/- Copyright (c) 2021 Adam Topaz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Calle Sönne, Adam Topaz -/ import topology.separation import topology.subset_properties import topology.locally_constant.basic /-! # Discrete quotients of a topological space. This file defines the type of discrete quotients of a topological space, denoted `discrete_quotient X`. To avoid quantifying over types, we model such quotients as setoids whose equivalence classes are clopen. ## Definitions 1. `discrete_quotient X` is the type of discrete quotients of `X`. It is endowed with a coercion to `Type`, which is defined as the quotient associated to the setoid in question, and each such quotient is endowed with the discrete topology. 2. Given `S : discrete_quotient X`, the projection `X → S` is denoted `S.proj`. 3. When `X` is compact and `S : discrete_quotient X`, the space `S` is endowed with a `fintype` instance. ## Order structure The type `discrete_quotient X` is endowed with an instance of a `semilattice_inf` with `order_top`. The partial ordering `A ≤ B` mathematically means that `B.proj` factors through `A.proj`. The top element `⊤` is the trivial quotient, meaning that every element of `X` is collapsed to a point. Given `h : A ≤ B`, the map `A → B` is `discrete_quotient.of_le h`. Whenever `X` is discrete, the type `discrete_quotient X` is also endowed with an instance of a `semilattice_inf` with `order_bot`, where the bot element `⊥` is `X` itself. Given `f : X → Y` and `h : continuous f`, we define a predicate `le_comap h A B` for `A : discrete_quotient X` and `B : discrete_quotient Y`, asserting that `f` descends to `A → B`. If `cond : le_comap h A B`, the function `A → B` is obtained by `discrete_quotient.map cond`. ## Theorems The two main results proved in this file are: 1. `discrete_quotient.eq_of_proj_eq` which states that when `X` is compact, t2 and totally disconnected, any two elements of `X` agree if their projections in `Q` agree for all `Q : discrete_quotient X`. 2. `discrete_quotient.exists_of_compat` which states that when `X` is compact, then any system of elements of `Q` as `Q : discrete_quotient X` varies, which is compatible with respect to `discrete_quotient.of_le`, must arise from some element of `X`. ## Remarks The constructions in this file will be used to show that any profinite space is a limit of finite discrete spaces. -/ variables (X : Type*) [topological_space X] /-- The type of discrete quotients of a topological space. -/ @[ext] structure discrete_quotient := (rel : X → X → Prop) (equiv : equivalence rel) (clopen : ∀ x, is_clopen (set_of (rel x))) namespace discrete_quotient variables {X} (S : discrete_quotient X) /-- Construct a discrete quotient from a clopen set. -/ def of_clopen {A : set X} (h : is_clopen A) : discrete_quotient X := { rel := λ x y, x ∈ A ∧ y ∈ A ∨ x ∉ A ∧ y ∉ A, equiv := ⟨by tauto!, by tauto!, by tauto!⟩, clopen := begin intros x, by_cases hx : x ∈ A, { apply is_clopen.union, { convert h, ext, exact ⟨λ i, i.2, λ i, ⟨hx,i⟩⟩ }, { convert is_clopen_empty, tidy } }, { apply is_clopen.union, { convert is_clopen_empty, tidy }, { convert is_clopen.compl h, ext, exact ⟨λ i, i.2, λ i, ⟨hx, i⟩⟩ } }, end } lemma refl : ∀ x : X, S.rel x x := S.equiv.1 lemma symm : ∀ x y : X, S.rel x y → S.rel y x := S.equiv.2.1 lemma trans : ∀ x y z : X, S.rel x y → S.rel y z → S.rel x z := S.equiv.2.2 /-- The setoid whose quotient yields the discrete quotient. -/ def setoid : setoid X := ⟨S.rel, S.equiv⟩ instance : has_coe_to_sort (discrete_quotient X) Type* := ⟨λ S, quotient S.setoid⟩ instance : topological_space S := ⊥ /-- The projection from `X` to the given discrete quotient. -/ def proj : X → S := quotient.mk' lemma proj_surjective : function.surjective S.proj := quotient.surjective_quotient_mk' lemma fiber_eq (x : X) : S.proj ⁻¹' {S.proj x} = set_of (S.rel x) := begin ext1 y, simp only [set.mem_preimage, set.mem_singleton_iff, quotient.eq', discrete_quotient.proj.equations._eqn_1, set.mem_set_of_eq], exact ⟨λ h, S.symm _ _ h, λ h, S.symm _ _ h⟩, end lemma proj_is_locally_constant : is_locally_constant S.proj := begin rw (is_locally_constant.tfae S.proj).out 0 3, intros x, rcases S.proj_surjective x with ⟨x,rfl⟩, simp [fiber_eq, (S.clopen x).1], end lemma proj_continuous : continuous S.proj := is_locally_constant.continuous $ proj_is_locally_constant _ lemma fiber_closed (A : set S) : is_closed (S.proj ⁻¹' A) := is_closed.preimage S.proj_continuous ⟨trivial⟩ lemma fiber_open (A : set S) : is_open (S.proj ⁻¹' A) := is_open.preimage S.proj_continuous trivial lemma fiber_clopen (A : set S) : is_clopen (S.proj ⁻¹' A) := ⟨fiber_open _ _, fiber_closed _ _⟩ instance : partial_order (discrete_quotient X) := { le := λ A B, ∀ x y : X, A.rel x y → B.rel x y, le_refl := λ a, by tauto, le_trans := λ a b c h1 h2, by tauto, le_antisymm := λ a b h1 h2, by { ext, tauto } } instance : order_top (discrete_quotient X) := { top := ⟨λ a b, true, ⟨by tauto, by tauto, by tauto⟩, λ _, is_clopen_univ⟩, le_top := λ a, by tauto } instance : semilattice_inf (discrete_quotient X) := { inf := λ A B, { rel := λ x y, A.rel x y ∧ B.rel x y, equiv := ⟨λ a, ⟨A.refl _,B.refl _⟩, λ a b h, ⟨A.symm _ _ h.1, B.symm _ _ h.2⟩, λ a b c h1 h2, ⟨A.trans _ _ _ h1.1 h2.1, B.trans _ _ _ h1.2 h2.2⟩⟩, clopen := λ x, is_clopen.inter (A.clopen _) (B.clopen _) }, inf_le_left := λ a b, by tauto, inf_le_right := λ a b, by tauto, le_inf := λ a b c h1 h2, by tauto, ..discrete_quotient.partial_order } instance : inhabited (discrete_quotient X) := ⟨⊤⟩ section comap variables {Y : Type*} [topological_space Y] {f : Y → X} (cont : continuous f) /-- Comap a discrete quotient along a continuous map. -/ def comap : discrete_quotient Y := { rel := λ a b, S.rel (f a) (f b), equiv := ⟨λ a, S.refl _, λ a b h, S.symm _ _ h, λ a b c h1 h2, S.trans _ _ _ h1 h2⟩, clopen := λ y, ⟨is_open.preimage cont (S.clopen _).1, is_closed.preimage cont (S.clopen _).2⟩ } @[simp] lemma comap_id : S.comap (continuous_id : continuous (id : X → X)) = S := by { ext, refl } @[simp] lemma comap_comp {Z : Type*} [topological_space Z] {g : Z → Y} (cont' : continuous g) : S.comap (continuous.comp cont cont') = (S.comap cont).comap cont' := by { ext, refl } lemma comap_mono {A B : discrete_quotient X} (h : A ≤ B) : A.comap cont ≤ B.comap cont := by tauto end comap section of_le /-- The map induced by a refinement of a discrete quotient. -/ def of_le {A B : discrete_quotient X} (h : A ≤ B) : A → B := λ a, quotient.lift_on' a (λ x, B.proj x) (λ a b i, quotient.sound' (h _ _ i)) @[simp] lemma of_le_refl {A : discrete_quotient X} : of_le (le_refl A) = id := by { ext ⟨⟩, refl } lemma of_le_refl_apply {A : discrete_quotient X} (a : A) : of_le (le_refl A) a = a := by simp @[simp] lemma of_le_comp {A B C : discrete_quotient X} (h1 : A ≤ B) (h2 : B ≤ C) : of_le (le_trans h1 h2) = of_le h2 ∘ of_le h1 := by { ext ⟨⟩, refl } lemma of_le_comp_apply {A B C : discrete_quotient X} (h1 : A ≤ B) (h2 : B ≤ C) (a : A) : of_le (le_trans h1 h2) a = of_le h2 (of_le h1 a) := by simp lemma of_le_continuous {A B : discrete_quotient X} (h : A ≤ B) : continuous (of_le h) := continuous_of_discrete_topology @[simp] lemma of_le_proj {A B : discrete_quotient X} (h : A ≤ B) : of_le h ∘ A.proj = B.proj := by { ext, exact quotient.sound' (B.refl _) } @[simp] lemma of_le_proj_apply {A B : discrete_quotient X} (h : A ≤ B) (x : X) : of_le h (A.proj x) = B.proj x := by { change (of_le h ∘ A.proj) x = _, simp } end of_le /-- When X is discrete, there is a `order_bot` instance on `discrete_quotient X` -/ instance [discrete_topology X] : order_bot (discrete_quotient X) := { bot := { rel := (=), equiv := eq_equivalence, clopen := λ x, is_clopen_discrete _ }, bot_le := by { rintro S a b (h : a = b), rw h, exact S.refl _ } } lemma proj_bot_injective [discrete_topology X] : function.injective (⊥ : discrete_quotient X).proj := λ a b h, quotient.exact' h lemma proj_bot_bijective [discrete_topology X] : function.bijective (⊥ : discrete_quotient X).proj := ⟨proj_bot_injective, proj_surjective _⟩ section map variables {Y : Type*} [topological_space Y] {f : Y → X} (cont : continuous f) (A : discrete_quotient Y) (B : discrete_quotient X) /-- Given `cont : continuous f`, `le_comap cont A B` is defined as `A ≤ B.comap f`. Mathematically this means that `f` descends to a morphism `A → B`. -/ def le_comap : Prop := A ≤ B.comap cont variables {cont A B} lemma le_comap_id (A : discrete_quotient X) : le_comap continuous_id A A := by tauto lemma le_comap_comp {Z : Type*} [topological_space Z] {g : Z → Y} {cont' : continuous g} {C : discrete_quotient Z} : le_comap cont' C A → le_comap cont A B → le_comap (continuous.comp cont cont') C B := by tauto lemma le_comap_trans {C : discrete_quotient X} : le_comap cont A B → B ≤ C → le_comap cont A C := λ h1 h2, le_trans h1 $ comap_mono _ h2 /-- Map a discrete quotient along a continuous map. -/ def map (cond : le_comap cont A B) : A → B := quotient.map' f cond lemma map_continuous (cond : le_comap cont A B) : continuous (map cond) := continuous_of_discrete_topology @[simp] lemma map_proj (cond : le_comap cont A B) : map cond ∘ A.proj = B.proj ∘ f := rfl @[simp] lemma map_proj_apply (cond : le_comap cont A B) (y : Y) : map cond (A.proj y) = B.proj (f y) := rfl @[simp] lemma map_id : map (le_comap_id A) = id := by { ext ⟨⟩, refl } @[simp] lemma map_comp {Z : Type*} [topological_space Z] {g : Z → Y} {cont' : continuous g} {C : discrete_quotient Z} (h1 : le_comap cont' C A) (h2 : le_comap cont A B) : map (le_comap_comp h1 h2) = map h2 ∘ map h1 := by { ext ⟨⟩, refl } @[simp] lemma of_le_map {C : discrete_quotient X} (cond : le_comap cont A B) (h : B ≤ C) : map (le_comap_trans cond h) = of_le h ∘ map cond := by { ext ⟨⟩, refl } @[simp] lemma of_le_map_apply {C : discrete_quotient X} (cond : le_comap cont A B) (h : B ≤ C) (a : A) : map (le_comap_trans cond h) a = of_le h (map cond a) := by { rcases a, refl } @[simp] lemma map_of_le {C : discrete_quotient Y} (cond : le_comap cont A B) (h : C ≤ A) : map (le_trans h cond) = map cond ∘ of_le h := by { ext ⟨⟩, refl } @[simp] lemma map_of_le_apply {C : discrete_quotient Y} (cond : le_comap cont A B) (h : C ≤ A) (c : C) : map (le_trans h cond) c = map cond (of_le h c) := by { rcases c, refl } end map lemma eq_of_proj_eq [t2_space X] [compact_space X] [disc : totally_disconnected_space X] {x y : X} : (∀ Q : discrete_quotient X, Q.proj x = Q.proj y) → x = y := begin intro h, change x ∈ ({y} : set X), rw totally_disconnected_space_iff_connected_component_singleton at disc, rw [← disc y, connected_component_eq_Inter_clopen], rintros U ⟨⟨U, hU1, hU2⟩, rfl⟩, replace h : _ ∨ _ := quotient.exact' (h (of_clopen hU1)), tauto, end lemma fiber_le_of_le {A B : discrete_quotient X} (h : A ≤ B) (a : A) : A.proj ⁻¹' {a} ≤ B.proj ⁻¹' {of_le h a} := begin induction a, erw [fiber_eq, fiber_eq], tidy, end lemma exists_of_compat [compact_space X] (Qs : Π (Q : discrete_quotient X), Q) (compat : ∀ (A B : discrete_quotient X) (h : A ≤ B), of_le h (Qs _) = Qs _) : ∃ x : X, ∀ Q : discrete_quotient X, Q.proj x = Qs _ := begin obtain ⟨x,hx⟩ := is_compact.nonempty_Inter_of_directed_nonempty_compact_closed (λ (Q : discrete_quotient X), Q.proj ⁻¹' {Qs _}) (λ A B, _) (λ i, _) (λ i, (fiber_closed _ _).is_compact) (λ i, fiber_closed _ _), { refine ⟨x, λ Q, _⟩, exact hx _ ⟨Q,rfl⟩ }, { refine ⟨A ⊓ B, λ a ha, _, λ a ha, _⟩, { dsimp only, erw ← compat (A ⊓ B) A inf_le_left, exact fiber_le_of_le _ _ ha }, { dsimp only, erw ← compat (A ⊓ B) B inf_le_right, exact fiber_le_of_le _ _ ha } }, { obtain ⟨x,hx⟩ := i.proj_surjective (Qs i), refine ⟨x,_⟩, dsimp only, rw [← hx, fiber_eq], apply i.refl }, end noncomputable instance [compact_space X] : fintype S := begin have cond : is_compact (⊤ : set X) := compact_univ, rw is_compact_iff_finite_subcover at cond, have h := @cond S (λ s, S.proj ⁻¹' {s}) (λ s, fiber_open _ _) (λ x hx, ⟨S.proj ⁻¹' {S.proj x}, ⟨S.proj x, rfl⟩, rfl⟩), let T := classical.some h, have hT := classical.some_spec h, refine ⟨T,λ s, _⟩, rcases S.proj_surjective s with ⟨x,rfl⟩, rcases hT (by tauto : x ∈ ⊤) with ⟨j, ⟨j,rfl⟩, h1, ⟨hj, rfl⟩, h2⟩, dsimp only at h2, suffices : S.proj x = j, by rwa this, rcases j with ⟨j⟩, apply quotient.sound', erw fiber_eq at h2, exact S.symm _ _ h2 end end discrete_quotient namespace locally_constant variables {X} {α : Type*} (f : locally_constant X α) /-- Any locally constant function induces a discrete quotient. -/ def discrete_quotient : discrete_quotient X := { rel := λ a b, f b = f a, equiv := ⟨by tauto, by tauto, λ a b c h1 h2, by rw [h2, h1]⟩, clopen := λ x, f.is_locally_constant.is_clopen_fiber _ } /-- The function from the discrete quotient associated to a locally constant function. -/ def lift : f.discrete_quotient → α := λ a, quotient.lift_on' a f (λ a b h, h.symm) lemma lift_is_locally_constant : _root_.is_locally_constant f.lift := λ A, trivial /-- A locally constant version of `locally_constant.lift`. -/ def locally_constant_lift : locally_constant f.discrete_quotient α := ⟨f.lift, f.lift_is_locally_constant⟩ @[simp] lemma lift_eq_coe : f.lift = f.locally_constant_lift := rfl @[simp] lemma factors : f.locally_constant_lift ∘ f.discrete_quotient.proj = f := by { ext, refl } end locally_constant