/- Copyright (c) 2021 Nicolò Cavalleri. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Nicolò Cavalleri -/ import topology.homeomorph /-! # Topological space structure on the opposite monoid and on the units group In this file we define `topological_space` structure on `Mᵐᵒᵖ`, `Mᵃᵒᵖ`, `Mˣ`, and `add_units M`. This file does not import definitions of a topological monoid and/or a continuous multiplicative action, so we postpone the proofs of `has_continuous_mul Mᵐᵒᵖ` etc till we have these definitions. ## Tags topological space, opposite monoid, units -/ variables {M X : Type*} open filter open_locale topological_space namespace mul_opposite /-- Put the same topological space structure on the opposite monoid as on the original space. -/ @[to_additive] instance [topological_space M] : topological_space Mᵐᵒᵖ := topological_space.induced (unop : Mᵐᵒᵖ → M) ‹_› variables [topological_space M] @[continuity, to_additive] lemma continuous_unop : continuous (unop : Mᵐᵒᵖ → M) := continuous_induced_dom @[continuity, to_additive] lemma continuous_op : continuous (op : M → Mᵐᵒᵖ) := continuous_induced_rng.2 continuous_id @[to_additive] instance [t2_space M] : t2_space Mᵐᵒᵖ := ⟨λ x y h, separated_by_continuous mul_opposite.continuous_unop $ unop_injective.ne h⟩ /-- `mul_opposite.op` as a homeomorphism. -/ @[to_additive "`add_opposite.op` as a homeomorphism."] def op_homeomorph : M ≃ₜ Mᵐᵒᵖ := { to_equiv := op_equiv, continuous_to_fun := continuous_op, continuous_inv_fun := continuous_unop } @[simp, to_additive] lemma map_op_nhds (x : M) : map (op : M → Mᵐᵒᵖ) (𝓝 x) = 𝓝 (op x) := op_homeomorph.map_nhds_eq x @[simp, to_additive] lemma map_unop_nhds (x : Mᵐᵒᵖ) : map (unop : Mᵐᵒᵖ → M) (𝓝 x) = 𝓝 (unop x) := op_homeomorph.symm.map_nhds_eq x @[simp, to_additive] lemma comap_op_nhds (x : Mᵐᵒᵖ) : comap (op : M → Mᵐᵒᵖ) (𝓝 x) = 𝓝 (unop x) := op_homeomorph.comap_nhds_eq x @[simp, to_additive] lemma comap_unop_nhds (x : M) : comap (unop : Mᵐᵒᵖ → M) (𝓝 x) = 𝓝 (op x) := op_homeomorph.symm.comap_nhds_eq x end mul_opposite namespace units open mul_opposite variables [topological_space M] [monoid M] /-- The units of a monoid are equipped with a topology, via the embedding into `M × M`. -/ @[to_additive] instance : topological_space Mˣ := topological_space.induced (embed_product M) prod.topological_space @[to_additive] lemma inducing_embed_product : inducing (embed_product M) := ⟨rfl⟩ @[to_additive] lemma embedding_embed_product : embedding (embed_product M) := ⟨inducing_embed_product, embed_product_injective M⟩ @[to_additive] lemma continuous_embed_product : continuous (embed_product M) := continuous_induced_dom @[to_additive] lemma continuous_coe : continuous (coe : Mˣ → M) := (@continuous_embed_product M _ _).fst end units