerequisites on truncations -/ section truncation variables {α : Type*} /-- Truncating a real-valued function to the interval `(-A, A]`. -/ def truncation (f : α → ℝ) (A : ℝ) := (indicator (set.Ioc (-A) A) id) ∘ f variables {m : measurable_space α} {μ : measure α} {f : α → ℝ} lemma _root_.measure_theory.ae_strongly_measurable.truncation (hf : ae_strongly_measurable f μ) {A : ℝ} : ae_strongly_measurable (truncation f A) μ := begin apply ae_strongly_measurable.comp_ae_measurable _ hf.ae_measurable, exact (strongly_measurable_id.indicator measurable_set_Ioc).ae_strongly_measurable, end lemma abs_truncation_le_bound (f : α → ℝ) (A : ℝ) (x : α) : |truncation f A x| ≤ |A| := begin simp only [truncation, set.indicator, set.mem_Icc, id.def, function.comp_app], split_ifs, { exact abs_le_abs h.2 (neg_le.2 h.1.le) }, { simp [abs_nonneg] } end @[simp] lemma truncation_zero (f : α → ℝ) : truncation f 0 = 0 := by simp [truncation] lemma abs_truncation_le_abs_self (f : α → ℝ) (A : ℝ) (x : α) : |truncation f A x| ≤ |f x| := begin simp only [truncation, indicator, set.mem_Icc, id.def, function.comp_app], split_ifs, { exact le_rfl }, { simp [abs_nonneg] }, end lemma truncation_eq_self {f : α → ℝ} {A : ℝ} {x : α} (h : |f x| < A) : truncation f A x = f x := begin simp only [truncation, indicator, set.mem_Icc, id.def, function.comp_app, ite_eq_left_iff], assume H, apply H.elim, simp [(abs_lt.1 h).1, (abs_lt.1 h).2.le], end lemma truncation_eq_of_nonneg {f : α → ℝ} {A : ℝ} (h : ∀ x, 0 ≤ f x) : truncation f A = (indicator (set.Ioc 0 A) id) ∘ f := begin ext x, rcases (h x).lt_or_eq with hx|hx, { simp only [truncation, indicator, hx, set.mem_Ioc, id.def, function.comp_app, true_and], by_cases h'x : f x ≤ A, { have : - A < f x, by linarith [h x], simp only [this, true_and] }, { simp only [h'x, and_false] } }, { simp only [truncation, indicator, hx, id.def, function.comp_app, if_t_t]}, end lemma truncation_nonneg {f : α → ℝ} (A : ℝ) {x : α} (h : 0 ≤ f x) : 0 ≤ truncation f A x := set.indicator_apply_nonneg $ λ _, h lemma _root_.measure_theory.ae_strongly_measurable.mem_ℒp_truncation [is_finite_measure μ] (hf : ae_strongly_measurable f μ) {A : ℝ} {p : ℝ≥0∞} : mem_ℒp (truncation f A) p μ := mem_ℒp.of_bound hf.truncation (|A|) (eventually_of_forall (λ x, abs_truncation_le_bound _ _ _)) lemma _root_.measure_theory.ae_strongly_measurable.integrable_truncation [is_finite_measure μ] (hf : ae_strongly_measurable f μ) {A : ℝ} : integrable (truncation f A) μ := by { rw ← mem_ℒp_one_iff_integrable, exact hf.mem_ℒp_truncation } lemma moment_truncation_eq_interval_integral (hf : ae_strongly_measurable f μ) {A : ℝ} (hA : 0 ≤ A) {n : ℕ} (hn : n ≠ 0) : ∫ x, (truncation f A x) ^ n ∂μ = ∫ y in (-A)..A, y ^ n ∂(measure.map f μ) := begin have M : measurable_set (set.Ioc (-A) A) := measurable_set_Ioc, change ∫ x, (λ z, (indicator (set.Ioc (-A) A) id z) ^ n) (f x) ∂μ = _, rw [← integral_map hf.ae_measurable, interval_integral.integral_of_le, ← integral_indicator M], { simp only [indicator, zero_pow' _ hn, id.def, ite_pow] }, { linarith }, { exact ((measurable_id.indicator M).pow_const n).ae_strongly_measurable } end lemma moment_truncation_eq_interval_integral_of_nonneg (hf : ae_strongly_measurable f μ) {A : ℝ} {n : ℕ} (hn : n ≠ 0) (h'f : 0 ≤ f) : ∫ x, (truncation f A x) ^ n ∂μ = ∫ y in 0..A, y ^ n ∂(measure.map f μ) := begin have M : measurable_set (set.Ioc 0 A) := measurable_set_Ioc, have M' : measurable_set (set.Ioc A 0) := measurable_set_Ioc, rw truncation_eq_of_nonneg h'f, change ∫ x, (λ z, (indicator (set.Ioc 0 A) id z) ^ n) (f x) ∂μ = _, rcases le_or_lt 0 A with hA | hA, { rw [← integral_map hf.ae_measurable, interval_integral.integral_of_le hA, ← integral_indicator M], { simp only [indicator, zero_pow' _ hn, id.def, ite_pow] }, { exact ((measurable_id.indicator M).pow_const n).ae_strongly_measurable } }, { rw [← integral_map hf.ae_measurable, interval_integral.integral_of_ge hA.le, ← integral_indicator M'], { simp only [set.Ioc_eq_empty_of_le hA.le, zero_pow' _ hn, set.indicator_empty, integral_zero, zero_eq_neg], apply integral_eq_zero_of_ae, have : ∀ᵐ x ∂(measure.map f μ), (0 : ℝ) ≤ x := (ae_map_iff hf.ae_measurable measurable_set_Ici).2 (eventually_of_forall h'f), filter_upwards [this] with x hx, simp only [indicator, set.mem_Ioc, pi.zero_apply, ite_eq_right_iff, and_imp], assume h'x h''x, have : x = 0, by linarith, simp [this, zero_pow' _ hn] }, { exact ((measurable_id.indicator M).pow_const n).ae_strongly_measurable } } end lemma integral_truncation_eq_interval_integral (hf : ae_strongly_measurable f μ) {A : ℝ} (hA : 0 ≤ A) : ∫ x, truncation f A x ∂μ = ∫ y in (-A)..A, y ∂(measure.map f μ) := by simpa using moment_truncation_eq_interval_integral hf hA one_ne_zero lemma integral_truncation_eq_interval_integral_of_nonneg (hf : ae_strongly_measurable f μ) {A : ℝ} (h'f : 0 ≤ f) : ∫ x, truncation f A x ∂μ = ∫ y in 0..A, y ∂(measure.map f μ) := by simpa using moment_truncation_eq_interval_integral_of_nonneg hf one_ne_zero h'f lemma integral_truncation_le_integral_of_nonneg (hf : integrable f μ) (h'f : 0 ≤ f) {A : ℝ} : ∫ x, truncation f A x ∂μ ≤ ∫ x, f x ∂μ := begin apply integral_mono_of_nonneg (eventually_of_forall (λ x, _)) hf (eventually_of_forall (λ x, _)), { exact truncation_nonneg _ (h'f x) }, { calc truncation f A x ≤ |truncation f A x| : le_abs_self _ ... ≤ |f x| : abs_truncation_le_abs_self _ _ _ ... = f x : abs_of_nonneg (h'f x) } end /-- If a function is integrable, then the integral of its truncated versions converges to the integral of the whole function. -/ lemma tendsto_integral_truncation {f : α → ℝ} (hf : integrable f μ) : tendsto (λ A, ∫ x, truncation f A x ∂μ) at_top (𝓝 (∫ x, f x ∂μ)) := begin refine tendsto_integral_filter_of_dominated_convergence (λ x, abs (f x)) _ _ _ _, { exact eventually_of_forall (λ A, hf.ae_strongly_measurable.truncation) }, { apply eventually_of_forall (λ A, _), apply eventually_of_forall (λ x, _), rw real.norm_eq_abs, exact abs_truncation_le_abs_self _ _ _ }, { apply hf.abs }, { apply eventually_of_forall (λ x, _), apply tendsto_const_nhds.congr' _, filter_upwards [Ioi_mem_at_top (abs (f x))] with A hA, exact (truncation_eq_self hA).symm }, end lemma ident_distrib.truncation {β : Type*} [measurable_space β] {ν : measure β} {f : α → ℝ} {g : β → ℝ} (h : ident_distrib f g μ ν) {A : ℝ} : ident_distrib (truncation f A) (truncation g A) μ ν := h.comp (measurable_id.indicator measurable_set_Ioc) end truncation section strong_law_ae variables {Ω : Type*} [measure_space Ω] [is_probability_measure (ℙ : measure Ω)] section moment_estimates lemma sum_prob_mem_Ioc_le {X : Ω → ℝ} (hint : integrable X) (hnonneg : 0 ≤ X) {K : ℕ} {N : ℕ} (hKN : K ≤ N) : ∑ j in range K, ℙ {ω | X ω ∈ set.Ioc (j : ℝ) N} ≤ ennreal.of_real (𝔼[X] + 1) := begin let ρ : measure ℝ := measure.map X ℙ, haveI : is_probability_measure ρ := is_probability_measure_map hint.ae_measurable, have A : ∑ j in range K, ∫ x in j..N, (1 : ℝ) ∂ρ ≤ 𝔼[X] + 1, from calc ∑ j in range K, ∫ x in j..N, (1 : ℝ) ∂ρ = ∑ j in range K, ∑ i in Ico j N, ∫ x in i..(i+1 : ℕ), (1 : ℝ) ∂ρ : begin apply sum_congr rfl (λ j hj, _), rw interval_integral.sum_integral_adjacent_intervals_Ico ((mem_range.1 hj).le.trans hKN), assume k hk, exact continuous_const.interval_integrable _ _, end ... = ∑ i in range N, ∑ j in range (min (i+1) K), ∫ x in i..(i+1 : ℕ), (1 : ℝ) ∂ρ : begin simp_rw [sum_sigma'], refine sum_bij' (λ (p : (Σ (i : ℕ), ℕ)) hp, (⟨p.2, p.1⟩ : (Σ (i : ℕ), ℕ))) _ (λ a ha, rfl) (λ (p : (Σ (i : ℕ), ℕ)) hp, (⟨p.2, p.1⟩ : (Σ (i : ℕ), ℕ))) _ _ _, { rintros ⟨i, j⟩ hij, simp only [mem_sigma, mem_range, mem_Ico] at hij, simp only [hij, nat.lt_succ_iff.2 hij.2.1, mem_sigma, mem_range, lt_min_iff, and_self] }, { rintros ⟨i, j⟩ hij, simp only [mem_sigma, mem_range, lt_min_iff] at hij, simp only [hij, nat.lt_succ_iff.1 hij.2.1, mem_sigma, mem_range, mem_Ico, and_self] }, { rintros ⟨i, j⟩ hij, refl }, { rintros ⟨i, j⟩ hij, refl }, end ... ≤ ∑ i in range N, (i + 1) * ∫ x in i..(i+1 : ℕ), (1 : ℝ) ∂ρ : begin apply sum_le_sum (λ i hi, _), simp only [nat.cast_add, nat.cast_one, sum_const, card_range, nsmul_eq_mul, nat.cast_min], refine mul_le_mul_of_nonneg_right (min_le_left _ _) _, apply interval_integral.integral_nonneg, { simp only [le_add_iff_nonneg_right, zero_le_one] }, { simp only [zero_le_one, implies_true_iff], } end ... ≤ ∑ i in range N, ∫ x in i..(i+1 : ℕ), (x + 1) ∂ρ : begin apply sum_le_sum (λ i hi, _), have I : (i : ℝ) ≤ (i + 1 : ℕ), by simp only [nat.cast_add, nat.cast_one, le_add_iff_nonneg_right, zero_le_one], simp_rw [interval_integral.integral_of_le I, ← integral_mul_left], apply set_integral_mono_on, { exact continuous_const.integrable_on_Ioc }, { exact (continuous_id.add continuous_const).integrable_on_Ioc }, { exact measurable_set_Ioc }, { assume x hx, simp only [nat.cast_add, nat.cast_one, set.mem_Ioc] at hx, simp [hx.1.le] } end ... = ∫ x in 0..N, x + 1 ∂ρ : begin rw interval_integral.sum_integral_adjacent_intervals (λ k hk, _), { norm_cast }, { exact (continuous_id.add continuous_const).interval_integrable _ _ } end ... = ∫ x in 0..N, x ∂ρ + ∫ x in 0..N, 1 ∂ρ : begin rw interval_integral.integral_add, { exact continuous_id.interval_integrable _ _ }, { exact continuous_const.interval_integrable _ _ }, end ... = 𝔼[truncation X N] + ∫ x in 0..N, 1 ∂ρ : by rw integral_truncation_eq_interval_integral_of_nonneg hint.1 hnonneg ... ≤ 𝔼[X] + ∫ x in 0..N, 1 ∂ρ : add_le_add_right (integral_truncation_le_integral_of_nonneg hint hnonneg) _ ... ≤ 𝔼[X] + 1 : begin refine add_le_add le_rfl _, rw interval_integral.integral_of_le (nat.cast_nonneg _), simp only [integral_const, measure.restrict_apply', measurable_set_Ioc, set.univ_inter, algebra.id.smul_eq_mul, mul_one], rw ← ennreal.one_to_real, exact ennreal.to_real_mono ennreal.one_ne_top prob_le_one, end, have B : ∀ a b, ℙ {ω | X ω ∈ set.Ioc a b} = ennreal.of_real (∫ x in set.Ioc a b, (1 : ℝ) ∂ρ), { assume a b, rw [of_real_set_integral_one ρ _, measure.map_apply_of_ae_measurable hint.ae_measurable measurable_set_Ioc], refl }, calc ∑ j in range K, ℙ {ω | X ω ∈ set.Ioc (j : ℝ) N} = ∑ j in range K, ennreal.of_real (∫ x in set.Ioc (j : ℝ) N, (1 : ℝ) ∂ρ) : by simp_rw B ... = ennreal.of_real (∑ j in range K, ∫ x in set.Ioc (j : ℝ) N, (1 : ℝ) ∂ρ) : begin rw ennreal.of_real_sum_of_nonneg, simp only [integral_const, algebra.id.smul_eq_mul, mul_one, ennreal.to_real_nonneg, implies_true_iff], end ... = ennreal.of_real (∑ j in range K, ∫ x in (j : ℝ)..N, (1 : ℝ) ∂ρ) : begin congr' 1, refine sum_congr rfl (λ j hj, _), rw interval_integral.integral_of_le (nat.cast_le.2 ((mem_range.1 hj).le.trans hKN)), end ... ≤ ennreal.of_real (𝔼[X] + 1) : ennreal.of_real_le_of_real A end lemma tsum_prob_mem_Ioi_lt_top {X : Ω → ℝ} (hint : integrable X) (hnonneg : 0 ≤ X) : ∑' (j : ℕ), ℙ {ω | X ω ∈ set.Ioi (j : ℝ)} < ∞ := begin suffices : ∀ (K : ℕ), ∑ j in range K, ℙ {ω | X ω ∈ set.Ioi (j : ℝ)} ≤ ennreal.of_real (𝔼[X] + 1), from (le_of_tendsto_of_tendsto (ennreal.tendsto_nat_tsum _) tendsto_const_nhds (eventually_of_forall this)).trans_lt ennreal.of_real_lt_top, assume K, have A : tendsto (λ (N : ℕ), ∑ j in range K, ℙ {ω | X ω ∈ set.Ioc (j : ℝ) N}) at_top (𝓝 (∑ j in range K, ℙ {ω | X ω ∈ set.Ioi (j : ℝ)})), { refine tendsto_finset_sum _ (λ i hi, _), have : {ω | X ω ∈ set.Ioi (i : ℝ)} = ⋃ (N : ℕ), {ω | X ω ∈ set.Ioc (i : ℝ) N}, { apply set.subset.antisymm _ _, { assume ω hω, obtain ⟨N, hN⟩ : ∃ (N : ℕ), X ω ≤ N := exists_nat_ge (X ω), exact set.mem_Union.2 ⟨N, hω, hN⟩ }, { simp only [set.mem_Ioc, set.mem_Ioi, set.Union_subset_iff, set.set_of_subset_set_of, implies_true_iff] {contextual := tt} } }, rw this, apply tendsto_measure_Union, assume m n hmn x hx, exact ⟨hx.1, hx.2.trans (nat.cast_le.2 hmn)⟩ }, apply le_of_tendsto_of_tendsto A tendsto_const_nhds, filter_upwards [Ici_mem_at_top K] with N hN, exact sum_prob_mem_Ioc_le hint hnonneg hN end lemma sum_variance_truncation_le {X : Ω → ℝ} (hint : integrable X) (hnonneg : 0 ≤ X) (K : ℕ) : ∑ j in range K, ((j : ℝ) ^ 2) ⁻¹ * 𝔼[(truncation X j) ^ 2] ≤ 2 * 𝔼[X] := begin set Y := λ (n : ℕ), truncation X n, let ρ : measure ℝ := measure.map X ℙ, have Y2 : ∀ n, 𝔼[Y n ^ 2] = ∫ x in 0..n, x ^ 2 ∂ρ, { assume n, change 𝔼[λ x, (Y n x)^2] = _, rw [moment_truncation_eq_interval_integral_of_nonneg hint.1 two_ne_zero hnonneg] }, calc ∑ j in range K, ((j : ℝ) ^ 2) ⁻¹ * 𝔼[Y j ^ 2] = ∑ j in range K, ((j : ℝ) ^ 2) ⁻¹ * ∫ x in 0..j, x ^ 2 ∂ρ : by simp_rw [Y2] ... = ∑ j in range K, ((j : ℝ) ^ 2) ⁻¹ * ∑ k in range j, ∫ x in k..(k+1 : ℕ), x ^ 2 ∂ρ : begin congr' 1 with j, congr' 1, rw interval_integral.sum_integral_adjacent_intervals, { norm_cast }, assume k hk, exact (continuous_id.pow _).interval_integrable _ _, end ... = ∑ k in range K, (∑ j in Ioo k K, ((j : ℝ) ^ 2) ⁻¹) * ∫ x in k..(k+1 : ℕ), x ^ 2 ∂ρ : begin simp_rw [mul_sum, sum_mul, sum_sigma'], refine sum_bij' (λ (p : (Σ (i : ℕ), ℕ)) hp, (⟨p.2, p.1⟩ : (Σ (i : ℕ), ℕ))) _ (λ a ha, rfl) (λ (p : (Σ (i : ℕ), ℕ)) hp, (⟨p.2, p.1⟩ : (Σ (i : ℕ), ℕ))) _ _ _, { rintros ⟨i, j⟩ hij, simp only [mem_sigma, mem_range, mem_filter] at hij, simp [hij, mem_sigma, mem_range, and_self, hij.2.trans hij.1], }, { rintros ⟨i, j⟩ hij, simp only [mem_sigma, mem_range, mem_Ioo] at hij, simp only [hij, mem_sigma, mem_range, and_self], }, { rintros ⟨i, j⟩ hij, refl }, { rintros ⟨i, j⟩ hij, refl }, end ... ≤ ∑ k in range K, (2/ (k+1)) * ∫ x in k..(k+1 : ℕ), x ^ 2 ∂ρ : begin apply sum_le_sum (λ k hk, _), refine mul_le_mul_of_nonneg_right (sum_Ioo_inv_sq_le _ _) _, refine interval_integral.integral_nonneg_of_forall _ (λ u, sq_nonneg _), simp only [nat.cast_add, nat.cast_one, le_add_iff_nonneg_right, zero_le_one], end ... ≤ ∑ k in range K, ∫ x in k..(k+1 : ℕ), 2 * x ∂ρ : begin apply sum_le_sum (λ k hk, _), have Ik : (k : ℝ) ≤ (k + 1 : ℕ), by simp, rw [← interval_integral.integral_const_mul, interval_integral.integral_of_le Ik, interval_integral.integral_of_le Ik], refine set_integral_mono_on _ _ measurable_set_Ioc (λ x hx, _), { apply continuous.integrable_on_Ioc, exact continuous_const.mul (continuous_pow 2) }, { apply continuous.integrable_on_Ioc, exact continuous_const.mul continuous_id' }, { calc 2 / (↑k + 1) * x ^ 2 = (x / (k+1)) * (2 * x) : by ring_exp ... ≤ 1 * (2 * x) : mul_le_mul_of_nonneg_right begin apply_mod_cast (div_le_one _).2 hx.2, simp only [nat.cast_add, nat.cast_one], linarith only [show (0 : ℝ) ≤ k, from nat.cast_nonneg k], end (mul_nonneg zero_le_two ((nat.cast_nonneg k).trans hx.1.le)) ... = 2 * x : by rw one_mul } end ... = 2 * ∫ x in (0 : ℝ)..K, x ∂ρ : begin rw interval_integral.sum_integral_adjacent_intervals (λ k hk, _), swap, { exact (continuous_const.mul continuous_id').interval_integrable _ _ }, rw interval_integral.integral_const_mul, norm_cast end ... ≤ 2 * 𝔼[X] : mul_le_mul_of_nonneg_left begin rw ← integral_truncation_eq_interval_integral_of_nonneg hint.1 hnonneg, exact integral_truncation_le_integral_of_nonneg hint hnonneg, end zero_le_two end end moment_estimates section strong_law_nonneg /- This paragraph proves the strong law of large numbers (almost sure version, assuming only pairwise independence) for nonnegative random variables, following Etemadi's proof. -/ variables (X : ℕ → Ω → ℝ) (hint : integrable (X 0)) (hindep : pairwise (λ i j, indep_fun (X i) (X j))) (hident : ∀ i, ident_distrib (X i) (X 0)) (hnonneg : ∀ i ω, 0 ≤ X i ω) include X hint hindep hident hnonneg /- The truncation of `Xᵢ` up to `i` satisfies the strong law of large numbers (with respect to the truncated expectation) along the sequence `c^n`, for any `c > 1`, up to a given `ε > 0`. This follows from a variance control. -/ lemma strong_law_aux1 {c : ℝ} (c_one : 1 < c) {ε : ℝ} (εpos : 0 < ε) : ∀ᵐ ω, ∀ᶠ (n : ℕ) in at_top, |∑ i in range ⌊c^n⌋₊, truncation (X i) i ω - 𝔼[∑ i in range ⌊c^n⌋₊, truncation (X i) i]| < ε * ⌊c^n⌋₊ := begin /- Let `S n = ∑ i in range n, Y i` where `Y i = truncation (X i) i`. We should show that `|S k - 𝔼[S k]| / k ≤ ε` along the sequence of powers of `c`. For this, we apply Borel-Cantelli: it suffices to show that the converse probabilites are summable. From Chebyshev inequality, this will follow from a variance control `∑' Var[S (c^i)] / (c^i)^2 < ∞`. This is checked in `I2` using pairwise independence to expand the variance of the sum as the sum of the variances, and then a straightforward but tedious computation (essentially boiling down to the fact that the sum of `1/(c ^ i)^2` beyong a threshold `j` is comparable to `1/j^2`). Note that we have written `c^i` in the above proof sketch, but rigorously one should put integer parts everywhere, making things more painful. We write `u i = ⌊c^i⌋₊` for brevity. -/ have c_pos : 0 < c := zero_lt_one.trans c_one, let ρ : measure ℝ := measure.map (X 0) ℙ, have hX : ∀ i, ae_strongly_measurable (X i) ℙ := λ i, (hident i).symm.ae_strongly_measurable_snd hint.1, have A : ∀ i, strongly_measurable (indicator (set.Ioc (-i : ℝ) i) id) := λ i, strongly_measurable_id.indicator measurable_set_Ioc, set Y := λ (n : ℕ), truncation (X n) n with hY, set S := λ n, ∑ i in range n, Y i with hS, let u : ℕ → ℕ := λ n, ⌊c ^ n⌋₊, have u_mono : monotone u := λ i j hij, nat.floor_mono (pow_le_pow c_one.le hij), have I1 : ∀ K, ∑ j in range K, ((j : ℝ) ^ 2) ⁻¹ * Var[Y j] ≤ 2 * 𝔼[X 0], { assume K, calc ∑ j in range K, ((j : ℝ) ^ 2) ⁻¹ * Var[Y j] ≤ ∑ j in range K, ((j : ℝ) ^ 2) ⁻¹ * 𝔼[(truncation (X 0) j)^2] : begin apply sum_le_sum (λ j hj, _), refine mul_le_mul_of_nonneg_left _ (inv_nonneg.2 (sq_nonneg _)), rw (hident j).truncation.variance_eq, exact variance_le_expectation_sq, end ... ≤ 2 * 𝔼[X 0] : sum_variance_truncation_le hint (hnonneg 0) K }, let C := (c ^ 5 * (c - 1) ⁻¹ ^ 3) * (2 * 𝔼[X 0]), have I2 : ∀ N, ∑ i in range N, ((u i : ℝ) ^ 2) ⁻¹ * Var[S (u i)] ≤ C, { assume N, calc ∑ i in range N, ((u i : ℝ) ^ 2) ⁻¹ * Var[S (u i)] = ∑ i in range N, ((u i : ℝ) ^ 2) ⁻¹ * (∑ j in range (u i), Var[Y j]) : begin congr' 1 with i, congr' 1, rw [hS, indep_fun.variance_sum], { assume j hj, exact (hident j).ae_strongly_measurable_fst.mem_ℒp_truncation }, { assume k hk l hl hkl, exact (hindep k l hkl).comp (A k).measurable (A l).measurable } end ... = ∑ j in range (u (N - 1)), (∑ i in (range N).filter (λ i, j < u i), ((u i : ℝ) ^ 2) ⁻¹) * Var[Y j] : begin simp_rw [mul_sum, sum_mul, sum_sigma'], refine sum_bij' (λ (p : (Σ (i : ℕ), ℕ)) hp, (⟨p.2, p.1⟩ : (Σ (i : ℕ), ℕ))) _ (λ a ha, rfl) (λ (p : (Σ (i : ℕ), ℕ)) hp, (⟨p.2, p.1⟩ : (Σ (i : ℕ), ℕ))) _ _ _, { rintros ⟨i, j⟩ hij, simp only [mem_sigma, mem_range] at hij, simp only [hij.1, hij.2, mem_sigma, mem_range, mem_filter, and_true], exact hij.2.trans_le (u_mono (nat.le_pred_of_lt hij.1)) }, { rintros ⟨i, j⟩ hij, simp only [mem_sigma, mem_range, mem_filter] at hij, simp only [hij.2.1, hij.2.2, mem_sigma, mem_range, and_self] }, { rintros ⟨i, j⟩ hij, refl }, { rintros ⟨i, j⟩ hij, refl }, end ... ≤ ∑ j in range (u (N - 1)), (c ^ 5 * (c - 1) ⁻¹ ^ 3 / j ^ 2) * Var[Y j] : begin apply sum_le_sum (λ j hj, _), rcases @eq_zero_or_pos _ _ j with rfl|hj, { simp only [Y, nat.cast_zero, zero_pow', ne.def, bit0_eq_zero, nat.one_ne_zero, not_false_iff, div_zero, zero_mul], simp only [nat.cast_zero, truncation_zero, variance_zero, mul_zero] }, apply mul_le_mul_of_nonneg_right _ (variance_nonneg _ _), convert sum_div_nat_floor_pow_sq_le_div_sq N (nat.cast_pos.2 hj) c_one, { simp only [nat.cast_lt] }, { simp only [one_div] } end ... = (c ^ 5 * (c - 1) ⁻¹ ^ 3) * ∑ j in range (u (N - 1)), ((j : ℝ) ^ 2) ⁻¹ * Var[Y j] : by { simp_rw [mul_sum, div_eq_mul_inv], ring_nf } ... ≤ (c ^ 5 * (c - 1) ⁻¹ ^ 3) * (2 * 𝔼[X 0]) : begin apply mul_le_mul_of_nonneg_left (I1 _), apply mul_nonneg (pow_nonneg c_pos.le _), exact pow_nonneg (inv_nonneg.2 (sub_nonneg.2 c_one.le)) _ end }, have I3 : ∀ N, ∑ i in range N, ℙ {ω | (u i * ε : ℝ) ≤ |S (u i) ω - 𝔼[S (u i)]|} ≤ ennreal.of_real (ε ⁻¹ ^ 2 * C), { assume N, calc ∑ i in range N, ℙ {ω | (u i * ε : ℝ) ≤ |S (u i) ω - 𝔼[S (u i)]|} ≤ ∑ i in range N, ennreal.of_real (Var[S (u i)] / (u i * ε) ^ 2) : begin refine sum_le_sum (λ i hi, _), apply meas_ge_le_variance_div_sq, { exact mem_ℒp_finset_sum' _ (λ j hj, (hident j).ae_strongly_measurable_fst.mem_ℒp_truncation) }, { apply mul_pos (nat.cast_pos.2 _) εpos, refine zero_lt_one.trans_le _, apply nat.le_floor, rw nat.cast_one, apply one_le_pow_of_one_le c_one.le } end ... = ennreal.of_real (∑ i in range N, Var[S (u i)] / (u i * ε) ^ 2) : begin rw ennreal.of_real_sum_of_nonneg (λ i hi, _), exact div_nonneg (variance_nonneg _ _) (sq_nonneg _), end ... ≤ ennreal.of_real (ε ⁻¹ ^ 2 * C) : begin apply ennreal.of_real_le_of_real, simp_rw [div_eq_inv_mul, ← inv_pow, mul_inv, mul_comm _ (ε⁻¹), mul_pow, mul_assoc, ← mul_sum], refine mul_le_mul_of_nonneg_left _ (sq_nonneg _), simp_rw [inv_pow], exact I2 N end }, have I4 : ∑' i, ℙ {ω | (u i * ε : ℝ) ≤ |S (u i) ω - 𝔼[S (u i)]|} < ∞ := (le_of_tendsto_of_tendsto' (ennreal.tendsto_nat_tsum _) tendsto_const_nhds I3).trans_lt ennreal.of_real_lt_top, filter_upwards [ae_eventually_not_mem I4.ne] with ω hω, simp_rw [not_le, mul_comm, S, sum_apply] at hω, exact hω, end /- The truncation of `Xᵢ` up to `i` satisfies the strong law of large numbers (with respect to the truncated expectation) along the sequence `c^n`, for any `c > 1`. This follows from `strong_law_aux1` by varying `ε`. -/ lemma strong_law_aux2 {c : ℝ} (c_one : 1 < c) : ∀ᵐ ω, (λ (n : ℕ), ∑ i in range ⌊c^n⌋₊, truncation (X i) i ω - 𝔼[∑ i in range ⌊c^n⌋₊, truncation (X i) i]) =o[at_top] (λ (n : ℕ), (⌊c^n⌋₊ : ℝ)) := begin obtain ⟨v, -, v_pos, v_lim⟩ : ∃ (v : ℕ → ℝ), strict_anti v ∧ (∀ (n : ℕ), 0 < v n) ∧ tendsto v at_top (𝓝 0) := exists_seq_strict_anti_tendsto (0 : ℝ), have := λ i, strong_law_aux1 X hint hindep hident hnonneg c_one (v_pos i), filter_upwards [ae_all_iff.2 this] with ω hω, apply asymptotics.is_o_iff.2 (λ ε εpos, _), obtain ⟨i, hi⟩ : ∃ i, v i < ε := ((tendsto_order.1 v_lim).2 ε εpos).exists, filter_upwards [hω i] with n hn, simp only [real.norm_eq_abs, lattice_ordered_comm_group.abs_abs, nat.abs_cast], exact hn.le.trans (mul_le_mul_of_nonneg_right hi.le (nat.cast_nonneg _)), end omit hindep hnonneg /-- The expectation of the truncated version of `Xᵢ` behaves asymptotically like the whole expectation. This follows from convergence and Cesaro averaging. -/ lemma strong_law_aux3 : (λ n, 𝔼[∑ i in range n, truncation (X i) i] - n * 𝔼[X 0]) =o[at_top] (coe : ℕ → ℝ) := begin have A : tendsto (λ i, 𝔼[truncation (X i) i]) at_top (𝓝 (𝔼[X 0])), { convert (tendsto_integral_truncation hint).comp tendsto_coe_nat_at_top_at_top, ext i, exact (hident i).truncation.integral_eq }, convert asymptotics.is_o_sum_range_of_tendsto_zero (tendsto_sub_nhds_zero_iff.2 A), ext1 n, simp only [sum_sub_distrib, sum_const, card_range, nsmul_eq_mul, sum_apply, sub_left_inj], rw integral_finset_sum _ (λ i hi, _), exact ((hident i).symm.integrable_snd hint).1.integrable_truncation, end include hindep hnonneg /- The truncation of `Xᵢ` up to `i` satisfies the strong law of large numbers (with respect to the original expectation) along the sequence `c^n`, for any `c > 1`. This follows from the version from the truncated expectation, and the fact that the truncated and the original expectations have the same asymptotic behavior. -/ lemma strong_law_aux4 {c : ℝ} (c_one : 1 < c) : ∀ᵐ ω, (λ (n : ℕ), ∑ i in range ⌊c^n⌋₊, truncation (X i) i ω - ⌊c^n⌋₊ * 𝔼[X 0]) =o[at_top] (λ (n : ℕ), (⌊c^n⌋₊ : ℝ)) := begin filter_upwards [strong_law_aux2 X hint hindep hident hnonneg c_one] with ω hω, have A : tendsto (λ (n : ℕ), ⌊c ^ n⌋₊) at_top at_top := tendsto_nat_floor_at_top.comp (tendsto_pow_at_top_at_top_of_one_lt c_one), convert hω.add ((strong_law_aux3 X hint hident).comp_tendsto A), ext1 n, simp, end omit hindep /-- The truncated and non-truncated versions of `Xᵢ` have the same asymptotic behavior, as they almost surely coincide at all but finitely many steps. This follows from a probability computation and Borel-Cantelli. -/ lemma strong_law_aux5 : ∀ᵐ ω, (λ (n : ℕ), ∑ i in range n, truncation (X i) i ω - ∑ i in range n, X i ω) =o[at_top] (λ (n : ℕ), (n : ℝ)) := begin have A : ∑' (j : ℕ), ℙ {ω | X j ω ∈ set.Ioi (j : ℝ)} < ∞, { convert tsum_prob_mem_Ioi_lt_top hint (hnonneg 0), ext1 j, exact (hident j).measure_mem_eq measurable_set_Ioi }, have B : ∀ᵐ ω, tendsto (λ (n : ℕ), truncation (X n) n ω - X n ω) at_top (𝓝 0), { filter_upwards [ae_eventually_not_mem A.ne] with ω hω, apply tendsto_const_nhds.congr' _, filter_upwards [hω, Ioi_mem_at_top 0] with n hn npos, simp only [truncation, indicator, set.mem_Ioc, id.def, function.comp_app], split_ifs, { exact (sub_self _).symm }, { have : - (n : ℝ) < X n ω, { apply lt_of_lt_of_le _ (hnonneg n ω), simpa only [right.neg_neg_iff, nat.cast_pos] using npos }, simp only [this, true_and, not_le] at h, exact (hn h).elim } }, filter_upwards [B] with ω hω, convert is_o_sum_range_of_tendsto_zero hω, ext n, rw sum_sub_distrib, end include hindep /- `Xᵢ` satisfies the strong law of large numbers along the sequence `c^n`, for any `c > 1`. This follows from the version for the truncated `Xᵢ`, and the fact that `Xᵢ` and its truncated version have the same asymptotic behavior. -/ lemma strong_law_aux6 {c : ℝ} (c_one : 1 < c) : ∀ᵐ ω, tendsto (λ (n : ℕ), (∑ i in range ⌊c^n⌋₊, X i ω) / ⌊c^n⌋₊) at_top (𝓝 (𝔼[X 0])) := begin have H : ∀ (n : ℕ), (0 : ℝ) < ⌊c ^ n⌋₊, { assume n, refine zero_lt_one.trans_le _, simp only [nat.one_le_cast, nat.one_le_floor_iff, one_le_pow_of_one_le c_one.le n] }, filter_upwards [strong_law_aux4 X hint hindep hident hnonneg c_one, strong_law_aux5 X hint hident hnonneg] with ω hω h'ω, rw [← tendsto_sub_nhds_zero_iff, ← asymptotics.is_o_one_iff ℝ], have L : (λ n : ℕ, ∑ i in range ⌊c^n⌋₊, X i ω - ⌊c^n⌋₊ * 𝔼[X 0]) =o[at_top] (λ n, (⌊c^n⌋₊ : ℝ)), { have A : tendsto (λ (n : ℕ), ⌊c ^ n⌋₊) at_top at_top := tendsto_nat_floor_at_top.comp (tendsto_pow_at_top_at_top_of_one_lt c_one), convert hω.sub (h'ω.comp_tendsto A), ext1 n, simp only [sub_sub_sub_cancel_left] }, convert L.mul_is_O (is_O_refl (λ (n : ℕ), (⌊c ^ n⌋₊ : ℝ) ⁻¹) at_top); { ext1 n, field_simp [(H n).ne'] }, end /-- `Xᵢ` satisfies the strong law of large numbers along all integers. This follows from the corresponding fact along the sequences `c^n`, and the fact that any integer can be sandwiched between `c^n` and `c^(n+1)` with comparably small error if `c` is close enough to `1` (which is formalized in `tendsto_div_of_monotone_of_tendsto_div_floor_pow`). -/ lemma strong_law_aux7 : ∀ᵐ ω, tendsto (λ (n : ℕ), (∑ i in range n, X i ω) / n) at_top (𝓝 (𝔼[X 0])) := begin obtain ⟨c, -, cone, clim⟩ : ∃ (c : ℕ → ℝ), strict_anti c ∧ (∀ (n : ℕ), 1 < c n) ∧ tendsto c at_top (𝓝 1) := exists_seq_strict_anti_tendsto (1 : ℝ), have : ∀ k, ∀ᵐ ω, tendsto (λ (n : ℕ), (∑ i in range ⌊c k ^ n⌋₊, X i ω) / ⌊c k ^ n⌋₊) at_top (𝓝 (𝔼[X 0])) := λ k, strong_law_aux6 X hint hindep hident hnonneg (cone k), filter_upwards [ae_all_iff.2 this] with ω hω, apply tendsto_div_of_monotone_of_tendsto_div_floor_pow _ _ _ c cone clim _, { assume m n hmn, exact sum_le_sum_of_subset_of_nonneg (range_mono hmn) (λ i hi h'i, hnonneg i ω) }, { exact hω } end end strong_law_nonneg /-- *Strong law of large numbers*, almost sure version: if `X n` is a sequence of independent identically distributed integrable real-valued random variables, then `∑ i in range n, X i / n` converges almost surely to `𝔼[X 0]`. We give here the strong version, due to Etemadi, that only requires pairwise independence. -/ theorem strong_law_ae (X : ℕ → Ω → ℝ) (hint : integrable (X 0)) (hindep : pairwise (λ i j, indep_fun (X i) (X j))) (hident : ∀ i, ident_distrib (X i) (X 0)) : ∀ᵐ ω, tendsto (λ (n : ℕ), (∑ i in range n, X i ω) / n) at_top (𝓝 (𝔼[X 0])) := begin let pos : ℝ → ℝ := (λ x, max x 0), let neg : ℝ → ℝ := (λ x, max (-x) 0), have posm : measurable pos := measurable_id'.max measurable_const, have negm : measurable neg := measurable_id'.neg.max measurable_const, have A : ∀ᵐ ω, tendsto (λ (n : ℕ), (∑ i in range n, (pos ∘ (X i)) ω) / n) at_top (𝓝 (𝔼[pos ∘ (X 0)])) := strong_law_aux7 _ hint.pos_part (λ i j hij, (hindep i j hij).comp posm posm) (λ i, (hident i).comp posm) (λ i ω, le_max_right _ _), have B : ∀ᵐ ω, tendsto (λ (n : ℕ), (∑ i in range n, (neg ∘ (X i)) ω) / n) at_top (𝓝 (𝔼[neg ∘ (X 0)])) := strong_law_aux7 _ hint.neg_part (λ i j hij, (hindep i j hij).comp negm negm) (λ i, (hident i).comp negm) (λ i ω, le_max_right _ _), filter_upwards [A, B] with ω hωpos hωneg, convert hωpos.sub hωneg, { simp only [← sub_div, ← sum_sub_distrib, max_zero_sub_max_neg_zero_eq_self] }, { simp only [←integral_sub hint.pos_part hint.neg_part, max_zero_sub_max_neg_zero_eq_self] } end end strong_law_ae section strong_law_Lp variables {Ω : Type*} [measure_space Ω] [is_probability_measure (ℙ : measure Ω)] /-- *Strong law of large numbers*, Lᵖ version: if `X n` is a sequence of independent identically distributed real-valued random variables in Lᵖ, then `∑ i in range n, X i / n` converges in Lᵖ to `𝔼[X 0]`. -/ theorem strong_law_Lp {p : ℝ≥0∞} (hp : 1 ≤ p) (hp' : p ≠ ∞) (X : ℕ → Ω → ℝ) (hℒp : mem_ℒp (X 0) p) (hindep : pairwise (λ i j, indep_fun (X i) (X j))) (hident : ∀ i, ident_distrib (X i) (X 0)) : tendsto (λ n, snorm (λ ω, (∑ i in range n, X i ω) / n - 𝔼[X 0]) p ℙ) at_top (𝓝 0) := begin have hmeas : ∀ i, ae_strongly_measurable (X i) ℙ := λ i, (hident i).ae_strongly_measurable_iff.2 hℒp.1, have hint : integrable (X 0) ℙ := hℒp.integrable hp, have havg : ∀ n, ae_strongly_measurable (λ ω, (∑ i in range n, X i ω) / n) ℙ, { intro n, simp_rw div_eq_mul_inv, exact ae_strongly_measurable.mul_const (ae_strongly_measurable_sum _ (λ i _, hmeas i)) _ }, refine tendsto_Lp_of_tendsto_in_measure _ hp hp' havg (mem_ℒp_const _) _ (tendsto_in_measure_of_tendsto_ae havg (strong_law_ae _ hint hindep hident)), rw (_ : (λ n ω, (∑ i in range n, X i ω) / ↑n) = λ n, (∑ i in range n, X i) / ↑n), { exact (uniform_integrable_average hp $ mem_ℒp.uniform_integrable_of_ident_distrib hp hp' hℒp hident).2.1 }, { ext n ω, simp only [pi.coe_nat, pi.div_apply, sum_apply] } end end strong_law_Lp end probability_theory