/- Copyright (c) 2018 Robert Y. Lewis. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Robert Y. Lewis -/ import analysis.normed_space.basic import data.polynomial.algebra_map import data.polynomial.inductions /-! # Polynomials and limits In this file we prove the following lemmas. * `polynomial.continuous_eval₂: `polynomial.eval₂` defines a continuous function. * `polynomial.continuous_aeval: `polynomial.aeval` defines a continuous function; we also prove convenience lemmas `polynomial.continuous_at_aeval`, `polynomial.continuous_within_at_aeval`, `polynomial.continuous_on_aeval`. * `polynomial.continuous`: `polynomial.eval` defines a continuous functions; we also prove convenience lemmas `polynomial.continuous_at`, `polynomial.continuous_within_at`, `polynomial.continuous_on`. * `polynomial.tendsto_norm_at_top`: `λ x, ∥polynomial.eval (z x) p∥` tends to infinity provided that `λ x, ∥z x∥` tends to infinity and `0 < degree p`; * `polynomial.tendsto_abv_eval₂_at_top`, `polynomial.tendsto_abv_at_top`, `polynomial.tendsto_abv_aeval_at_top`: a few versions of the previous statement for `is_absolute_value abv` instead of norm. ## Tags polynomial, continuity -/ open is_absolute_value filter namespace polynomial open_locale polynomial section topological_semiring variables {R S : Type*} [semiring R] [topological_space R] [topological_semiring R] (p : R[X]) @[continuity] protected lemma continuous_eval₂ [semiring S] (p : S[X]) (f : S →+* R) : continuous (λ x, p.eval₂ f x) := begin dsimp only [eval₂_eq_sum, finsupp.sum], exact continuous_finset_sum _ (λ c hc, continuous_const.mul (continuous_pow _)) end @[continuity] protected lemma continuous : continuous (λ x, p.eval x) := p.continuous_eval₂ _ protected lemma continuous_at {a : R} : continuous_at (λ x, p.eval x) a := p.continuous.continuous_at protected lemma continuous_within_at {s a} : continuous_within_at (λ x, p.eval x) s a := p.continuous.continuous_within_at protected lemma continuous_on {s} : continuous_on (λ x, p.eval x) s := p.continuous.continuous_on end topological_semiring section topological_algebra variables {R A : Type*} [comm_semiring R] [semiring A] [algebra R A] [topological_space A] [topological_semiring A] (p : R[X]) @[continuity] protected lemma continuous_aeval : continuous (λ x : A, aeval x p) := p.continuous_eval₂ _ protected lemma continuous_at_aeval {a : A} : continuous_at (λ x : A, aeval x p) a := p.continuous_aeval.continuous_at protected lemma continuous_within_at_aeval {s a} : continuous_within_at (λ x : A, aeval x p) s a := p.continuous_aeval.continuous_within_at protected lemma continuous_on_aeval {s} : continuous_on (λ x : A, aeval x p) s := p.continuous_aeval.continuous_on end topological_algebra lemma tendsto_abv_eval₂_at_top {R S k α : Type*} [semiring R] [ring S] [linear_ordered_field k] (f : R →+* S) (abv : S → k) [is_absolute_value abv] (p : R[X]) (hd : 0 < degree p) (hf : f p.leading_coeff ≠ 0) {l : filter α} {z : α → S} (hz : tendsto (abv ∘ z) l at_top) : tendsto (λ x, abv (p.eval₂ f (z x))) l at_top := begin revert hf, refine degree_pos_induction_on p hd _ _ _; clear hd p, { rintros c - hc, rw [leading_coeff_mul_X, leading_coeff_C] at hc, simpa [abv_mul abv] using hz.const_mul_at_top ((abv_pos abv).2 hc) }, { intros p hpd ihp hf, rw [leading_coeff_mul_X] at hf, simpa [abv_mul abv] using (ihp hf).at_top_mul_at_top hz }, { intros p a hd ihp hf, rw [add_comm, leading_coeff_add_of_degree_lt (degree_C_le.trans_lt hd)] at hf, refine tendsto_at_top_of_add_const_right (abv (-f a)) _, refine tendsto_at_top_mono (λ _, abv_add abv _ _) _, simpa using ihp hf } end lemma tendsto_abv_at_top {R k α : Type*} [ring R] [linear_ordered_field k] (abv : R → k) [is_absolute_value abv] (p : R[X]) (h : 0 < degree p) {l : filter α} {z : α → R} (hz : tendsto (abv ∘ z) l at_top) : tendsto (λ x, abv (p.eval (z x))) l at_top := tendsto_abv_eval₂_at_top _ _ _ h (mt leading_coeff_eq_zero.1 $ ne_zero_of_degree_gt h) hz lemma tendsto_abv_aeval_at_top {R A k α : Type*} [comm_semiring R] [ring A] [algebra R A] [linear_ordered_field k] (abv : A → k) [is_absolute_value abv] (p : R[X]) (hd : 0 < degree p) (h₀ : algebra_map R A p.leading_coeff ≠ 0) {l : filter α} {z : α → A} (hz : tendsto (abv ∘ z) l at_top) : tendsto (λ x, abv (aeval (z x) p)) l at_top := tendsto_abv_eval₂_at_top _ abv p hd h₀ hz variables {α R : Type*} [normed_ring R] [is_absolute_value (norm : R → ℝ)] lemma tendsto_norm_at_top (p : R[X]) (h : 0 < degree p) {l : filter α} {z : α → R} (hz : tendsto (λ x, ∥z x∥) l at_top) : tendsto (λ x, ∥p.eval (z x)∥) l at_top := p.tendsto_abv_at_top norm h hz lemma exists_forall_norm_le [proper_space R] (p : R[X]) : ∃ x, ∀ y, ∥p.eval x∥ ≤ ∥p.eval y∥ := if hp0 : 0 < degree p then p.continuous.norm.exists_forall_le $ p.tendsto_norm_at_top hp0 tendsto_norm_cocompact_at_top else ⟨p.coeff 0, by rw [eq_C_of_degree_le_zero (le_of_not_gt hp0)]; simp⟩ end polynomial