/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import algebra.algebra.subalgebra.basic import topology.algebra.module.basic import topology.algebra.field /-! # Topological (sub)algebras A topological algebra over a topological semiring `R` is a topological semiring with a compatible continuous scalar multiplication by elements of `R`. We reuse typeclass `has_continuous_smul` for topological algebras. ## Results This is just a minimal stub for now! The topological closure of a subalgebra is still a subalgebra, which as an algebra is a topological algebra. -/ open classical set topological_space algebra open_locale classical universes u v w section topological_algebra variables (R : Type*) [topological_space R] [comm_semiring R] variables (A : Type u) [topological_space A] variables [semiring A] lemma continuous_algebra_map_iff_smul [algebra R A] [topological_semiring A] : continuous (algebra_map R A) ↔ continuous (λ p : R × A, p.1 • p.2) := begin refine ⟨λ h, _, λ h, _⟩, { simp only [algebra.smul_def], exact (h.comp continuous_fst).mul continuous_snd }, { rw algebra_map_eq_smul_one', exact h.comp (continuous_id.prod_mk continuous_const) } end @[continuity] lemma continuous_algebra_map [algebra R A] [topological_semiring A] [has_continuous_smul R A] : continuous (algebra_map R A) := (continuous_algebra_map_iff_smul R A).2 continuous_smul lemma has_continuous_smul_of_algebra_map [algebra R A] [topological_semiring A] (h : continuous (algebra_map R A)) : has_continuous_smul R A := ⟨(continuous_algebra_map_iff_smul R A).1 h⟩ end topological_algebra section topological_algebra variables {R : Type*} [comm_semiring R] variables {A : Type u} [topological_space A] variables [semiring A] [algebra R A] instance subalgebra.has_continuous_smul [topological_space R] [has_continuous_smul R A] (s : subalgebra R A) : has_continuous_smul R s := s.to_submodule.has_continuous_smul variables [topological_semiring A] /-- The closure of a subalgebra in a topological algebra as a subalgebra. -/ def subalgebra.topological_closure (s : subalgebra R A) : subalgebra R A := { carrier := closure (s : set A), algebra_map_mem' := λ r, s.to_subsemiring.subring_topological_closure (s.algebra_map_mem r), .. s.to_subsemiring.topological_closure } @[simp] lemma subalgebra.topological_closure_coe (s : subalgebra R A) : (s.topological_closure : set A) = closure (s : set A) := rfl instance subalgebra.topological_semiring (s : subalgebra R A) : topological_semiring s := s.to_subsemiring.topological_semiring lemma subalgebra.subalgebra_topological_closure (s : subalgebra R A) : s ≤ s.topological_closure := subset_closure lemma subalgebra.is_closed_topological_closure (s : subalgebra R A) : is_closed (s.topological_closure : set A) := by convert is_closed_closure lemma subalgebra.topological_closure_minimal (s : subalgebra R A) {t : subalgebra R A} (h : s ≤ t) (ht : is_closed (t : set A)) : s.topological_closure ≤ t := closure_minimal h ht /-- If a subalgebra of a topological algebra is commutative, then so is its topological closure. -/ def subalgebra.comm_semiring_topological_closure [t2_space A] (s : subalgebra R A) (hs : ∀ (x y : s), x * y = y * x) : comm_semiring s.topological_closure := { ..s.topological_closure.to_semiring, ..s.to_submonoid.comm_monoid_topological_closure hs } /-- This is really a statement about topological algebra isomorphisms, but we don't have those, so we use the clunky approach of talking about an algebra homomorphism, and a separate homeomorphism, along with a witness that as functions they are the same. -/ lemma subalgebra.topological_closure_comap_homeomorph (s : subalgebra R A) {B : Type*} [topological_space B] [ring B] [topological_ring B] [algebra R B] (f : B →ₐ[R] A) (f' : B ≃ₜ A) (w : (f : B → A) = f') : s.topological_closure.comap f = (s.comap f).topological_closure := begin apply set_like.ext', simp only [subalgebra.topological_closure_coe], simp only [subalgebra.coe_comap, subsemiring.coe_comap, alg_hom.coe_to_ring_hom], rw [w], exact f'.preimage_closure _, end end topological_algebra section ring variables {R : Type*} [comm_ring R] variables {A : Type u} [topological_space A] variables [ring A] variables [algebra R A] [topological_ring A] /-- If a subalgebra of a topological algebra is commutative, then so is its topological closure. See note [reducible non-instances]. -/ @[reducible] def subalgebra.comm_ring_topological_closure [t2_space A] (s : subalgebra R A) (hs : ∀ (x y : s), x * y = y * x) : comm_ring s.topological_closure := { ..s.topological_closure.to_ring, ..s.to_submonoid.comm_monoid_topological_closure hs } variables (R) /-- The topological closure of the subalgebra generated by a single element. -/ def algebra.elemental_algebra (x : A) : subalgebra R A := (algebra.adjoin R ({x} : set A)).topological_closure lemma algebra.self_mem_elemental_algebra (x : A) : x ∈ algebra.elemental_algebra R x := set_like.le_def.mp (subalgebra.subalgebra_topological_closure (algebra.adjoin R ({x} : set A))) $ algebra.self_mem_adjoin_singleton R x variables {R} instance [t2_space A] {x : A} : comm_ring (algebra.elemental_algebra R x) := subalgebra.comm_ring_topological_closure _ begin letI : comm_ring (algebra.adjoin R ({x} : set A)) := algebra.adjoin_comm_ring_of_comm R (λ y hy z hz, by {rw [mem_singleton_iff] at hy hz, rw [hy, hz]}), exact λ _ _, mul_comm _ _, end end ring section division_ring /-- The action induced by `algebra_rat` is continuous. -/ instance division_ring.has_continuous_const_smul_rat {A} [division_ring A] [topological_space A] [has_continuous_mul A] [char_zero A] : has_continuous_const_smul ℚ A := ⟨λ r, by { simpa only [algebra.smul_def] using continuous_const.mul continuous_id }⟩ end division_ring