/- Copyright (c) 2019 Sébastien Gouëzel. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Sébastien Gouëzel, Yury Kudryashov -/ import topology.uniform_space.basic import topology.separation /-! # `Gδ` sets In this file we define `Gδ` sets and prove their basic properties. ## Main definitions * `is_Gδ`: a set `s` is a `Gδ` set if it can be represented as an intersection of countably many open sets; * `residual`: the filter of residual sets. A set `s` is called *residual* if it includes a dense `Gδ` set. In a Baire space (e.g., in a complete (e)metric space), residual sets form a filter. For technical reasons, we define `residual` in any topological space but the definition agrees with the description above only in Baire spaces. ## Main results We prove that finite or countable intersections of Gδ sets is a Gδ set. We also prove that the continuity set of a function from a topological space to an (e)metric space is a Gδ set. ## Tags Gδ set, residual set -/ noncomputable theory open_locale classical topological_space filter uniformity open filter encodable set variables {α : Type*} {β : Type*} {γ : Type*} {ι : Type*} section is_Gδ variable [topological_space α] /-- A Gδ set is a countable intersection of open sets. -/ def is_Gδ (s : set α) : Prop := ∃T : set (set α), (∀t ∈ T, is_open t) ∧ T.countable ∧ s = (⋂₀ T) /-- An open set is a Gδ set. -/ lemma is_open.is_Gδ {s : set α} (h : is_open s) : is_Gδ s := ⟨{s}, by simp [h], countable_singleton _, (set.sInter_singleton _).symm⟩ @[simp] lemma is_Gδ_empty : is_Gδ (∅ : set α) := is_open_empty.is_Gδ @[simp] lemma is_Gδ_univ : is_Gδ (univ : set α) := is_open_univ.is_Gδ lemma is_Gδ_bInter_of_open {I : set ι} (hI : I.countable) {f : ι → set α} (hf : ∀i ∈ I, is_open (f i)) : is_Gδ (⋂i∈I, f i) := ⟨f '' I, by rwa ball_image_iff, hI.image _, by rw sInter_image⟩ lemma is_Gδ_Inter_of_open [encodable ι] {f : ι → set α} (hf : ∀i, is_open (f i)) : is_Gδ (⋂i, f i) := ⟨range f, by rwa forall_range_iff, countable_range _, by rw sInter_range⟩ /-- The intersection of an encodable family of Gδ sets is a Gδ set. -/ lemma is_Gδ_Inter [encodable ι] {s : ι → set α} (hs : ∀ i, is_Gδ (s i)) : is_Gδ (⋂ i, s i) := begin choose T hTo hTc hTs using hs, obtain rfl : s = λ i, ⋂₀ T i := funext hTs, refine ⟨⋃ i, T i, _, countable_Union hTc, (sInter_Union _).symm⟩, simpa [@forall_swap ι] using hTo end lemma is_Gδ_bInter {s : set ι} (hs : s.countable) {t : Π i ∈ s, set α} (ht : ∀ i ∈ s, is_Gδ (t i ‹_›)) : is_Gδ (⋂ i ∈ s, t i ‹_›) := begin rw [bInter_eq_Inter], haveI := hs.to_encodable, exact is_Gδ_Inter (λ x, ht x x.2) end /-- A countable intersection of Gδ sets is a Gδ set. -/ lemma is_Gδ_sInter {S : set (set α)} (h : ∀s∈S, is_Gδ s) (hS : S.countable) : is_Gδ (⋂₀ S) := by simpa only [sInter_eq_bInter] using is_Gδ_bInter hS h lemma is_Gδ.inter {s t : set α} (hs : is_Gδ s) (ht : is_Gδ t) : is_Gδ (s ∩ t) := by { rw inter_eq_Inter, exact is_Gδ_Inter (bool.forall_bool.2 ⟨ht, hs⟩) } /-- The union of two Gδ sets is a Gδ set. -/ lemma is_Gδ.union {s t : set α} (hs : is_Gδ s) (ht : is_Gδ t) : is_Gδ (s ∪ t) := begin rcases hs with ⟨S, Sopen, Scount, rfl⟩, rcases ht with ⟨T, Topen, Tcount, rfl⟩, rw [sInter_union_sInter], apply is_Gδ_bInter_of_open (Scount.prod Tcount), rintros ⟨a, b⟩ ⟨ha, hb⟩, exact (Sopen a ha).union (Topen b hb) end /-- The union of finitely many Gδ sets is a Gδ set. -/ lemma is_Gδ_bUnion {s : set ι} (hs : s.finite) {f : ι → set α} (h : ∀ i ∈ s, is_Gδ (f i)) : is_Gδ (⋃ i ∈ s, f i) := begin refine finite.induction_on hs (by simp) _ h, simp only [ball_insert_iff, bUnion_insert], exact λ a s _ _ ihs H, H.1.union (ihs H.2) end lemma is_closed.is_Gδ {α} [uniform_space α] [is_countably_generated (𝓤 α)] {s : set α} (hs : is_closed s) : is_Gδ s := begin rcases (@uniformity_has_basis_open α _).exists_antitone_subbasis with ⟨U, hUo, hU, -⟩, rw [← hs.closure_eq, ← hU.bInter_bUnion_ball], refine is_Gδ_bInter (to_countable _) (λ n hn, is_open.is_Gδ _), exact is_open_bUnion (λ x hx, uniform_space.is_open_ball _ (hUo _).2) end section t1_space variable [t1_space α] lemma is_Gδ_compl_singleton (a : α) : is_Gδ ({a}ᶜ : set α) := is_open_compl_singleton.is_Gδ lemma set.countable.is_Gδ_compl {s : set α} (hs : s.countable) : is_Gδ sᶜ := begin rw [← bUnion_of_singleton s, compl_Union₂], exact is_Gδ_bInter hs (λ x _, is_Gδ_compl_singleton x) end lemma set.finite.is_Gδ_compl {s : set α} (hs : s.finite) : is_Gδ sᶜ := hs.countable.is_Gδ_compl lemma set.subsingleton.is_Gδ_compl {s : set α} (hs : s.subsingleton) : is_Gδ sᶜ := hs.finite.is_Gδ_compl lemma finset.is_Gδ_compl (s : finset α) : is_Gδ (sᶜ : set α) := s.finite_to_set.is_Gδ_compl open topological_space variables [first_countable_topology α] lemma is_Gδ_singleton (a : α) : is_Gδ ({a} : set α) := begin rcases (nhds_basis_opens a).exists_antitone_subbasis with ⟨U, hU, h_basis⟩, rw [← bInter_basis_nhds h_basis.to_has_basis], exact is_Gδ_bInter (to_countable _) (λ n hn, (hU n).2.is_Gδ), end lemma set.finite.is_Gδ {s : set α} (hs : s.finite) : is_Gδ s := finite.induction_on hs is_Gδ_empty $ λ a s _ _ hs, (is_Gδ_singleton a).union hs end t1_space end is_Gδ section continuous_at open topological_space open_locale uniformity variables [topological_space α] /-- The set of points where a function is continuous is a Gδ set. -/ lemma is_Gδ_set_of_continuous_at [uniform_space β] [is_countably_generated (𝓤 β)] (f : α → β) : is_Gδ {x | continuous_at f x} := begin obtain ⟨U, hUo, hU⟩ := (@uniformity_has_basis_open_symmetric β _).exists_antitone_subbasis, simp only [uniform.continuous_at_iff_prod, nhds_prod_eq], simp only [(nhds_basis_opens _).prod_self.tendsto_iff hU.to_has_basis, forall_prop_of_true, set_of_forall, id], refine is_Gδ_Inter (λ k, is_open.is_Gδ $ is_open_iff_mem_nhds.2 $ λ x, _), rintros ⟨s, ⟨hsx, hso⟩, hsU⟩, filter_upwards [is_open.mem_nhds hso hsx] with _ hy using ⟨s, ⟨hy, hso⟩, hsU⟩, end end continuous_at /-- A set `s` is called *residual* if it includes a dense `Gδ` set. If `α` is a Baire space (e.g., a complete metric space), then residual sets form a filter, see `mem_residual`. For technical reasons we define the filter `residual` in any topological space but in a non-Baire space it is not useful because it may contain some non-residual sets. -/ def residual (α : Type*) [topological_space α] : filter α := ⨅ t (ht : is_Gδ t) (ht' : dense t), 𝓟 t