/- Copyright (c) 2021 Yourong Zang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yourong Zang, Yury Kudryashov -/ import topology.separation import topology.sets.opens /-! # The Alexandroff Compactification We construct the Alexandroff compactification (the one-point compactification) of an arbitrary topological space `X` and prove some properties inherited from `X`. ## Main definitions * `alexandroff`: the Alexandroff compactification, we use coercion for the canonical embedding `X → alexandroff X`; when `X` is already compact, the compactification adds an isolated point to the space. * `alexandroff.infty`: the extra point ## Main results * The topological structure of `alexandroff X` * The connectedness of `alexandroff X` for a noncompact, preconnected `X` * `alexandroff X` is `T₀` for a T₀ space `X` * `alexandroff X` is `T₁` for a T₁ space `X` * `alexandroff X` is normal if `X` is a locally compact Hausdorff space ## Tags one-point compactification, compactness -/ open set filter open_locale classical topological_space filter /-! ### Definition and basic properties In this section we define `alexandroff X` to be the disjoint union of `X` and `∞`, implemented as `option X`. Then we restate some lemmas about `option X` for `alexandroff X`. -/ variables {X : Type*} /-- The Alexandroff extension of an arbitrary topological space `X` -/ def alexandroff (X : Type*) := option X /-- The repr uses the notation from the `alexandroff` locale. -/ instance [has_repr X] : has_repr (alexandroff X) := ⟨λ o, match o with | none := "∞" | (some a) := "↑" ++ repr a end⟩ namespace alexandroff /-- The point at infinity -/ def infty : alexandroff X := none localized "notation `∞` := alexandroff.infty" in alexandroff instance : has_coe_t X (alexandroff X) := ⟨option.some⟩ instance : inhabited (alexandroff X) := ⟨∞⟩ instance [fintype X] : fintype (alexandroff X) := option.fintype instance infinite [infinite X] : infinite (alexandroff X) := option.infinite lemma coe_injective : function.injective (coe : X → alexandroff X) := option.some_injective X @[norm_cast] lemma coe_eq_coe {x y : X} : (x : alexandroff X) = y ↔ x = y := coe_injective.eq_iff @[simp] lemma coe_ne_infty (x : X) : (x : alexandroff X) ≠ ∞ . @[simp] lemma infty_ne_coe (x : X) : ∞ ≠ (x : alexandroff X) . /-- Recursor for `alexandroff` using the preferred forms `∞` and `↑x`. -/ @[elab_as_eliminator] protected def rec (C : alexandroff X → Sort*) (h₁ : C ∞) (h₂ : Π x : X, C x) : Π (z : alexandroff X), C z := option.rec h₁ h₂ lemma is_compl_range_coe_infty : is_compl (range (coe : X → alexandroff X)) {∞} := is_compl_range_some_none X @[simp] lemma range_coe_union_infty : (range (coe : X → alexandroff X) ∪ {∞}) = univ := range_some_union_none X @[simp] lemma range_coe_inter_infty : (range (coe : X → alexandroff X) ∩ {∞}) = ∅ := range_some_inter_none X @[simp] lemma compl_range_coe : (range (coe : X → alexandroff X))ᶜ = {∞} := compl_range_some X lemma compl_infty : ({∞}ᶜ : set (alexandroff X)) = range (coe : X → alexandroff X) := (@is_compl_range_coe_infty X).symm.compl_eq lemma compl_image_coe (s : set X) : (coe '' s : set (alexandroff X))ᶜ = coe '' sᶜ ∪ {∞} := by rw [coe_injective.compl_image_eq, compl_range_coe] lemma ne_infty_iff_exists {x : alexandroff X} : x ≠ ∞ ↔ ∃ (y : X), (y : alexandroff X) = x := by induction x using alexandroff.rec; simp instance : can_lift (alexandroff X) X := { coe := coe, cond := λ x, x ≠ ∞, prf := λ x, ne_infty_iff_exists.1 } lemma not_mem_range_coe_iff {x : alexandroff X} : x ∉ range (coe : X → alexandroff X) ↔ x = ∞ := by rw [← mem_compl_iff, compl_range_coe, mem_singleton_iff] lemma infty_not_mem_range_coe : ∞ ∉ range (coe : X → alexandroff X) := not_mem_range_coe_iff.2 rfl lemma infty_not_mem_image_coe {s : set X} : ∞ ∉ (coe : X → alexandroff X) '' s := not_mem_subset (image_subset_range _ _) infty_not_mem_range_coe @[simp] lemma coe_preimage_infty : (coe : X → alexandroff X) ⁻¹' {∞} = ∅ := by { ext, simp } /-! ### Topological space structure on `alexandroff X` We define a topological space structure on `alexandroff X` so that `s` is open if and only if * `coe ⁻¹' s` is open in `X`; * if `∞ ∈ s`, then `(coe ⁻¹' s)ᶜ` is compact. Then we reformulate this definition in a few different ways, and prove that `coe : X → alexandroff X` is an open embedding. If `X` is not a compact space, then we also prove that `coe` has dense range, so it is a dense embedding. -/ variables [topological_space X] instance : topological_space (alexandroff X) := { is_open := λ s, (∞ ∈ s → is_compact ((coe : X → alexandroff X) ⁻¹' s)ᶜ) ∧ is_open ((coe : X → alexandroff X) ⁻¹' s), is_open_univ := by simp, is_open_inter := λ s t, begin rintros ⟨hms, hs⟩ ⟨hmt, ht⟩, refine ⟨_, hs.inter ht⟩, rintros ⟨hms', hmt'⟩, simpa [compl_inter] using (hms hms').union (hmt hmt') end, is_open_sUnion := λ S ho, begin suffices : is_open (coe ⁻¹' ⋃₀ S : set X), { refine ⟨_, this⟩, rintro ⟨s, hsS : s ∈ S, hs : ∞ ∈ s⟩, refine compact_of_is_closed_subset ((ho s hsS).1 hs) this.is_closed_compl _, exact compl_subset_compl.mpr (preimage_mono $ subset_sUnion_of_mem hsS) }, rw [preimage_sUnion], exact is_open_bUnion (λ s hs, (ho s hs).2) end } variables {s : set (alexandroff X)} {t : set X} lemma is_open_def : is_open s ↔ (∞ ∈ s → is_compact (coe ⁻¹' s : set X)ᶜ) ∧ is_open (coe ⁻¹' s : set X) := iff.rfl lemma is_open_iff_of_mem' (h : ∞ ∈ s) : is_open s ↔ is_compact (coe ⁻¹' s : set X)ᶜ ∧ is_open (coe ⁻¹' s : set X) := by simp [is_open_def, h] lemma is_open_iff_of_mem (h : ∞ ∈ s) : is_open s ↔ is_closed (coe ⁻¹' s : set X)ᶜ ∧ is_compact (coe ⁻¹' s : set X)ᶜ := by simp only [is_open_iff_of_mem' h, is_closed_compl_iff, and.comm] lemma is_open_iff_of_not_mem (h : ∞ ∉ s) : is_open s ↔ is_open (coe ⁻¹' s : set X) := by simp [is_open_def, h] lemma is_closed_iff_of_mem (h : ∞ ∈ s) : is_closed s ↔ is_closed (coe ⁻¹' s : set X) := have ∞ ∉ sᶜ, from λ H, H h, by rw [← is_open_compl_iff, is_open_iff_of_not_mem this, ← is_open_compl_iff, preimage_compl] lemma is_closed_iff_of_not_mem (h : ∞ ∉ s) : is_closed s ↔ is_closed (coe ⁻¹' s : set X) ∧ is_compact (coe ⁻¹' s : set X) := by rw [← is_open_compl_iff, is_open_iff_of_mem (mem_compl h), ← preimage_compl, compl_compl] @[simp] lemma is_open_image_coe {s : set X} : is_open (coe '' s : set (alexandroff X)) ↔ is_open s := by rw [is_open_iff_of_not_mem infty_not_mem_image_coe, preimage_image_eq _ coe_injective] lemma is_open_compl_image_coe {s : set X} : is_open (coe '' s : set (alexandroff X))ᶜ ↔ is_closed s ∧ is_compact s := begin rw [is_open_iff_of_mem, ← preimage_compl, compl_compl, preimage_image_eq _ coe_injective], exact infty_not_mem_image_coe end @[simp] lemma is_closed_image_coe {s : set X} : is_closed (coe '' s : set (alexandroff X)) ↔ is_closed s ∧ is_compact s := by rw [← is_open_compl_iff, is_open_compl_image_coe] /-- An open set in `alexandroff X` constructed from a closed compact set in `X` -/ def opens_of_compl (s : set X) (h₁ : is_closed s) (h₂ : is_compact s) : topological_space.opens (alexandroff X) := ⟨(coe '' s)ᶜ, is_open_compl_image_coe.2 ⟨h₁, h₂⟩⟩ lemma infty_mem_opens_of_compl {s : set X} (h₁ : is_closed s) (h₂ : is_compact s) : ∞ ∈ opens_of_compl s h₁ h₂ := mem_compl infty_not_mem_image_coe @[continuity] lemma continuous_coe : continuous (coe : X → alexandroff X) := continuous_def.mpr (λ s hs, hs.right) lemma is_open_map_coe : is_open_map (coe : X → alexandroff X) := λ s, is_open_image_coe.2 lemma open_embedding_coe : open_embedding (coe : X → alexandroff X) := open_embedding_of_continuous_injective_open continuous_coe coe_injective is_open_map_coe lemma is_open_range_coe : is_open (range (coe : X → alexandroff X)) := open_embedding_coe.open_range lemma is_closed_infty : is_closed ({∞} : set (alexandroff X)) := by { rw [← compl_range_coe, is_closed_compl_iff], exact is_open_range_coe } lemma nhds_coe_eq (x : X) : 𝓝 ↑x = map (coe : X → alexandroff X) (𝓝 x) := (open_embedding_coe.map_nhds_eq x).symm lemma nhds_within_coe_image (s : set X) (x : X) : 𝓝[coe '' s] (x : alexandroff X) = map coe (𝓝[s] x) := (open_embedding_coe.to_embedding.map_nhds_within_eq _ _).symm lemma nhds_within_coe (s : set (alexandroff X)) (x : X) : 𝓝[s] ↑x = map coe (𝓝[coe ⁻¹' s] x) := (open_embedding_coe.map_nhds_within_preimage_eq _ _).symm lemma comap_coe_nhds (x : X) : comap (coe : X → alexandroff X) (𝓝 x) = 𝓝 x := (open_embedding_coe.to_inducing.nhds_eq_comap x).symm /-- If `x` is not an isolated point of `X`, then `x : alexandroff X` is not an isolated point of `alexandroff X`. -/ instance nhds_within_compl_coe_ne_bot (x : X) [h : ne_bot (𝓝[≠] x)] : ne_bot (𝓝[≠] (x : alexandroff X)) := by simpa [nhds_within_coe, preimage, coe_eq_coe] using h.map coe lemma nhds_within_compl_infty_eq : 𝓝[≠] (∞ : alexandroff X) = map coe (coclosed_compact X) := begin refine (nhds_within_basis_open ∞ _).ext (has_basis_coclosed_compact.map _) _ _, { rintro s ⟨hs, hso⟩, refine ⟨_, (is_open_iff_of_mem hs).mp hso, _⟩, simp }, { rintro s ⟨h₁, h₂⟩, refine ⟨_, ⟨mem_compl infty_not_mem_image_coe, is_open_compl_image_coe.2 ⟨h₁, h₂⟩⟩, _⟩, simp [compl_image_coe, ← diff_eq, subset_preimage_image] } end /-- If `X` is a non-compact space, then `∞` is not an isolated point of `alexandroff X`. -/ instance nhds_within_compl_infty_ne_bot [noncompact_space X] : ne_bot (𝓝[≠] (∞ : alexandroff X)) := by { rw nhds_within_compl_infty_eq, apply_instance } @[priority 900] instance nhds_within_compl_ne_bot [∀ x : X, ne_bot (𝓝[≠] x)] [noncompact_space X] (x : alexandroff X) : ne_bot (𝓝[≠] x) := alexandroff.rec _ alexandroff.nhds_within_compl_infty_ne_bot (λ y, alexandroff.nhds_within_compl_coe_ne_bot y) x lemma nhds_infty_eq : 𝓝 (∞ : alexandroff X) = map coe (coclosed_compact X) ⊔ pure ∞ := by rw [← nhds_within_compl_infty_eq, nhds_within_compl_singleton_sup_pure] lemma has_basis_nhds_infty : (𝓝 (∞ : alexandroff X)).has_basis (λ s : set X, is_closed s ∧ is_compact s) (λ s, coe '' sᶜ ∪ {∞}) := begin rw nhds_infty_eq, exact (has_basis_coclosed_compact.map _).sup_pure _ end @[simp] lemma comap_coe_nhds_infty : comap (coe : X → alexandroff X) (𝓝 ∞) = coclosed_compact X := by simp [nhds_infty_eq, comap_sup, comap_map coe_injective] lemma le_nhds_infty {f : filter (alexandroff X)} : f ≤ 𝓝 ∞ ↔ ∀ s : set X, is_closed s → is_compact s → coe '' sᶜ ∪ {∞} ∈ f := by simp only [has_basis_nhds_infty.ge_iff, and_imp] lemma ultrafilter_le_nhds_infty {f : ultrafilter (alexandroff X)} : (f : filter (alexandroff X)) ≤ 𝓝 ∞ ↔ ∀ s : set X, is_closed s → is_compact s → coe '' s ∉ f := by simp only [le_nhds_infty, ← compl_image_coe, ultrafilter.mem_coe, ultrafilter.compl_mem_iff_not_mem] lemma tendsto_nhds_infty' {α : Type*} {f : alexandroff X → α} {l : filter α} : tendsto f (𝓝 ∞) l ↔ tendsto f (pure ∞) l ∧ tendsto (f ∘ coe) (coclosed_compact X) l := by simp [nhds_infty_eq, and_comm] lemma tendsto_nhds_infty {α : Type*} {f : alexandroff X → α} {l : filter α} : tendsto f (𝓝 ∞) l ↔ ∀ s ∈ l, f ∞ ∈ s ∧ ∃ t : set X, is_closed t ∧ is_compact t ∧ maps_to (f ∘ coe) tᶜ s := tendsto_nhds_infty'.trans $ by simp only [tendsto_pure_left, has_basis_coclosed_compact.tendsto_left_iff, forall_and_distrib, and_assoc, exists_prop] lemma continuous_at_infty' {Y : Type*} [topological_space Y] {f : alexandroff X → Y} : continuous_at f ∞ ↔ tendsto (f ∘ coe) (coclosed_compact X) (𝓝 (f ∞)) := tendsto_nhds_infty'.trans $ and_iff_right (tendsto_pure_nhds _ _) lemma continuous_at_infty {Y : Type*} [topological_space Y] {f : alexandroff X → Y} : continuous_at f ∞ ↔ ∀ s ∈ 𝓝 (f ∞), ∃ t : set X, is_closed t ∧ is_compact t ∧ maps_to (f ∘ coe) tᶜ s := continuous_at_infty'.trans $ by simp only [has_basis_coclosed_compact.tendsto_left_iff, exists_prop, and_assoc] lemma continuous_at_coe {Y : Type*} [topological_space Y] {f : alexandroff X → Y} {x : X} : continuous_at f x ↔ continuous_at (f ∘ coe) x := by rw [continuous_at, nhds_coe_eq, tendsto_map'_iff, continuous_at] /-- If `X` is not a compact space, then the natural embedding `X → alexandroff X` has dense range. -/ lemma dense_range_coe [noncompact_space X] : dense_range (coe : X → alexandroff X) := begin rw [dense_range, ← compl_infty], exact dense_compl_singleton _ end lemma dense_embedding_coe [noncompact_space X] : dense_embedding (coe : X → alexandroff X) := { dense := dense_range_coe, .. open_embedding_coe } @[simp] lemma specializes_coe {x y : X} : (x : alexandroff X) ⤳ y ↔ x ⤳ y := open_embedding_coe.to_inducing.specializes_iff @[simp] lemma inseparable_coe {x y : X} : inseparable (x : alexandroff X) y ↔ inseparable x y := open_embedding_coe.to_inducing.inseparable_iff lemma not_specializes_infty_coe {x : X} : ¬specializes ∞ (x : alexandroff X) := is_closed_infty.not_specializes rfl (coe_ne_infty x) lemma not_inseparable_infty_coe {x : X} : ¬inseparable ∞ (x : alexandroff X) := λ h, not_specializes_infty_coe h.specializes lemma not_inseparable_coe_infty {x : X} : ¬inseparable (x : alexandroff X) ∞ := λ h, not_specializes_infty_coe h.specializes' lemma inseparable_iff {x y : alexandroff X} : inseparable x y ↔ x = ∞ ∧ y = ∞ ∨ ∃ x' : X, x = x' ∧ ∃ y' : X, y = y' ∧ inseparable x' y' := by induction x using alexandroff.rec; induction y using alexandroff.rec; simp [not_inseparable_infty_coe, not_inseparable_coe_infty, coe_eq_coe] /-! ### Compactness and separation properties In this section we prove that `alexandroff X` is a compact space; it is a T₀ (resp., T₁) space if the original space satisfies the same separation axiom. If the original space is a locally compact Hausdorff space, then `alexandroff X` is a normal (hence, T₃ and Hausdorff) space. Finally, if the original space `X` is *not* compact and is a preconnected space, then `alexandroff X` is a connected space. -/ /-- For any topological space `X`, its one point compactification is a compact space. -/ instance : compact_space (alexandroff X) := { compact_univ := begin have : tendsto (coe : X → alexandroff X) (cocompact X) (𝓝 ∞), { rw [nhds_infty_eq], exact (tendsto_map.mono_left cocompact_le_coclosed_compact).mono_right le_sup_left }, convert ← this.is_compact_insert_range_of_cocompact continuous_coe, exact insert_none_range_some X end } /-- The one point compactification of a `t0_space` space is a `t0_space`. -/ instance [t0_space X] : t0_space (alexandroff X) := begin refine ⟨λ x y hxy, _⟩, rcases inseparable_iff.1 hxy with ⟨rfl, rfl⟩|⟨x, rfl, y, rfl, h⟩, exacts [rfl, congr_arg coe h.eq] end /-- The one point compactification of a `t1_space` space is a `t1_space`. -/ instance [t1_space X] : t1_space (alexandroff X) := { t1 := λ z, begin induction z using alexandroff.rec, { exact is_closed_infty }, { rw [← image_singleton, is_closed_image_coe], exact ⟨is_closed_singleton, is_compact_singleton⟩ } end } /-- The one point compactification of a locally compact Hausdorff space is a normal (hence, Hausdorff and regular) topological space. -/ instance [locally_compact_space X] [t2_space X] : normal_space (alexandroff X) := begin have key : ∀ z : X, ∃ u v : set (alexandroff X), is_open u ∧ is_open v ∧ ↑z ∈ u ∧ ∞ ∈ v ∧ disjoint u v, { intro z, rcases exists_open_with_compact_closure z with ⟨u, hu, huy', Hu⟩, exact ⟨coe '' u, (coe '' closure u)ᶜ, is_open_image_coe.2 hu, is_open_compl_image_coe.2 ⟨is_closed_closure, Hu⟩, mem_image_of_mem _ huy', mem_compl infty_not_mem_image_coe, (image_subset _ subset_closure).disjoint_compl_right⟩ }, refine @normal_of_compact_t2 _ _ _ ⟨λ x y hxy, _⟩, induction x using alexandroff.rec; induction y using alexandroff.rec, { exact (hxy rfl).elim }, { rcases key y with ⟨u, v, hu, hv, hxu, hyv, huv⟩, exact ⟨v, u, hv, hu, hyv, hxu, huv.symm⟩ }, { exact key x }, { exact separated_by_open_embedding open_embedding_coe (mt coe_eq_coe.mpr hxy) } end /-- If `X` is not a compact space, then `alexandroff X` is a connected space. -/ instance [preconnected_space X] [noncompact_space X] : connected_space (alexandroff X) := { to_preconnected_space := dense_embedding_coe.to_dense_inducing.preconnected_space, to_nonempty := infer_instance } /-- If `X` is an infinite type with discrete topology (e.g., `ℕ`), then the identity map from `cofinite_topology (alexandroff X)` to `alexandroff X` is not continuous. -/ lemma not_continuous_cofinite_topology_of_symm [infinite X] [discrete_topology X] : ¬(continuous (@cofinite_topology.of (alexandroff X)).symm) := begin inhabit X, simp only [continuous_iff_continuous_at, continuous_at, not_forall], use [cofinite_topology.of ↑(default : X)], simpa [nhds_coe_eq, nhds_discrete, cofinite_topology.nhds_eq] using (finite_singleton ((default : X) : alexandroff X)).infinite_compl end end alexandroff /-- A concrete counterexample shows that `continuous.homeo_of_equiv_compact_to_t2` cannot be generalized from `t2_space` to `t1_space`. Let `α = alexandroff ℕ` be the one-point compactification of `ℕ`, and let `β` be the same space `alexandroff ℕ` with the cofinite topology. Then `α` is compact, `β` is T1, and the identity map `id : α → β` is a continuous equivalence that is not a homeomorphism. -/ lemma continuous.homeo_of_equiv_compact_to_t2.t1_counterexample : ∃ (α β : Type) (Iα : topological_space α) (Iβ : topological_space β), by exactI compact_space α ∧ t1_space β ∧ ∃ f : α ≃ β, continuous f ∧ ¬ continuous f.symm := ⟨alexandroff ℕ, cofinite_topology (alexandroff ℕ), infer_instance, infer_instance, infer_instance, infer_instance, cofinite_topology.of, cofinite_topology.continuous_of, alexandroff.not_continuous_cofinite_topology_of_symm⟩