/- Copyright (c) 2021 Patrick Massot. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Patrick Massot -/ import topology.algebra.nonarchimedean.bases import topology.algebra.uniform_filter_basis import ring_theory.valuation.basic /-! # The topology on a valued ring In this file, we define the non archimedean topology induced by a valuation on a ring. The main definition is a `valued` type class which equips a ring with a valuation taking values in a group with zero. Other instances are then deduced from this. -/ open_locale classical topological_space uniformity open set valuation noncomputable theory universes v u variables {R : Type u} [ring R] {Γ₀ : Type v} [linear_ordered_comm_group_with_zero Γ₀] namespace valuation variables (v : valuation R Γ₀) /-- The basis of open subgroups for the topology on a ring determined by a valuation. -/ lemma subgroups_basis : ring_subgroups_basis (λ γ : Γ₀ˣ, (v.lt_add_subgroup γ : add_subgroup R)) := { inter := begin rintros γ₀ γ₁, use min γ₀ γ₁, simp [valuation.lt_add_subgroup] ; tauto end, mul := begin rintros γ, cases exists_square_le γ with γ₀ h, use γ₀, rintro - ⟨r, s, r_in, s_in, rfl⟩, calc (v (r*s) : Γ₀) = v r * v s : valuation.map_mul _ _ _ ... < γ₀*γ₀ : mul_lt_mul₀ r_in s_in ... ≤ γ : by exact_mod_cast h end, left_mul := begin rintros x γ, rcases group_with_zero.eq_zero_or_unit (v x) with Hx | ⟨γx, Hx⟩, { use (1 : Γ₀ˣ), rintros y (y_in : (v y : Γ₀) < 1), change v (x * y) < _, rw [valuation.map_mul, Hx, zero_mul], exact units.zero_lt γ }, { simp only [image_subset_iff, set_of_subset_set_of, preimage_set_of_eq, valuation.map_mul], use γx⁻¹*γ, rintros y (vy_lt : v y < ↑(γx⁻¹ * γ)), change (v (x * y) : Γ₀) < γ, rw [valuation.map_mul, Hx, mul_comm], rw [units.coe_mul, mul_comm] at vy_lt, simpa using mul_inv_lt_of_lt_mul₀ vy_lt } end, right_mul := begin rintros x γ, rcases group_with_zero.eq_zero_or_unit (v x) with Hx | ⟨γx, Hx⟩, { use 1, rintros y (y_in : (v y : Γ₀) < 1), change v (y * x) < _, rw [valuation.map_mul, Hx, mul_zero], exact units.zero_lt γ }, { use γx⁻¹*γ, rintros y (vy_lt : v y < ↑(γx⁻¹ * γ)), change (v (y * x) : Γ₀) < γ, rw [valuation.map_mul, Hx], rw [units.coe_mul, mul_comm] at vy_lt, simpa using mul_inv_lt_of_lt_mul₀ vy_lt } end } end valuation /-- A valued ring is a ring that comes equipped with a distinguished valuation. The class `valued` is designed for the situation that there is a canonical valuation on the ring. TODO: show that there always exists an equivalent valuation taking values in a type belonging to the same universe as the ring. See Note [forgetful inheritance] for why we extend `uniform_space`, `uniform_add_group`. -/ class valued (R : Type u) [ring R] (Γ₀ : out_param (Type v)) [linear_ordered_comm_group_with_zero Γ₀] extends uniform_space R, uniform_add_group R := (v : valuation R Γ₀) (is_topological_valuation : ∀ s, s ∈ 𝓝 (0 : R) ↔ ∃ (γ : Γ₀ˣ), { x : R | v x < γ } ⊆ s) /-- The `dangerous_instance` linter does not check whether the metavariables only occur in arguments marked with `out_param`, so in this instance it gives a false positive. -/ attribute [nolint dangerous_instance] valued.to_uniform_space namespace valued /-- Alternative `valued` constructor for use when there is no preferred `uniform_space` structure. -/ def mk' (v : valuation R Γ₀) : valued R Γ₀ := { v := v, to_uniform_space := @topological_add_group.to_uniform_space R _ v.subgroups_basis.topology _, to_uniform_add_group := @topological_add_group_is_uniform _ _ v.subgroups_basis.topology _, is_topological_valuation := begin letI := @topological_add_group.to_uniform_space R _ v.subgroups_basis.topology _, intros s, rw filter.has_basis_iff.mp v.subgroups_basis.has_basis_nhds_zero s, exact exists_congr (λ γ, by simpa), end } variables (R Γ₀) [_i : valued R Γ₀] include _i lemma has_basis_nhds_zero : (𝓝 (0 : R)).has_basis (λ _, true) (λ (γ : Γ₀ˣ), { x | v x < (γ : Γ₀) }) := by simp [filter.has_basis_iff, is_topological_valuation] lemma has_basis_uniformity : (𝓤 R).has_basis (λ _, true) (λ (γ : Γ₀ˣ), { p : R × R | v (p.2 - p.1) < (γ : Γ₀) }) := begin rw uniformity_eq_comap_nhds_zero, exact (has_basis_nhds_zero R Γ₀).comap _, end lemma to_uniform_space_eq : to_uniform_space = @topological_add_group.to_uniform_space R _ v.subgroups_basis.topology _ := uniform_space_eq ((has_basis_uniformity R Γ₀).eq_of_same_basis $ v.subgroups_basis.has_basis_nhds_zero.comap _) variables {R Γ₀} lemma mem_nhds {s : set R} {x : R} : (s ∈ 𝓝 x) ↔ ∃ (γ : Γ₀ˣ), {y | (v (y - x) : Γ₀) < γ } ⊆ s := by simp only [← nhds_translation_add_neg x, ← sub_eq_add_neg, preimage_set_of_eq, exists_true_left, ((has_basis_nhds_zero R Γ₀).comap (λ y, y - x)).mem_iff] lemma mem_nhds_zero {s : set R} : (s ∈ 𝓝 (0 : R)) ↔ ∃ γ : Γ₀ˣ, {x | v x < (γ : Γ₀) } ⊆ s := by simp only [mem_nhds, sub_zero] lemma loc_const {x : R} (h : (v x : Γ₀) ≠ 0) : {y : R | v y = v x} ∈ 𝓝 x := begin rw mem_nhds, rcases units.exists_iff_ne_zero.mpr h with ⟨γ, hx⟩, use γ, rw hx, intros y y_in, exact valuation.map_eq_of_sub_lt _ y_in end @[priority 100] instance : topological_ring R := (to_uniform_space_eq R Γ₀).symm ▸ v.subgroups_basis.to_ring_filter_basis.is_topological_ring lemma cauchy_iff {F : filter R} : cauchy F ↔ F.ne_bot ∧ ∀ γ : Γ₀ˣ, ∃ M ∈ F, ∀ x y ∈ M, (v (y - x) : Γ₀) < γ := begin rw [to_uniform_space_eq, add_group_filter_basis.cauchy_iff], apply and_congr iff.rfl, simp_rw valued.v.subgroups_basis.mem_add_group_filter_basis_iff, split, { intros h γ, exact h _ (valued.v.subgroups_basis.mem_add_group_filter_basis _) }, { rintros h - ⟨γ, rfl⟩, exact h γ } end end valued