/- Copyright (c) 2021 David Wärn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Wärn -/ import topology.separation /-! # Idempotents in topological semigroups This file provides a sufficient condition for a semigroup `M` to contain an idempotent (i.e. an element `m` such that `m * m = m `), namely that `M` is a nonempty compact Hausdorff space where right-multiplication by constants is continuous. We also state a corresponding lemma guaranteeing that a subset of `M` contains an idempotent. -/ /-- Any nonempty compact Hausdorff semigroup where right-multiplication is continuous contains an idempotent, i.e. an `m` such that `m * m = m`. -/ @[to_additive "Any nonempty compact Hausdorff additive semigroup where right-addition is continuous contains an idempotent, i.e. an `m` such that `m + m = m`"] lemma exists_idempotent_of_compact_t2_of_continuous_mul_left {M} [nonempty M] [semigroup M] [topological_space M] [compact_space M] [t2_space M] (continuous_mul_left : ∀ r : M, continuous (* r)) : ∃ m : M, m * m = m := begin /- We apply Zorn's lemma to the poset of nonempty closed subsemigroups of `M`. It will turn out that any minimal element is `{m}` for an idempotent `m : M`. -/ let S : set (set M) := {N | is_closed N ∧ N.nonempty ∧ ∀ m m' ∈ N, m * m' ∈ N}, suffices : ∃ N ∈ S, ∀ N' ∈ S, N' ⊆ N → N' = N, { rcases this with ⟨N, ⟨N_closed, ⟨m, hm⟩, N_mul⟩, N_minimal⟩, use m, /- We now have an element `m : M` of a minimal subsemigroup `N`, and want to show `m + m = m`. We first show that every element of `N` is of the form `m' + m`.-/ have scaling_eq_self : (* m) '' N = N, { apply N_minimal, { refine ⟨(continuous_mul_left m).is_closed_map _ N_closed, ⟨_, ⟨m, hm, rfl⟩⟩, _⟩, rintros _ ⟨m'', hm'', rfl⟩ _ ⟨m', hm', rfl⟩, refine ⟨m'' * m * m', N_mul _ (N_mul _ hm'' _ hm) _ hm', mul_assoc _ _ _⟩ }, { rintros _ ⟨m', hm', rfl⟩, exact N_mul _ hm' _ hm } }, /- In particular, this means that `m' * m = m` for some `m'`. We now use minimality again to show that this holds for all `m' ∈ N`. -/ have absorbing_eq_self : N ∩ {m' | m' * m = m} = N, { apply N_minimal, { refine ⟨N_closed.inter ((t1_space.t1 m).preimage (continuous_mul_left m)), _, _⟩, { rwa ←scaling_eq_self at hm }, { rintros m'' ⟨mem'', eq'' : _ = m⟩ m' ⟨mem', eq' : _ = m⟩, refine ⟨N_mul _ mem'' _ mem', _⟩, rw [set.mem_set_of_eq, mul_assoc, eq', eq''] } }, apply set.inter_subset_left }, /- Thus `m * m = m` as desired. -/ rw ←absorbing_eq_self at hm, exact hm.2 }, refine zorn_superset _ (λ c hcs hc, _), refine ⟨⋂₀ c, ⟨is_closed_sInter $ λ t ht, (hcs ht).1, _, λ m hm m' hm', _⟩, λ s hs, set.sInter_subset_of_mem hs⟩, { obtain rfl | hcnemp := c.eq_empty_or_nonempty, { rw set.sInter_empty, apply set.univ_nonempty }, convert @is_compact.nonempty_Inter_of_directed_nonempty_compact_closed _ _ _ (set.nonempty_coe_sort.mpr hcnemp) (coe : c → set M) _ _ _ _, { simp only [subtype.range_coe_subtype, set.set_of_mem_eq] } , { refine directed_on.directed_coe (is_chain.directed_on hc.symm) }, exacts [λ i, (hcs i.prop).2.1, λ i, (hcs i.prop).1.is_compact, λ i, (hcs i.prop).1] }, { rw set.mem_sInter, exact λ t ht, (hcs ht).2.2 m (set.mem_sInter.mp hm t ht) m' (set.mem_sInter.mp hm' t ht) }, end /-- A version of `exists_idempotent_of_compact_t2_of_continuous_mul_left` where the idempotent lies in some specified nonempty compact subsemigroup. -/ @[to_additive exists_idempotent_in_compact_add_subsemigroup "A version of `exists_idempotent_of_compact_t2_of_continuous_add_left` where the idempotent lies in some specified nonempty compact additive subsemigroup."] lemma exists_idempotent_in_compact_subsemigroup {M} [semigroup M] [topological_space M] [t2_space M] (continuous_mul_left : ∀ r : M, continuous (* r)) (s : set M) (snemp : s.nonempty) (s_compact : is_compact s) (s_add : ∀ x y ∈ s, x * y ∈ s) : ∃ m ∈ s, m * m = m := begin let M' := {m // m ∈ s}, letI : semigroup M' := { mul := λ p q, ⟨p.1 * q.1, s_add _ p.2 _ q.2⟩, mul_assoc := λ p q r, subtype.eq (mul_assoc _ _ _) }, haveI : compact_space M' := is_compact_iff_compact_space.mp s_compact, haveI : nonempty M' := nonempty_subtype.mpr snemp, have : ∀ p : M', continuous (* p) := λ p, continuous_subtype_mk _ ((continuous_mul_left p.1).comp continuous_subtype_val), obtain ⟨⟨m, hm⟩, idem⟩ := exists_idempotent_of_compact_t2_of_continuous_mul_left this, exact ⟨m, hm, subtype.ext_iff.mp idem⟩ end