/- Copyright (c) 2018 Patrick Massot. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Patrick Massot, Johannes Hölzl -/ import algebra.ring.prod import ring_theory.ideal.quotient import ring_theory.subring.basic import topology.algebra.group /-! # Topological (semi)rings A topological (semi)ring is a (semi)ring equipped with a topology such that all operations are continuous. Besides this definition, this file proves that the topological closure of a subring (resp. an ideal) is a subring (resp. an ideal) and defines products and quotients of topological (semi)rings. ## Main Results - `subring.topological_closure`/`subsemiring.topological_closure`: the topological closure of a `subring`/`subsemiring` is itself a `sub(semi)ring`. - `prod.topological_semiring`/`prod.topological_ring`: The product of two topological (semi)rings. - `pi.topological_semiring`/`pi.topological_ring`: The arbitrary product of topological (semi)rings. - `ideal.closure`: The closure of an ideal is an ideal. - `topological_ring_quotient`: The quotient of a topological semiring by an ideal is a topological ring. -/ open classical set filter topological_space function open_locale classical topological_space filter section topological_semiring variables (α : Type*) /-- a topological semiring is a semiring `R` where addition and multiplication are continuous. We allow for non-unital and non-associative semirings as well. The `topological_semiring` class should *only* be instantiated in the presence of a `non_unital_non_assoc_semiring` instance; if there is an instance of `non_unital_non_assoc_ring`, then `topological_ring` should be used. Note: in the presence of `non_assoc_ring`, these classes are mathematically equivalent (see `topological_semiring.has_continuous_neg_of_mul` or `topological_semiring.to_topological_ring`). -/ class topological_semiring [topological_space α] [non_unital_non_assoc_semiring α] extends has_continuous_add α, has_continuous_mul α : Prop /-- A topological ring is a ring `R` where addition, multiplication and negation are continuous. If `R` is a (unital) ring, then continuity of negation can be derived from continuity of multiplication as it is multiplication with `-1`. (See `topological_semiring.has_continuous_neg_of_mul` and `topological_semiring.to_topological_add_group`) -/ class topological_ring [topological_space α] [non_unital_non_assoc_ring α] extends topological_semiring α, has_continuous_neg α : Prop variables {α} /-- If `R` is a ring with a continuous multiplication, then negation is continuous as well since it is just multiplication with `-1`. -/ lemma topological_semiring.has_continuous_neg_of_mul [topological_space α] [non_assoc_ring α] [has_continuous_mul α] : has_continuous_neg α := { continuous_neg := by simpa using (continuous_const.mul continuous_id : continuous (λ x : α, (-1) * x)) } /-- If `R` is a ring which is a topological semiring, then it is automatically a topological ring. This exists so that one can place a topological ring structure on `R` without explicitly proving `continuous_neg`. -/ lemma topological_semiring.to_topological_ring [topological_space α] [non_assoc_ring α] (h : topological_semiring α) : topological_ring α := { ..h, ..(by { haveI := h.to_has_continuous_mul, exact topological_semiring.has_continuous_neg_of_mul } : has_continuous_neg α) } @[priority 100] -- See note [lower instance priority] instance topological_ring.to_topological_add_group [non_unital_non_assoc_ring α] [topological_space α] [topological_ring α] : topological_add_group α := { ..topological_ring.to_topological_semiring.to_has_continuous_add, ..topological_ring.to_has_continuous_neg } @[priority 50] instance discrete_topology.topological_semiring [topological_space α] [non_unital_non_assoc_semiring α] [discrete_topology α] : topological_semiring α := ⟨⟩ @[priority 50] instance discrete_topology.topological_ring [topological_space α] [non_unital_non_assoc_ring α] [discrete_topology α] : topological_ring α := ⟨⟩ section variables [topological_space α] [semiring α] [topological_semiring α] namespace subsemiring instance (S : subsemiring α) : topological_semiring S := { ..S.to_submonoid.has_continuous_mul, ..S.to_add_submonoid.has_continuous_add } end subsemiring /-- The (topological-space) closure of a subsemiring of a topological semiring is itself a subsemiring. -/ def subsemiring.topological_closure (s : subsemiring α) : subsemiring α := { carrier := closure (s : set α), ..(s.to_submonoid.topological_closure), ..(s.to_add_submonoid.topological_closure ) } @[simp] lemma subsemiring.topological_closure_coe (s : subsemiring α) : (s.topological_closure : set α) = closure (s : set α) := rfl lemma subsemiring.subring_topological_closure (s : subsemiring α) : s ≤ s.topological_closure := subset_closure lemma subsemiring.is_closed_topological_closure (s : subsemiring α) : is_closed (s.topological_closure : set α) := by convert is_closed_closure lemma subsemiring.topological_closure_minimal (s : subsemiring α) {t : subsemiring α} (h : s ≤ t) (ht : is_closed (t : set α)) : s.topological_closure ≤ t := closure_minimal h ht /-- If a subsemiring of a topological semiring is commutative, then so is its topological closure. -/ def subsemiring.comm_semiring_topological_closure [t2_space α] (s : subsemiring α) (hs : ∀ (x y : s), x * y = y * x) : comm_semiring s.topological_closure := { ..s.topological_closure.to_semiring, ..s.to_submonoid.comm_monoid_topological_closure hs } end section variables {β : Type*} [topological_space α] [topological_space β] /-- The product topology on the cartesian product of two topological semirings makes the product into a topological semiring. -/ instance [non_unital_non_assoc_semiring α] [non_unital_non_assoc_semiring β] [topological_semiring α] [topological_semiring β] : topological_semiring (α × β) := {} /-- The product topology on the cartesian product of two topological rings makes the product into a topological ring. -/ instance [non_unital_non_assoc_ring α] [non_unital_non_assoc_ring β] [topological_ring α] [topological_ring β] : topological_ring (α × β) := {} end instance {β : Type*} {C : β → Type*} [∀ b, topological_space (C b)] [Π b, non_unital_non_assoc_semiring (C b)] [Π b, topological_semiring (C b)] : topological_semiring (Π b, C b) := {} instance {β : Type*} {C : β → Type*} [∀ b, topological_space (C b)] [Π b, non_unital_non_assoc_ring (C b)] [Π b, topological_ring (C b)] : topological_ring (Π b, C b) := {} section mul_opposite open mul_opposite instance [non_unital_non_assoc_semiring α] [topological_space α] [has_continuous_add α] : has_continuous_add αᵐᵒᵖ := { continuous_add := continuous_induced_rng.2 $ (@continuous_add α _ _ _).comp (continuous_unop.prod_map continuous_unop) } instance [non_unital_non_assoc_semiring α] [topological_space α] [topological_semiring α] : topological_semiring αᵐᵒᵖ := {} instance [non_unital_non_assoc_ring α] [topological_space α] [has_continuous_neg α] : has_continuous_neg αᵐᵒᵖ := { continuous_neg := continuous_induced_rng.2 $ (@continuous_neg α _ _ _).comp continuous_unop } instance [non_unital_non_assoc_ring α] [topological_space α] [topological_ring α] : topological_ring αᵐᵒᵖ := {} end mul_opposite section add_opposite open add_opposite instance [non_unital_non_assoc_semiring α] [topological_space α] [has_continuous_mul α] : has_continuous_mul αᵃᵒᵖ := { continuous_mul := by convert (continuous_op.comp $ (@continuous_mul α _ _ _).comp $ continuous_unop.prod_map continuous_unop) } instance [non_unital_non_assoc_semiring α] [topological_space α] [topological_semiring α] : topological_semiring αᵃᵒᵖ := {} instance [non_unital_non_assoc_ring α] [topological_space α] [topological_ring α] : topological_ring αᵃᵒᵖ := {} end add_opposite section variables {R : Type*} [non_unital_non_assoc_ring R] [topological_space R] lemma topological_ring.of_add_group_of_nhds_zero [topological_add_group R] (hmul : tendsto (uncurry ((*) : R → R → R)) ((𝓝 0) ×ᶠ (𝓝 0)) $ 𝓝 0) (hmul_left : ∀ (x₀ : R), tendsto (λ x : R, x₀ * x) (𝓝 0) $ 𝓝 0) (hmul_right : ∀ (x₀ : R), tendsto (λ x : R, x * x₀) (𝓝 0) $ 𝓝 0) : topological_ring R := begin refine {..‹topological_add_group R›, ..}, have hleft : ∀ x₀ : R, 𝓝 x₀ = map (λ x, x₀ + x) (𝓝 0), by simp, have hadd : tendsto (uncurry ((+) : R → R → R)) ((𝓝 0) ×ᶠ (𝓝 0)) (𝓝 0), { rw ← nhds_prod_eq, convert continuous_add.tendsto ((0 : R), (0 : R)), rw zero_add }, rw continuous_iff_continuous_at, rintro ⟨x₀, y₀⟩, rw [continuous_at, nhds_prod_eq, hleft x₀, hleft y₀, hleft (x₀*y₀), filter.prod_map_map_eq, tendsto_map'_iff], suffices : tendsto ((λ (x : R), x + x₀ * y₀) ∘ (λ (p : R × R), p.1 + p.2) ∘ (λ (p : R × R), (p.1*y₀ + x₀*p.2, p.1*p.2))) ((𝓝 0) ×ᶠ (𝓝 0)) (map (λ (x : R), x + x₀ * y₀) $ 𝓝 0), { convert this using 1, { ext, simp only [comp_app, mul_add, add_mul], abel }, { simp only [add_comm] } }, refine tendsto_map.comp (hadd.comp (tendsto.prod_mk _ hmul)), exact hadd.comp (((hmul_right y₀).comp tendsto_fst).prod_mk ((hmul_left x₀).comp tendsto_snd)) end lemma topological_ring.of_nhds_zero (hadd : tendsto (uncurry ((+) : R → R → R)) ((𝓝 0) ×ᶠ (𝓝 0)) $ 𝓝 0) (hneg : tendsto (λ x, -x : R → R) (𝓝 0) (𝓝 0)) (hmul : tendsto (uncurry ((*) : R → R → R)) ((𝓝 0) ×ᶠ (𝓝 0)) $ 𝓝 0) (hmul_left : ∀ (x₀ : R), tendsto (λ x : R, x₀ * x) (𝓝 0) $ 𝓝 0) (hmul_right : ∀ (x₀ : R), tendsto (λ x : R, x * x₀) (𝓝 0) $ 𝓝 0) (hleft : ∀ x₀ : R, 𝓝 x₀ = map (λ x, x₀ + x) (𝓝 0)) : topological_ring R := begin haveI := topological_add_group.of_comm_of_nhds_zero hadd hneg hleft, exact topological_ring.of_add_group_of_nhds_zero hmul hmul_left hmul_right end end variables {α} [topological_space α] section variables [non_unital_non_assoc_ring α] [topological_ring α] /-- In a topological semiring, the left-multiplication `add_monoid_hom` is continuous. -/ lemma mul_left_continuous (x : α) : continuous (add_monoid_hom.mul_left x) := continuous_const.mul continuous_id /-- In a topological semiring, the right-multiplication `add_monoid_hom` is continuous. -/ lemma mul_right_continuous (x : α) : continuous (add_monoid_hom.mul_right x) := continuous_id.mul continuous_const end variables [ring α] [topological_ring α] namespace subring instance (S : subring α) : topological_ring S := topological_semiring.to_topological_ring S.to_subsemiring.topological_semiring end subring /-- The (topological-space) closure of a subring of a topological ring is itself a subring. -/ def subring.topological_closure (S : subring α) : subring α := { carrier := closure (S : set α), ..S.to_submonoid.topological_closure, ..S.to_add_subgroup.topological_closure } lemma subring.subring_topological_closure (s : subring α) : s ≤ s.topological_closure := subset_closure lemma subring.is_closed_topological_closure (s : subring α) : is_closed (s.topological_closure : set α) := by convert is_closed_closure lemma subring.topological_closure_minimal (s : subring α) {t : subring α} (h : s ≤ t) (ht : is_closed (t : set α)) : s.topological_closure ≤ t := closure_minimal h ht /-- If a subring of a topological ring is commutative, then so is its topological closure. -/ def subring.comm_ring_topological_closure [t2_space α] (s : subring α) (hs : ∀ (x y : s), x * y = y * x) : comm_ring s.topological_closure := { ..s.topological_closure.to_ring, ..s.to_submonoid.comm_monoid_topological_closure hs } end topological_semiring section topological_comm_ring variables {α : Type*} [topological_space α] [comm_ring α] [topological_ring α] /-- The closure of an ideal in a topological ring as an ideal. -/ def ideal.closure (S : ideal α) : ideal α := { carrier := closure S, smul_mem' := λ c x hx, map_mem_closure (mul_left_continuous _) hx $ λ a, S.mul_mem_left c, ..(add_submonoid.topological_closure S.to_add_submonoid) } @[simp] lemma ideal.coe_closure (S : ideal α) : (S.closure : set α) = closure S := rfl end topological_comm_ring section topological_ring variables {α : Type*} [topological_space α] [comm_ring α] (N : ideal α) open ideal.quotient instance topological_ring_quotient_topology : topological_space (α ⧸ N) := show topological_space (quotient _), by apply_instance -- note for the reader: in the following, `mk` is `ideal.quotient.mk`, the canonical map `R → R/I`. variable [topological_ring α] lemma quotient_ring.is_open_map_coe : is_open_map (mk N) := begin intros s s_op, change is_open (mk N ⁻¹' (mk N '' s)), rw quotient_ring_saturate, exact is_open_Union (λ ⟨n, _⟩, is_open_map_add_left n s s_op) end lemma quotient_ring.quotient_map_coe_coe : quotient_map (λ p : α × α, (mk N p.1, mk N p.2)) := is_open_map.to_quotient_map ((quotient_ring.is_open_map_coe N).prod (quotient_ring.is_open_map_coe N)) ((continuous_quot_mk.comp continuous_fst).prod_mk (continuous_quot_mk.comp continuous_snd)) (by rintro ⟨⟨x⟩, ⟨y⟩⟩; exact ⟨(x, y), rfl⟩) instance topological_ring_quotient : topological_ring (α ⧸ N) := topological_semiring.to_topological_ring { continuous_add := have cont : continuous (mk N ∘ (λ (p : α × α), p.fst + p.snd)) := continuous_quot_mk.comp continuous_add, (quotient_map.continuous_iff (quotient_ring.quotient_map_coe_coe N)).mpr cont, continuous_mul := have cont : continuous (mk N ∘ (λ (p : α × α), p.fst * p.snd)) := continuous_quot_mk.comp continuous_mul, (quotient_map.continuous_iff (quotient_ring.quotient_map_coe_coe N)).mpr cont } end topological_ring /-! ### Lattice of ring topologies We define a type class `ring_topology α` which endows a ring `α` with a topology such that all ring operations are continuous. Ring topologies on a fixed ring `α` are ordered, by reverse inclusion. They form a complete lattice, with `⊥` the discrete topology and `⊤` the indiscrete topology. Any function `f : α → β` induces `coinduced f : topological_space α → ring_topology β`. -/ universes u v /-- A ring topology on a ring `α` is a topology for which addition, negation and multiplication are continuous. -/ @[ext] structure ring_topology (α : Type u) [ring α] extends topological_space α, topological_ring α : Type u namespace ring_topology variables {α : Type*} [ring α] instance inhabited {α : Type u} [ring α] : inhabited (ring_topology α) := ⟨{to_topological_space := ⊤, continuous_add := continuous_top, continuous_mul := continuous_top, continuous_neg := continuous_top}⟩ @[ext] lemma ext' {f g : ring_topology α} (h : f.is_open = g.is_open) : f = g := by { ext, rw h } /-- The ordering on ring topologies on the ring `α`. `t ≤ s` if every set open in `s` is also open in `t` (`t` is finer than `s`). -/ instance : partial_order (ring_topology α) := partial_order.lift ring_topology.to_topological_space $ ext local notation `cont` := @continuous _ _ private def def_Inf (S : set (ring_topology α)) : ring_topology α := let Inf_S' := Inf (to_topological_space '' S) in { to_topological_space := Inf_S', continuous_add := begin apply continuous_Inf_rng.2, rintros _ ⟨⟨t, tr⟩, haS, rfl⟩, resetI, have h := continuous_Inf_dom (set.mem_image_of_mem to_topological_space haS) continuous_id, have h_continuous_id := @continuous.prod_map _ _ _ _ t t Inf_S' Inf_S' _ _ h h, exact @continuous.comp _ _ _ (id _) (id _) t _ _ continuous_add h_continuous_id, end, continuous_mul := begin apply continuous_Inf_rng.2, rintros _ ⟨⟨t, tr⟩, haS, rfl⟩, resetI, have h := continuous_Inf_dom (set.mem_image_of_mem to_topological_space haS) continuous_id, have h_continuous_id := @continuous.prod_map _ _ _ _ t t Inf_S' Inf_S' _ _ h h, exact @continuous.comp _ _ _ (id _) (id _) t _ _ continuous_mul h_continuous_id, end, continuous_neg := begin apply continuous_Inf_rng.2, rintros _ ⟨⟨t, tr⟩, haS, rfl⟩, resetI, have h := continuous_Inf_dom (set.mem_image_of_mem to_topological_space haS) continuous_id, exact @continuous.comp _ _ _ (id _) (id _) t _ _ continuous_neg h, end } /-- Ring topologies on `α` form a complete lattice, with `⊥` the discrete topology and `⊤` the indiscrete topology. The infimum of a collection of ring topologies is the topology generated by all their open sets (which is a ring topology). The supremum of two ring topologies `s` and `t` is the infimum of the family of all ring topologies contained in the intersection of `s` and `t`. -/ instance : complete_semilattice_Inf (ring_topology α) := { Inf := def_Inf, Inf_le := λ S a haS, by { apply topological_space.complete_lattice.Inf_le, use [a, ⟨ haS, rfl⟩] }, le_Inf := begin intros S a hab, apply topological_space.complete_lattice.le_Inf, rintros _ ⟨b, hbS, rfl⟩, exact hab b hbS, end, ..ring_topology.partial_order } instance : complete_lattice (ring_topology α) := complete_lattice_of_complete_semilattice_Inf _ /-- Given `f : α → β` and a topology on `α`, the coinduced ring topology on `β` is the finest topology such that `f` is continuous and `β` is a topological ring. -/ def coinduced {α β : Type*} [t : topological_space α] [ring β] (f : α → β) : ring_topology β := Inf {b : ring_topology β | (topological_space.coinduced f t) ≤ b.to_topological_space} lemma coinduced_continuous {α β : Type*} [t : topological_space α] [ring β] (f : α → β) : cont t (coinduced f).to_topological_space f := begin rw continuous_iff_coinduced_le, refine le_Inf _, rintros _ ⟨t', ht', rfl⟩, exact ht', end /-- The forgetful functor from ring topologies on `a` to additive group topologies on `a`. -/ def to_add_group_topology (t : ring_topology α) : add_group_topology α := { to_topological_space := t.to_topological_space, to_topological_add_group := @topological_ring.to_topological_add_group _ _ t.to_topological_space t.to_topological_ring } /-- The order embedding from ring topologies on `a` to additive group topologies on `a`. -/ def to_add_group_topology.order_embedding : order_embedding (ring_topology α) (add_group_topology α) := { to_fun := λ t, t.to_add_group_topology, inj' := begin intros t₁ t₂ h_eq, dsimp only at h_eq, ext, have h_t₁ : t₁.to_topological_space = t₁.to_add_group_topology.to_topological_space := rfl, rw [h_t₁, h_eq], refl, end, map_rel_iff' := begin intros t₁ t₂, rw [embedding.coe_fn_mk], have h_le : t₁ ≤ t₂ ↔ t₁.to_topological_space ≤ t₂.to_topological_space := by refl, rw h_le, refl, end } end ring_topology