/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import topology.constructions import topology.continuous_on /-! # Bases of topologies. Countability axioms. A topological basis on a topological space `t` is a collection of sets, such that all open sets can be generated as unions of these sets, without the need to take finite intersections of them. This file introduces a framework for dealing with these collections, and also what more we can say under certain countability conditions on bases, which are referred to as first- and second-countable. We also briefly cover the theory of separable spaces, which are those with a countable, dense subset. If a space is second-countable, and also has a countably generated uniformity filter (for example, if `t` is a metric space), it will automatically be separable (and indeed, these conditions are equivalent in this case). ## Main definitions * `is_topological_basis s`: The topological space `t` has basis `s`. * `separable_space α`: The topological space `t` has a countable, dense subset. * `is_separable s`: The set `s` is contained in the closure of a countable set. * `first_countable_topology α`: A topology in which `𝓝 x` is countably generated for every `x`. * `second_countable_topology α`: A topology which has a topological basis which is countable. ## Main results * `first_countable_topology.tendsto_subseq`: In a first-countable space, cluster points are limits of subsequences. * `second_countable_topology.is_open_Union_countable`: In a second-countable space, the union of arbitrarily-many open sets is equal to a sub-union of only countably many of these sets. * `second_countable_topology.countable_cover_nhds`: Consider `f : α → set α` with the property that `f x ∈ 𝓝 x` for all `x`. Then there is some countable set `s` whose image covers the space. ## Implementation Notes For our applications we are interested that there exists a countable basis, but we do not need the concrete basis itself. This allows us to declare these type classes as `Prop` to use them as mixins. ### TODO: More fine grained instances for `first_countable_topology`, `separable_space`, `t2_space`, and more (see the comment below `subtype.second_countable_topology`.) -/ open set filter function open_locale topological_space filter noncomputable theory namespace topological_space universe u variables {α : Type u} [t : topological_space α] include t /-- A topological basis is one that satisfies the necessary conditions so that it suffices to take unions of the basis sets to get a topology (without taking finite intersections as well). -/ structure is_topological_basis (s : set (set α)) : Prop := (exists_subset_inter : ∀t₁∈s, ∀t₂∈s, ∀ x ∈ t₁ ∩ t₂, ∃ t₃∈s, x ∈ t₃ ∧ t₃ ⊆ t₁ ∩ t₂) (sUnion_eq : (⋃₀ s) = univ) (eq_generate_from : t = generate_from s) /-- If a family of sets `s` generates the topology, then nonempty intersections of finite subcollections of `s` form a topological basis. -/ lemma is_topological_basis_of_subbasis {s : set (set α)} (hs : t = generate_from s) : is_topological_basis ((λ f, ⋂₀ f) '' {f : set (set α) | f.finite ∧ f ⊆ s ∧ (⋂₀ f).nonempty}) := begin refine ⟨_, _, _⟩, { rintro _ ⟨t₁, ⟨hft₁, ht₁b, ht₁⟩, rfl⟩ _ ⟨t₂, ⟨hft₂, ht₂b, ht₂⟩, rfl⟩ x h, have : ⋂₀ (t₁ ∪ t₂) = ⋂₀ t₁ ∩ ⋂₀ t₂ := sInter_union t₁ t₂, exact ⟨_, ⟨t₁ ∪ t₂, ⟨hft₁.union hft₂, union_subset ht₁b ht₂b, this.symm ▸ ⟨x, h⟩⟩, this⟩, h, subset.rfl⟩ }, { rw [sUnion_image, Union₂_eq_univ_iff], intro x, have : x ∈ ⋂₀ ∅, { rw sInter_empty, exact mem_univ x }, exact ⟨∅, ⟨finite_empty, empty_subset _, x, this⟩, this⟩ }, { rw hs, apply le_antisymm; apply le_generate_from, { rintro _ ⟨t, ⟨hft, htb, ht⟩, rfl⟩, exact @is_open_sInter _ (generate_from s) _ hft (λ s hs, generate_open.basic _ $ htb hs) }, { intros t ht, rcases t.eq_empty_or_nonempty with rfl|hne, { apply @is_open_empty _ _ }, rw ← sInter_singleton t at hne ⊢, exact generate_open.basic _ ⟨{t}, ⟨finite_singleton t, singleton_subset_iff.2 ht, hne⟩, rfl⟩ } } end /-- If a family of open sets `s` is such that every open neighbourhood contains some member of `s`, then `s` is a topological basis. -/ lemma is_topological_basis_of_open_of_nhds {s : set (set α)} (h_open : ∀ u ∈ s, is_open u) (h_nhds : ∀(a:α) (u : set α), a ∈ u → is_open u → ∃v ∈ s, a ∈ v ∧ v ⊆ u) : is_topological_basis s := begin refine ⟨λ t₁ ht₁ t₂ ht₂ x hx, h_nhds _ _ hx (is_open.inter (h_open _ ht₁) (h_open _ ht₂)), _, _⟩, { refine sUnion_eq_univ_iff.2 (λ a, _), rcases h_nhds a univ trivial is_open_univ with ⟨u, h₁, h₂, -⟩, exact ⟨u, h₁, h₂⟩ }, { refine (le_generate_from h_open).antisymm (λ u hu, _), refine (@is_open_iff_nhds α (generate_from s) u).mpr (λ a ha, _), rcases h_nhds a u ha hu with ⟨v, hvs, hav, hvu⟩, rw nhds_generate_from, exact infi₂_le_of_le v ⟨hav, hvs⟩ (le_principal_iff.2 hvu) } end /-- A set `s` is in the neighbourhood of `a` iff there is some basis set `t`, which contains `a` and is itself contained in `s`. -/ lemma is_topological_basis.mem_nhds_iff {a : α} {s : set α} {b : set (set α)} (hb : is_topological_basis b) : s ∈ 𝓝 a ↔ ∃ t ∈ b, a ∈ t ∧ t ⊆ s := begin change s ∈ (𝓝 a).sets ↔ ∃ t ∈ b, a ∈ t ∧ t ⊆ s, rw [hb.eq_generate_from, nhds_generate_from, binfi_sets_eq], { simp [and_assoc, and.left_comm] }, { exact assume s ⟨hs₁, hs₂⟩ t ⟨ht₁, ht₂⟩, have a ∈ s ∩ t, from ⟨hs₁, ht₁⟩, let ⟨u, hu₁, hu₂, hu₃⟩ := hb.1 _ hs₂ _ ht₂ _ this in ⟨u, ⟨hu₂, hu₁⟩, le_principal_iff.2 (subset.trans hu₃ (inter_subset_left _ _)), le_principal_iff.2 (subset.trans hu₃ (inter_subset_right _ _))⟩ }, { rcases eq_univ_iff_forall.1 hb.sUnion_eq a with ⟨i, h1, h2⟩, exact ⟨i, h2, h1⟩ } end lemma is_topological_basis.is_open_iff {s : set α} {b : set (set α)} (hb : is_topological_basis b) : is_open s ↔ ∀ a ∈ s, ∃ t ∈ b, a ∈ t ∧ t ⊆ s := by simp [is_open_iff_mem_nhds, hb.mem_nhds_iff] lemma is_topological_basis.nhds_has_basis {b : set (set α)} (hb : is_topological_basis b) {a : α} : (𝓝 a).has_basis (λ t : set α, t ∈ b ∧ a ∈ t) (λ t, t) := ⟨λ s, hb.mem_nhds_iff.trans $ by simp only [exists_prop, and_assoc]⟩ protected lemma is_topological_basis.is_open {s : set α} {b : set (set α)} (hb : is_topological_basis b) (hs : s ∈ b) : is_open s := by { rw hb.eq_generate_from, exact generate_open.basic s hs } protected lemma is_topological_basis.mem_nhds {a : α} {s : set α} {b : set (set α)} (hb : is_topological_basis b) (hs : s ∈ b) (ha : a ∈ s) : s ∈ 𝓝 a := (hb.is_open hs).mem_nhds ha lemma is_topological_basis.exists_subset_of_mem_open {b : set (set α)} (hb : is_topological_basis b) {a:α} {u : set α} (au : a ∈ u) (ou : is_open u) : ∃v ∈ b, a ∈ v ∧ v ⊆ u := hb.mem_nhds_iff.1 $ is_open.mem_nhds ou au /-- Any open set is the union of the basis sets contained in it. -/ lemma is_topological_basis.open_eq_sUnion' {B : set (set α)} (hB : is_topological_basis B) {u : set α} (ou : is_open u) : u = ⋃₀ {s ∈ B | s ⊆ u} := ext $ λ a, ⟨λ ha, let ⟨b, hb, ab, bu⟩ := hB.exists_subset_of_mem_open ha ou in ⟨b, ⟨hb, bu⟩, ab⟩, λ ⟨b, ⟨hb, bu⟩, ab⟩, bu ab⟩ lemma is_topological_basis.open_eq_sUnion {B : set (set α)} (hB : is_topological_basis B) {u : set α} (ou : is_open u) : ∃ S ⊆ B, u = ⋃₀ S := ⟨{s ∈ B | s ⊆ u}, λ s h, h.1, hB.open_eq_sUnion' ou⟩ lemma is_topological_basis.open_eq_Union {B : set (set α)} (hB : is_topological_basis B) {u : set α} (ou : is_open u) : ∃ (β : Type u) (f : β → set α), u = (⋃ i, f i) ∧ ∀ i, f i ∈ B := ⟨↥{s ∈ B | s ⊆ u}, coe, by { rw ← sUnion_eq_Union, apply hB.open_eq_sUnion' ou }, λ s, and.left s.2⟩ /-- A point `a` is in the closure of `s` iff all basis sets containing `a` intersect `s`. -/ lemma is_topological_basis.mem_closure_iff {b : set (set α)} (hb : is_topological_basis b) {s : set α} {a : α} : a ∈ closure s ↔ ∀ o ∈ b, a ∈ o → (o ∩ s).nonempty := (mem_closure_iff_nhds_basis' hb.nhds_has_basis).trans $ by simp only [and_imp] /-- A set is dense iff it has non-trivial intersection with all basis sets. -/ lemma is_topological_basis.dense_iff {b : set (set α)} (hb : is_topological_basis b) {s : set α} : dense s ↔ ∀ o ∈ b, set.nonempty o → (o ∩ s).nonempty := begin simp only [dense, hb.mem_closure_iff], exact ⟨λ h o hb ⟨a, ha⟩, h a o hb ha, λ h a o hb ha, h o hb ⟨a, ha⟩⟩ end lemma is_topological_basis.is_open_map_iff {β} [topological_space β] {B : set (set α)} (hB : is_topological_basis B) {f : α → β} : is_open_map f ↔ ∀ s ∈ B, is_open (f '' s) := begin refine ⟨λ H o ho, H _ (hB.is_open ho), λ hf o ho, _⟩, rw [hB.open_eq_sUnion' ho, sUnion_eq_Union, image_Union], exact is_open_Union (λ s, hf s s.2.1) end lemma is_topological_basis.exists_nonempty_subset {B : set (set α)} (hb : is_topological_basis B) {u : set α} (hu : u.nonempty) (ou : is_open u) : ∃ v ∈ B, set.nonempty v ∧ v ⊆ u := begin cases hu with x hx, rw [hb.open_eq_sUnion' ou, mem_sUnion] at hx, rcases hx with ⟨v, hv, hxv⟩, exact ⟨v, hv.1, ⟨x, hxv⟩, hv.2⟩ end lemma is_topological_basis_opens : is_topological_basis { U : set α | is_open U } := is_topological_basis_of_open_of_nhds (by tauto) (by tauto) protected lemma is_topological_basis.prod {β} [topological_space β] {B₁ : set (set α)} {B₂ : set (set β)} (h₁ : is_topological_basis B₁) (h₂ : is_topological_basis B₂) : is_topological_basis (image2 (×ˢ) B₁ B₂) := begin refine is_topological_basis_of_open_of_nhds _ _, { rintro _ ⟨u₁, u₂, hu₁, hu₂, rfl⟩, exact (h₁.is_open hu₁).prod (h₂.is_open hu₂) }, { rintro ⟨a, b⟩ u hu uo, rcases (h₁.nhds_has_basis.prod_nhds h₂.nhds_has_basis).mem_iff.1 (is_open.mem_nhds uo hu) with ⟨⟨s, t⟩, ⟨⟨hs, ha⟩, ht, hb⟩, hu⟩, exact ⟨s ×ˢ t, mem_image2_of_mem hs ht, ⟨ha, hb⟩, hu⟩ } end protected lemma is_topological_basis.inducing {β} [topological_space β] {f : α → β} {T : set (set β)} (hf : inducing f) (h : is_topological_basis T) : is_topological_basis (image (preimage f) T) := begin refine is_topological_basis_of_open_of_nhds _ _, { rintros _ ⟨V, hV, rfl⟩, rwa hf.is_open_iff, refine ⟨V, h.is_open hV, rfl⟩ }, { intros a U ha hU, rw hf.is_open_iff at hU, obtain ⟨V, hV, rfl⟩ := hU, obtain ⟨S, hS, rfl⟩ := h.open_eq_sUnion hV, obtain ⟨W, hW, ha⟩ := ha, refine ⟨f ⁻¹' W, ⟨_, hS hW, rfl⟩, ha, set.preimage_mono $ set.subset_sUnion_of_mem hW⟩ } end lemma is_topological_basis_of_cover {ι} {U : ι → set α} (Uo : ∀ i, is_open (U i)) (Uc : (⋃ i, U i) = univ) {b : Π i, set (set (U i))} (hb : ∀ i, is_topological_basis (b i)) : is_topological_basis (⋃ i : ι, image (coe : U i → α) '' (b i)) := begin refine is_topological_basis_of_open_of_nhds (λ u hu, _) _, { simp only [mem_Union, mem_image] at hu, rcases hu with ⟨i, s, sb, rfl⟩, exact (Uo i).is_open_map_subtype_coe _ ((hb i).is_open sb) }, { intros a u ha uo, rcases Union_eq_univ_iff.1 Uc a with ⟨i, hi⟩, lift a to ↥(U i) using hi, rcases (hb i).exists_subset_of_mem_open (by exact ha) (uo.preimage continuous_subtype_coe) with ⟨v, hvb, hav, hvu⟩, exact ⟨coe '' v, mem_Union.2 ⟨i, mem_image_of_mem _ hvb⟩, mem_image_of_mem _ hav, image_subset_iff.2 hvu⟩ } end protected lemma is_topological_basis.continuous {β : Type*} [topological_space β] {B : set (set β)} (hB : is_topological_basis B) (f : α → β) (hf : ∀ s ∈ B, is_open (f ⁻¹' s)) : continuous f := begin rw hB.eq_generate_from, exact continuous_generated_from hf end variables (α) /-- A separable space is one with a countable dense subset, available through `topological_space.exists_countable_dense`. If `α` is also known to be nonempty, then `topological_space.dense_seq` provides a sequence `ℕ → α` with dense range, see `topological_space.dense_range_dense_seq`. If `α` is a uniform space with countably generated uniformity filter (e.g., an `emetric_space`), then this condition is equivalent to `topological_space.second_countable_topology α`. In this case the latter should be used as a typeclass argument in theorems because Lean can automatically deduce `separable_space` from `second_countable_topology` but it can't deduce `second_countable_topology` and `emetric_space`. -/ class separable_space : Prop := (exists_countable_dense : ∃s:set α, s.countable ∧ dense s) lemma exists_countable_dense [separable_space α] : ∃ s : set α, s.countable ∧ dense s := separable_space.exists_countable_dense /-- A nonempty separable space admits a sequence with dense range. Instead of running `cases` on the conclusion of this lemma, you might want to use `topological_space.dense_seq` and `topological_space.dense_range_dense_seq`. If `α` might be empty, then `exists_countable_dense` is the main way to use separability of `α`. -/ lemma exists_dense_seq [separable_space α] [nonempty α] : ∃ u : ℕ → α, dense_range u := begin obtain ⟨s : set α, hs, s_dense⟩ := exists_countable_dense α, cases set.countable_iff_exists_subset_range.mp hs with u hu, exact ⟨u, s_dense.mono hu⟩, end /-- A dense sequence in a non-empty separable topological space. If `α` might be empty, then `exists_countable_dense` is the main way to use separability of `α`. -/ def dense_seq [separable_space α] [nonempty α] : ℕ → α := classical.some (exists_dense_seq α) /-- The sequence `dense_seq α` has dense range. -/ @[simp] lemma dense_range_dense_seq [separable_space α] [nonempty α] : dense_range (dense_seq α) := classical.some_spec (exists_dense_seq α) variable {α} @[priority 100] instance encodable.to_separable_space [encodable α] : separable_space α := { exists_countable_dense := ⟨set.univ, set.countable_univ, dense_univ⟩ } lemma separable_space_of_dense_range {ι : Type*} [encodable ι] (u : ι → α) (hu : dense_range u) : separable_space α := ⟨⟨range u, countable_range u, hu⟩⟩ /-- In a separable space, a family of nonempty disjoint open sets is countable. -/ lemma _root_.set.pairwise_disjoint.countable_of_is_open [separable_space α] {ι : Type*} {s : ι → set α} {a : set ι} (h : a.pairwise_disjoint s) (ha : ∀ i ∈ a, is_open (s i)) (h'a : ∀ i ∈ a, (s i).nonempty) : a.countable := begin rcases exists_countable_dense α with ⟨u, ⟨u_encodable⟩, u_dense⟩, have : ∀ i : a, ∃ y, y ∈ s i ∩ u := λ i, dense_iff_inter_open.1 u_dense (s i) (ha i i.2) (h'a i i.2), choose f hfs hfu using this, lift f to a → u using hfu, have f_inj : injective f, { refine injective_iff_pairwise_ne.mpr ((h.subtype _ _).mono $ λ i j hij hfij, hij ⟨hfs i, _⟩), simp only [congr_arg coe hfij, hfs j] }, exact ⟨@encodable.of_inj _ _ u_encodable f f_inj⟩ end /-- In a separable space, a family of disjoint sets with nonempty interiors is countable. -/ lemma _root_.set.pairwise_disjoint.countable_of_nonempty_interior [separable_space α] {ι : Type*} {s : ι → set α} {a : set ι} (h : a.pairwise_disjoint s) (ha : ∀ i ∈ a, (interior (s i)).nonempty) : a.countable := (h.mono $ λ i, interior_subset).countable_of_is_open (λ i hi, is_open_interior) ha /-- A set `s` in a topological space is separable if it is contained in the closure of a countable set `c`. Beware that this definition does not require that `c` is contained in `s` (to express the latter, use `separable_space s` or `is_separable (univ : set s))`. In metric spaces, the two definitions are equivalent, see `topological_space.is_separable.separable_space`. -/ def is_separable (s : set α) := ∃ c : set α, c.countable ∧ s ⊆ closure c lemma is_separable.mono {s u : set α} (hs : is_separable s) (hu : u ⊆ s) : is_separable u := begin rcases hs with ⟨c, c_count, hs⟩, exact ⟨c, c_count, hu.trans hs⟩ end lemma is_separable.union {s u : set α} (hs : is_separable s) (hu : is_separable u) : is_separable (s ∪ u) := begin rcases hs with ⟨cs, cs_count, hcs⟩, rcases hu with ⟨cu, cu_count, hcu⟩, refine ⟨cs ∪ cu, cs_count.union cu_count, _⟩, exact union_subset (hcs.trans (closure_mono (subset_union_left _ _))) (hcu.trans (closure_mono (subset_union_right _ _))) end lemma is_separable.closure {s : set α} (hs : is_separable s) : is_separable (closure s) := begin rcases hs with ⟨c, c_count, hs⟩, exact ⟨c, c_count, by simpa using closure_mono hs⟩, end lemma is_separable_Union {ι : Type*} [encodable ι] {s : ι → set α} (hs : ∀ i, is_separable (s i)) : is_separable (⋃ i, s i) := begin choose c hc h'c using hs, refine ⟨⋃ i, c i, countable_Union hc, Union_subset_iff.2 (λ i, _)⟩, exact (h'c i).trans (closure_mono (subset_Union _ i)) end lemma _root_.set.countable.is_separable {s : set α} (hs : s.countable) : is_separable s := ⟨s, hs, subset_closure⟩ lemma _root_.set.finite.is_separable {s : set α} (hs : s.finite) : is_separable s := hs.countable.is_separable lemma is_separable_univ_iff : is_separable (univ : set α) ↔ separable_space α := begin split, { rintros ⟨c, c_count, hc⟩, refine ⟨⟨c, c_count, by rwa [dense_iff_closure_eq, ← univ_subset_iff]⟩⟩ }, { introsI h, rcases exists_countable_dense α with ⟨c, c_count, hc⟩, exact ⟨c, c_count, by rwa [univ_subset_iff, ← dense_iff_closure_eq]⟩ } end lemma is_separable_of_separable_space [h : separable_space α] (s : set α) : is_separable s := is_separable.mono (is_separable_univ_iff.2 h) (subset_univ _) lemma is_separable.image {β : Type*} [topological_space β] {s : set α} (hs : is_separable s) {f : α → β} (hf : continuous f) : is_separable (f '' s) := begin rcases hs with ⟨c, c_count, hc⟩, refine ⟨f '' c, c_count.image _, _⟩, rw image_subset_iff, exact hc.trans (closure_subset_preimage_closure_image hf) end lemma is_separable_of_separable_space_subtype (s : set α) [separable_space s] : is_separable s := begin have : is_separable ((coe : s → α) '' (univ : set s)) := (is_separable_of_separable_space _).image continuous_subtype_coe, simpa only [image_univ, subtype.range_coe_subtype], end end topological_space open topological_space lemma is_topological_basis_pi {ι : Type*} {X : ι → Type*} [∀ i, topological_space (X i)] {T : Π i, set (set (X i))} (cond : ∀ i, is_topological_basis (T i)) : is_topological_basis {S : set (Π i, X i) | ∃ (U : Π i, set (X i)) (F : finset ι), (∀ i, i ∈ F → (U i) ∈ T i) ∧ S = (F : set ι).pi U } := begin refine is_topological_basis_of_open_of_nhds _ _, { rintro _ ⟨U, F, h1, rfl⟩, apply is_open_set_pi F.finite_to_set, intros i hi, exact (cond i).is_open (h1 i hi) }, { intros a U ha hU, obtain ⟨I, t, hta, htU⟩ : ∃ (I : finset ι) (t : Π (i : ι), set (X i)), (∀ i, t i ∈ 𝓝 (a i)) ∧ set.pi ↑I t ⊆ U, { rw [← filter.mem_pi', ← nhds_pi], exact hU.mem_nhds ha }, have : ∀ i, ∃ V ∈ T i, a i ∈ V ∧ V ⊆ t i := λ i, (cond i).mem_nhds_iff.1 (hta i), choose V hVT haV hVt, exact ⟨_, ⟨V, I, λ i hi, hVT i, rfl⟩, λ i hi, haV i, (pi_mono $ λ i hi, hVt i).trans htU⟩ }, end lemma is_topological_basis_infi {β : Type*} {ι : Type*} {X : ι → Type*} [t : ∀ i, topological_space (X i)] {T : Π i, set (set (X i))} (cond : ∀ i, is_topological_basis (T i)) (f : Π i, β → X i) : @is_topological_basis β (⨅ i, induced (f i) (t i)) { S | ∃ (U : Π i, set (X i)) (F : finset ι), (∀ i, i ∈ F → U i ∈ T i) ∧ S = ⋂ i (hi : i ∈ F), (f i) ⁻¹' (U i) } := begin convert (is_topological_basis_pi cond).inducing (inducing_infi_to_pi _), ext V, split, { rintros ⟨U, F, h1, h2⟩, have : (F : set ι).pi U = (⋂ (i : ι) (hi : i ∈ F), (λ (z : Π j, X j), z i) ⁻¹' (U i)), by { ext, simp }, refine ⟨(F : set ι).pi U, ⟨U, F, h1, rfl⟩, _⟩, rw [this, h2, set.preimage_Inter], congr' 1, ext1, rw set.preimage_Inter, refl }, { rintros ⟨U, ⟨U, F, h1, rfl⟩, h⟩, refine ⟨U, F, h1, _⟩, have : (F : set ι).pi U = (⋂ (i : ι) (hi : i ∈ F), (λ (z : Π j, X j), z i) ⁻¹' (U i)), by { ext, simp }, rw [← h, this, set.preimage_Inter], congr' 1, ext1, rw set.preimage_Inter, refl } end lemma is_topological_basis_singletons (α : Type*) [topological_space α] [discrete_topology α] : is_topological_basis {s | ∃ (x : α), (s : set α) = {x}} := is_topological_basis_of_open_of_nhds (λ u hu, is_open_discrete _) $ λ x u hx u_open, ⟨{x}, ⟨x, rfl⟩, mem_singleton x, singleton_subset_iff.2 hx⟩ /-- If `α` is a separable space and `f : α → β` is a continuous map with dense range, then `β` is a separable space as well. E.g., the completion of a separable uniform space is separable. -/ protected lemma dense_range.separable_space {α β : Type*} [topological_space α] [separable_space α] [topological_space β] {f : α → β} (h : dense_range f) (h' : continuous f) : separable_space β := let ⟨s, s_cnt, s_dense⟩ := exists_countable_dense α in ⟨⟨f '' s, countable.image s_cnt f, h.dense_image h' s_dense⟩⟩ lemma dense.exists_countable_dense_subset {α : Type*} [topological_space α] {s : set α} [separable_space s] (hs : dense s) : ∃ t ⊆ s, t.countable ∧ dense t := let ⟨t, htc, htd⟩ := exists_countable_dense s in ⟨coe '' t, image_subset_iff.2 $ λ x _, mem_preimage.2 $ subtype.coe_prop _, htc.image coe, hs.dense_range_coe.dense_image continuous_subtype_val htd⟩ /-- Let `s` be a dense set in a topological space `α` with partial order structure. If `s` is a separable space (e.g., if `α` has a second countable topology), then there exists a countable dense subset `t ⊆ s` such that `t` contains bottom/top element of `α` when they exist and belong to `s`. For a dense subset containing neither bot nor top elements, see `dense.exists_countable_dense_subset_no_bot_top`. -/ lemma dense.exists_countable_dense_subset_bot_top {α : Type*} [topological_space α] [partial_order α] {s : set α} [separable_space s] (hs : dense s) : ∃ t ⊆ s, t.countable ∧ dense t ∧ (∀ x, is_bot x → x ∈ s → x ∈ t) ∧ (∀ x, is_top x → x ∈ s → x ∈ t) := begin rcases hs.exists_countable_dense_subset with ⟨t, hts, htc, htd⟩, refine ⟨(t ∪ ({x | is_bot x} ∪ {x | is_top x})) ∩ s, _, _, _, _, _⟩, exacts [inter_subset_right _ _, (htc.union ((countable_is_bot α).union (countable_is_top α))).mono (inter_subset_left _ _), htd.mono (subset_inter (subset_union_left _ _) hts), λ x hx hxs, ⟨or.inr $ or.inl hx, hxs⟩, λ x hx hxs, ⟨or.inr $ or.inr hx, hxs⟩] end instance separable_space_univ {α : Type*} [topological_space α] [separable_space α] : separable_space (univ : set α) := (equiv.set.univ α).symm.surjective.dense_range.separable_space (continuous_subtype_mk _ continuous_id) /-- If `α` is a separable topological space with a partial order, then there exists a countable dense set `s : set α` that contains those of both bottom and top elements of `α` that actually exist. For a dense set containing neither bot nor top elements, see `exists_countable_dense_no_bot_top`. -/ lemma exists_countable_dense_bot_top (α : Type*) [topological_space α] [separable_space α] [partial_order α] : ∃ s : set α, s.countable ∧ dense s ∧ (∀ x, is_bot x → x ∈ s) ∧ (∀ x, is_top x → x ∈ s) := by simpa using dense_univ.exists_countable_dense_subset_bot_top namespace topological_space universe u variables (α : Type u) [t : topological_space α] include t /-- A first-countable space is one in which every point has a countable neighborhood basis. -/ class first_countable_topology : Prop := (nhds_generated_countable : ∀a:α, (𝓝 a).is_countably_generated) attribute [instance] first_countable_topology.nhds_generated_countable namespace first_countable_topology variable {α} /-- In a first-countable space, a cluster point `x` of a sequence is the limit of some subsequence. -/ lemma tendsto_subseq [first_countable_topology α] {u : ℕ → α} {x : α} (hx : map_cluster_pt x at_top u) : ∃ (ψ : ℕ → ℕ), (strict_mono ψ) ∧ (tendsto (u ∘ ψ) at_top (𝓝 x)) := subseq_tendsto_of_ne_bot hx end first_countable_topology variables {α} instance {β} [topological_space β] [first_countable_topology α] [first_countable_topology β] : first_countable_topology (α × β) := ⟨λ ⟨x, y⟩, by { rw nhds_prod_eq, apply_instance }⟩ section pi omit t instance {ι : Type*} {π : ι → Type*} [countable ι] [Π i, topological_space (π i)] [∀ i, first_countable_topology (π i)] : first_countable_topology (Π i, π i) := ⟨λ f, by { rw nhds_pi, apply_instance }⟩ end pi instance is_countably_generated_nhds_within (x : α) [is_countably_generated (𝓝 x)] (s : set α) : is_countably_generated (𝓝[s] x) := inf.is_countably_generated _ _ variable (α) /-- A second-countable space is one with a countable basis. -/ class second_countable_topology : Prop := (is_open_generated_countable [] : ∃ b : set (set α), b.countable ∧ t = topological_space.generate_from b) variable {α} protected lemma is_topological_basis.second_countable_topology {b : set (set α)} (hb : is_topological_basis b) (hc : b.countable) : second_countable_topology α := ⟨⟨b, hc, hb.eq_generate_from⟩⟩ variable (α) lemma exists_countable_basis [second_countable_topology α] : ∃b:set (set α), b.countable ∧ ∅ ∉ b ∧ is_topological_basis b := let ⟨b, hb₁, hb₂⟩ := second_countable_topology.is_open_generated_countable α in let b' := (λs, ⋂₀ s) '' {s:set (set α) | s.finite ∧ s ⊆ b ∧ (⋂₀ s).nonempty} in ⟨b', ((countable_set_of_finite_subset hb₁).mono (by { simp only [← and_assoc], apply inter_subset_left })).image _, assume ⟨s, ⟨_, _, hn⟩, hp⟩, absurd hn (not_nonempty_iff_eq_empty.2 hp), is_topological_basis_of_subbasis hb₂⟩ /-- A countable topological basis of `α`. -/ def countable_basis [second_countable_topology α] : set (set α) := (exists_countable_basis α).some lemma countable_countable_basis [second_countable_topology α] : (countable_basis α).countable := (exists_countable_basis α).some_spec.1 instance encodable_countable_basis [second_countable_topology α] : encodable (countable_basis α) := (countable_countable_basis α).to_encodable lemma empty_nmem_countable_basis [second_countable_topology α] : ∅ ∉ countable_basis α := (exists_countable_basis α).some_spec.2.1 lemma is_basis_countable_basis [second_countable_topology α] : is_topological_basis (countable_basis α) := (exists_countable_basis α).some_spec.2.2 lemma eq_generate_from_countable_basis [second_countable_topology α] : ‹topological_space α› = generate_from (countable_basis α) := (is_basis_countable_basis α).eq_generate_from variable {α} lemma is_open_of_mem_countable_basis [second_countable_topology α] {s : set α} (hs : s ∈ countable_basis α) : is_open s := (is_basis_countable_basis α).is_open hs lemma nonempty_of_mem_countable_basis [second_countable_topology α] {s : set α} (hs : s ∈ countable_basis α) : s.nonempty := ne_empty_iff_nonempty.1 $ ne_of_mem_of_not_mem hs $ empty_nmem_countable_basis α variable (α) @[priority 100] -- see Note [lower instance priority] instance second_countable_topology.to_first_countable_topology [second_countable_topology α] : first_countable_topology α := ⟨λ x, has_countable_basis.is_countably_generated $ ⟨(is_basis_countable_basis α).nhds_has_basis, (countable_countable_basis α).mono $ inter_subset_left _ _⟩⟩ /-- If `β` is a second-countable space, then its induced topology via `f` on `α` is also second-countable. -/ lemma second_countable_topology_induced (β) [t : topological_space β] [second_countable_topology β] (f : α → β) : @second_countable_topology α (t.induced f) := begin rcases second_countable_topology.is_open_generated_countable β with ⟨b, hb, eq⟩, refine { is_open_generated_countable := ⟨preimage f '' b, hb.image _, _⟩ }, rw [eq, induced_generate_from_eq] end instance subtype.second_countable_topology (s : set α) [second_countable_topology α] : second_countable_topology s := second_countable_topology_induced s α coe /- TODO: more fine grained instances for first_countable_topology, separable_space, t2_space, ... -/ instance {β : Type*} [topological_space β] [second_countable_topology α] [second_countable_topology β] : second_countable_topology (α × β) := ((is_basis_countable_basis α).prod (is_basis_countable_basis β)).second_countable_topology $ (countable_countable_basis α).image2 (countable_countable_basis β) _ instance {ι : Type*} {π : ι → Type*} [countable ι] [t : ∀a, topological_space (π a)] [∀a, second_countable_topology (π a)] : second_countable_topology (∀a, π a) := begin haveI := encodable.of_countable ι, have : t = (λa, generate_from (countable_basis (π a))), from funext (assume a, (is_basis_countable_basis (π a)).eq_generate_from), rw [this, pi_generate_from_eq], constructor, refine ⟨_, _, rfl⟩, have : set.countable {T : set (Π i, π i) | ∃ (I : finset ι) (s : Π i : I, set (π i)), (∀ i, s i ∈ countable_basis (π i)) ∧ T = {f | ∀ i : I, f i ∈ s i}}, { simp only [set_of_exists, ← exists_prop], refine countable_Union (λ I, countable.bUnion _ (λ _ _, countable_singleton _)), change set.countable {s : Π i : I, set (π i) | ∀ i, s i ∈ countable_basis (π i)}, exact countable_pi (λ i, countable_countable_basis _) }, convert this using 1, ext1 T, split, { rintro ⟨s, I, hs, rfl⟩, refine ⟨I, λ i, s i, λ i, hs i i.2, _⟩, simp only [set.pi, set_coe.forall'], refl }, { rintro ⟨I, s, hs, rfl⟩, rcases @subtype.surjective_restrict ι (λ i, set (π i)) _ (λ i, i ∈ I) s with ⟨s, rfl⟩, exact ⟨s, I, λ i hi, hs ⟨i, hi⟩, set.ext $ λ f, subtype.forall⟩ } end @[priority 100] -- see Note [lower instance priority] instance second_countable_topology.to_separable_space [second_countable_topology α] : separable_space α := begin choose p hp using λ s : countable_basis α, nonempty_of_mem_countable_basis s.2, exact ⟨⟨range p, countable_range _, (is_basis_countable_basis α).dense_iff.2 $ λ o ho _, ⟨p ⟨o, ho⟩, hp _, mem_range_self _⟩⟩⟩ end variables {α} /-- A countable open cover induces a second-countable topology if all open covers are themselves second countable. -/ lemma second_countable_topology_of_countable_cover {ι} [encodable ι] {U : ι → set α} [∀ i, second_countable_topology (U i)] (Uo : ∀ i, is_open (U i)) (hc : (⋃ i, U i) = univ) : second_countable_topology α := begin have : is_topological_basis (⋃ i, image (coe : U i → α) '' (countable_basis (U i))), from is_topological_basis_of_cover Uo hc (λ i, is_basis_countable_basis (U i)), exact this.second_countable_topology (countable_Union $ λ i, (countable_countable_basis _).image _) end /-- In a second-countable space, an open set, given as a union of open sets, is equal to the union of countably many of those sets. -/ lemma is_open_Union_countable [second_countable_topology α] {ι} (s : ι → set α) (H : ∀ i, is_open (s i)) : ∃ T : set ι, T.countable ∧ (⋃ i ∈ T, s i) = ⋃ i, s i := begin let B := {b ∈ countable_basis α | ∃ i, b ⊆ s i}, choose f hf using λ b : B, b.2.2, haveI : encodable B := ((countable_countable_basis α).mono (sep_subset _ _)).to_encodable, refine ⟨_, countable_range f, (Union₂_subset_Union _ _).antisymm (sUnion_subset _)⟩, rintro _ ⟨i, rfl⟩ x xs, rcases (is_basis_countable_basis α).exists_subset_of_mem_open xs (H _) with ⟨b, hb, xb, bs⟩, exact ⟨_, ⟨_, rfl⟩, _, ⟨⟨⟨_, hb, _, bs⟩, rfl⟩, rfl⟩, hf _ (by exact xb)⟩ end lemma is_open_sUnion_countable [second_countable_topology α] (S : set (set α)) (H : ∀ s ∈ S, is_open s) : ∃ T : set (set α), T.countable ∧ T ⊆ S ∧ ⋃₀ T = ⋃₀ S := let ⟨T, cT, hT⟩ := is_open_Union_countable (λ s:S, s.1) (λ s, H s.1 s.2) in ⟨subtype.val '' T, cT.image _, image_subset_iff.2 $ λ ⟨x, xs⟩ xt, xs, by rwa [sUnion_image, sUnion_eq_Union]⟩ /-- In a topological space with second countable topology, if `f` is a function that sends each point `x` to a neighborhood of `x`, then for some countable set `s`, the neighborhoods `f x`, `x ∈ s`, cover the whole space. -/ lemma countable_cover_nhds [second_countable_topology α] {f : α → set α} (hf : ∀ x, f x ∈ 𝓝 x) : ∃ s : set α, s.countable ∧ (⋃ x ∈ s, f x) = univ := begin rcases is_open_Union_countable (λ x, interior (f x)) (λ x, is_open_interior) with ⟨s, hsc, hsU⟩, suffices : (⋃ x ∈ s, interior (f x)) = univ, from ⟨s, hsc, flip eq_univ_of_subset this $ Union₂_mono $ λ _ _, interior_subset⟩, simp only [hsU, eq_univ_iff_forall, mem_Union], exact λ x, ⟨x, mem_interior_iff_mem_nhds.2 (hf x)⟩ end lemma countable_cover_nhds_within [second_countable_topology α] {f : α → set α} {s : set α} (hf : ∀ x ∈ s, f x ∈ 𝓝[s] x) : ∃ t ⊆ s, t.countable ∧ s ⊆ (⋃ x ∈ t, f x) := begin have : ∀ x : s, coe ⁻¹' (f x) ∈ 𝓝 x, from λ x, preimage_coe_mem_nhds_subtype.2 (hf x x.2), rcases countable_cover_nhds this with ⟨t, htc, htU⟩, refine ⟨coe '' t, subtype.coe_image_subset _ _, htc.image _, λ x hx, _⟩, simp only [bUnion_image, eq_univ_iff_forall, ← preimage_Union, mem_preimage] at htU ⊢, exact htU ⟨x, hx⟩ end section sigma variables {ι : Type*} {E : ι → Type*} [∀ i, topological_space (E i)] omit t /-- In a disjoint union space `Σ i, E i`, one can form a topological basis by taking the union of topological bases on each of the parts of the space. -/ lemma is_topological_basis.sigma {s : Π (i : ι), set (set (E i))} (hs : ∀ i, is_topological_basis (s i)) : is_topological_basis (⋃ (i : ι), (λ u, ((sigma.mk i) '' u : set (Σ i, E i))) '' (s i)) := begin apply is_topological_basis_of_open_of_nhds, { assume u hu, obtain ⟨i, t, ts, rfl⟩ : ∃ (i : ι) (t : set (E i)), t ∈ s i ∧ sigma.mk i '' t = u, by simpa only [mem_Union, mem_image] using hu, exact is_open_map_sigma_mk _ ((hs i).is_open ts) }, { rintros ⟨i, x⟩ u hxu u_open, have hx : x ∈ sigma.mk i ⁻¹' u := hxu, obtain ⟨v, vs, xv, hv⟩ : ∃ (v : set (E i)) (H : v ∈ s i), x ∈ v ∧ v ⊆ sigma.mk i ⁻¹' u := (hs i).exists_subset_of_mem_open hx (is_open_sigma_iff.1 u_open i), exact ⟨(sigma.mk i) '' v, mem_Union.2 ⟨i, mem_image_of_mem _ vs⟩, mem_image_of_mem _ xv, image_subset_iff.2 hv⟩ } end /-- A countable disjoint union of second countable spaces is second countable. -/ instance [encodable ι] [∀ i, second_countable_topology (E i)] : second_countable_topology (Σ i, E i) := begin let b := (⋃ (i : ι), (λ u, ((sigma.mk i) '' u : set (Σ i, E i))) '' (countable_basis (E i))), have A : is_topological_basis b := is_topological_basis.sigma (λ i, is_basis_countable_basis _), have B : b.countable := countable_Union (λ i, countable.image (countable_countable_basis _) _), exact A.second_countable_topology B, end end sigma section sum omit t variables {β : Type*} [topological_space α] [topological_space β] /-- In a sum space `α ⊕ β`, one can form a topological basis by taking the union of topological bases on each of the two components. -/ lemma is_topological_basis.sum {s : set (set α)} (hs : is_topological_basis s) {t : set (set β)} (ht : is_topological_basis t) : is_topological_basis (((λ u, sum.inl '' u) '' s) ∪ ((λ u, sum.inr '' u) '' t)) := begin apply is_topological_basis_of_open_of_nhds, { assume u hu, cases hu, { rcases hu with ⟨w, hw, rfl⟩, exact open_embedding_inl.is_open_map w (hs.is_open hw) }, { rcases hu with ⟨w, hw, rfl⟩, exact open_embedding_inr.is_open_map w (ht.is_open hw) } }, { rintros x u hxu u_open, cases x, { have h'x : x ∈ sum.inl ⁻¹' u := hxu, obtain ⟨v, vs, xv, vu⟩ : ∃ (v : set α) (H : v ∈ s), x ∈ v ∧ v ⊆ sum.inl ⁻¹' u := hs.exists_subset_of_mem_open h'x (is_open_sum_iff.1 u_open).1, exact ⟨sum.inl '' v, mem_union_left _ (mem_image_of_mem _ vs), mem_image_of_mem _ xv, image_subset_iff.2 vu⟩ }, { have h'x : x ∈ sum.inr ⁻¹' u := hxu, obtain ⟨v, vs, xv, vu⟩ : ∃ (v : set β) (H : v ∈ t), x ∈ v ∧ v ⊆ sum.inr ⁻¹' u := ht.exists_subset_of_mem_open h'x (is_open_sum_iff.1 u_open).2, exact ⟨sum.inr '' v, mem_union_right _ (mem_image_of_mem _ vs), mem_image_of_mem _ xv, image_subset_iff.2 vu⟩ } } end /-- A sum type of two second countable spaces is second countable. -/ instance [second_countable_topology α] [second_countable_topology β] : second_countable_topology (α ⊕ β) := begin let b := (λ u, sum.inl '' u) '' (countable_basis α) ∪ (λ u, sum.inr '' u) '' (countable_basis β), have A : is_topological_basis b := (is_basis_countable_basis α).sum (is_basis_countable_basis β), have B : b.countable := (countable.image (countable_countable_basis _) _).union (countable.image (countable_countable_basis _) _), exact A.second_countable_topology B, end end sum end topological_space open topological_space variables {α β : Type*} [topological_space α] [topological_space β] {f : α → β} protected lemma inducing.second_countable_topology [second_countable_topology β] (hf : inducing f) : second_countable_topology α := by { rw hf.1, exact second_countable_topology_induced α β f } protected lemma embedding.second_countable_topology [second_countable_topology β] (hf : embedding f) : second_countable_topology α := hf.1.second_countable_topology