/- Copyright (c) 2021 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang, Yury G. Kudryashov -/ import topology.continuous_on import data.setoid.basic import tactic.tfae /-! # Inseparable points in a topological space In this file we define * `specializes` (notation: `x β€³ y`) : a relation saying that `𝓝 x ≀ 𝓝 y`; * `inseparable`: a relation saying that two points in a topological space have the same neighbourhoods; equivalently, they can't be separated by an open set; * `inseparable_setoid X`: same relation, as a `setoid`; * `separation_quotient X`: the quotient of `X` by its `inseparable_setoid`. We also prove various basic properties of the relation `inseparable`. ## Notations - `x β€³ y`: notation for `specializes x y`; - `x ~ y` is used as a local notation for `inseparable x y`; - `𝓝 x` is the neighbourhoods filter `nhds x` of a point `x`, defined elsewhere. ## Tags topological space, separation setoid -/ open set filter function open_locale topological_space variables {X Y : Type*} [topological_space X] [topological_space Y] {x y z : X} {s : set X} {f : X β†’ Y} /-! ### `specializes` relation -/ /-- `x` specializes to `y` (notation: `x β€³ y`) if either of the following equivalent properties hold: * `𝓝 x ≀ 𝓝 y`; this property is used as the definition; * `pure x ≀ 𝓝 y`; in other words, any neighbourhood of `y` contains `x`; * `y ∈ closure {x}`; * `closure {y} βŠ† closure {x}`; * for any closed set `s` we have `x ∈ s β†’ y ∈ s`; * for any open set `s` we have `y ∈ s β†’ x ∈ s`; * `y` is a cluster point of the filter `pure x = π“Ÿ {x}`. This relation defines a `preorder` on `X`. If `X` is a Tβ‚€ space, then this preorder is a partial order. If `X` is a T₁ space, then this partial order is trivial : `x β€³ y ↔ x = y`. -/ def specializes (x y : X) : Prop := 𝓝 x ≀ 𝓝 y infix ` β€³ `:300 := specializes /-- A collection of equivalent definitions of `x β€³ y`. The public API is given by `iff` lemmas below. -/ lemma specializes_tfae (x y : X) : tfae [x β€³ y, pure x ≀ 𝓝 y, βˆ€ s : set X, is_open s β†’ y ∈ s β†’ x ∈ s, βˆ€ s : set X, is_closed s β†’ x ∈ s β†’ y ∈ s, y ∈ closure ({x} : set X), closure ({y} : set X) βŠ† closure {x}, cluster_pt y (pure x)] := begin tfae_have : 1 β†’ 2, from (pure_le_nhds _).trans, tfae_have : 2 β†’ 3, from Ξ» h s hso hy, h (hso.mem_nhds hy), tfae_have : 3 β†’ 4, from Ξ» h s hsc hx, of_not_not $ Ξ» hy, h sᢜ hsc.is_open_compl hy hx, tfae_have : 4 β†’ 5, from Ξ» h, h _ is_closed_closure (subset_closure $ mem_singleton _), tfae_have : 6 ↔ 5, from is_closed_closure.closure_subset_iff.trans singleton_subset_iff, tfae_have : 5 ↔ 7, by rw [mem_closure_iff_cluster_pt, principal_singleton], tfae_have : 5 β†’ 1, { refine Ξ» h, (nhds_basis_opens _).ge_iff.2 _, rintro s ⟨hy, ho⟩, rcases mem_closure_iff.1 h s ho hy with ⟨z, hxs, (rfl : z = x)⟩, exact ho.mem_nhds hxs }, tfae_finish end lemma specializes_iff_nhds : x β€³ y ↔ 𝓝 x ≀ 𝓝 y := iff.rfl lemma specializes_iff_pure : x β€³ y ↔ pure x ≀ 𝓝 y := (specializes_tfae x y).out 0 1 alias specializes_iff_nhds ↔ specializes.nhds_le_nhds _ alias specializes_iff_pure ↔ specializes.pure_le_nhds _ lemma specializes_iff_forall_open : x β€³ y ↔ βˆ€ s : set X, is_open s β†’ y ∈ s β†’ x ∈ s := (specializes_tfae x y).out 0 2 lemma specializes.mem_open (h : x β€³ y) (hs : is_open s) (hy : y ∈ s) : x ∈ s := specializes_iff_forall_open.1 h s hs hy lemma is_open.not_specializes (hs : is_open s) (hx : x βˆ‰ s) (hy : y ∈ s) : Β¬ x β€³ y := Ξ» h, hx $ h.mem_open hs hy lemma specializes_iff_forall_closed : x β€³ y ↔ βˆ€ s : set X, is_closed s β†’ x ∈ s β†’ y ∈ s := (specializes_tfae x y).out 0 3 lemma specializes.mem_closed (h : x β€³ y) (hs : is_closed s) (hx : x ∈ s) : y ∈ s := specializes_iff_forall_closed.1 h s hs hx lemma is_closed.not_specializes (hs : is_closed s) (hx : x ∈ s) (hy : y βˆ‰ s) : Β¬ x β€³ y := Ξ» h, hy $ h.mem_closed hs hx lemma specializes_iff_mem_closure : x β€³ y ↔ y ∈ closure ({x} : set X) := (specializes_tfae x y).out 0 4 alias specializes_iff_mem_closure ↔ specializes.mem_closure _ lemma specializes_iff_closure_subset : x β€³ y ↔ closure ({y} : set X) βŠ† closure {x} := (specializes_tfae x y).out 0 5 alias specializes_iff_closure_subset ↔ specializes.closure_subset _ lemma specializes_rfl : x β€³ x := le_rfl @[refl] lemma specializes_refl (x : X) : x β€³ x := specializes_rfl @[trans] lemma specializes.trans : x β€³ y β†’ y β€³ z β†’ x β€³ z := le_trans lemma specializes_of_nhds_within (h₁ : 𝓝[s] x ≀ 𝓝[s] y) (hβ‚‚ : x ∈ s) : x β€³ y := specializes_iff_pure.2 $ calc pure x ≀ 𝓝[s] x : le_inf (pure_le_nhds _) (le_principal_iff.2 hβ‚‚) ... ≀ 𝓝[s] y : h₁ ... ≀ 𝓝 y : inf_le_left lemma specializes.map_of_continuous_at (h : x β€³ y) (hy : continuous_at f y) : f x β€³ f y := specializes_iff_pure.2 $ Ξ» s hs, mem_pure.2 $ mem_preimage.1 $ mem_of_mem_nhds $ hy.mono_left h hs lemma specializes.map (h : x β€³ y) (hf : continuous f) : f x β€³ f y := h.map_of_continuous_at hf.continuous_at lemma inducing.specializes_iff (hf : inducing f) : f x β€³ f y ↔ x β€³ y := by simp only [specializes_iff_mem_closure, hf.closure_eq_preimage_closure_image, image_singleton, mem_preimage] lemma subtype_specializes_iff {p : X β†’ Prop} (x y : subtype p) : x β€³ y ↔ (x : X) β€³ y := inducing_coe.specializes_iff.symm variable (X) /-- Specialization forms a preorder on the topological space. -/ def specialization_preorder : preorder X := { le := Ξ» x y, y β€³ x, lt := Ξ» x y, y β€³ x ∧ Β¬(x β€³ y), .. preorder.lift (order_dual.to_dual ∘ 𝓝) } variable {X} /-- A continuous function is monotone with respect to the specialization preorders on the domain and the codomain. -/ lemma continuous.specialization_monotone (hf : continuous f) : @monotone _ _ (specialization_preorder X) (specialization_preorder Y) f := Ξ» x y h, h.map hf /-! ### `inseparable` relation -/ /-- Two points `x` and `y` in a topological space are `inseparable` if any of the following equivalent properties hold: - `𝓝 x = 𝓝 y`; we use this property as the definition; - for any open set `s`, `x ∈ s ↔ y ∈ s`, see `inseparable_iff_open`; - for any closed set `s`, `x ∈ s ↔ y ∈ s`, see `inseparable_iff_closed`; - `x ∈ closure {y}` and `y ∈ closure {x}`, see `inseparable_iff_mem_closure`; - `closure {x} = closure {y}`, see `inseparable_iff_closure_eq`. -/ def inseparable (x y : X) : Prop := 𝓝 x = 𝓝 y local infix ` ~ ` := inseparable lemma inseparable_def : x ~ y ↔ 𝓝 x = 𝓝 y := iff.rfl lemma inseparable_iff_specializes_and : x ~ y ↔ x β€³ y ∧ y β€³ x := le_antisymm_iff lemma inseparable.specializes (h : x ~ y) : x β€³ y := h.le lemma inseparable.specializes' (h : x ~ y) : y β€³ x := h.ge lemma specializes.antisymm (h₁ : x β€³ y) (hβ‚‚ : y β€³ x) : x ~ y := le_antisymm h₁ hβ‚‚ lemma inseparable_iff_forall_open : x ~ y ↔ βˆ€ s : set X, is_open s β†’ (x ∈ s ↔ y ∈ s) := by simp only [inseparable_iff_specializes_and, specializes_iff_forall_open, ← forall_and_distrib, ← iff_def, iff.comm] lemma not_inseparable_iff_exists_open : Β¬(x ~ y) ↔ βˆƒ s : set X, is_open s ∧ xor (x ∈ s) (y ∈ s) := by simp [inseparable_iff_forall_open, ← xor_iff_not_iff] lemma inseparable_iff_forall_closed : x ~ y ↔ βˆ€ s : set X, is_closed s β†’ (x ∈ s ↔ y ∈ s) := by simp only [inseparable_iff_specializes_and, specializes_iff_forall_closed, ← forall_and_distrib, ← iff_def] lemma inseparable_iff_mem_closure : x ~ y ↔ x ∈ closure ({y} : set X) ∧ y ∈ closure ({x} : set X) := inseparable_iff_specializes_and.trans $ by simp only [specializes_iff_mem_closure, and_comm] lemma inseparable_iff_closure_eq : x ~ y ↔ closure ({x} : set X) = closure {y} := by simp only [inseparable_iff_specializes_and, specializes_iff_closure_subset, ← subset_antisymm_iff, eq_comm] lemma inseparable_of_nhds_within_eq (hx : x ∈ s) (hy : y ∈ s) (h : 𝓝[s] x = 𝓝[s] y) : x ~ y := (specializes_of_nhds_within h.le hx).antisymm (specializes_of_nhds_within h.ge hy) lemma inducing.inseparable_iff (hf : inducing f) : f x ~ f y ↔ x ~ y := by simp only [inseparable_iff_specializes_and, hf.specializes_iff] lemma subtype_inseparable_iff {p : X β†’ Prop} (x y : subtype p) : x ~ y ↔ (x : X) ~ y := inducing_coe.inseparable_iff.symm namespace inseparable @[refl] lemma refl (x : X) : x ~ x := eq.refl (𝓝 x) lemma rfl : x ~ x := refl x @[symm] lemma symm (h : x ~ y) : y ~ x := h.symm @[trans] lemma trans (h₁ : x ~ y) (hβ‚‚ : y ~ z) : x ~ z := h₁.trans hβ‚‚ lemma nhds_eq (h : x ~ y) : 𝓝 x = 𝓝 y := h lemma mem_open_iff (h : x ~ y) (hs : is_open s) : x ∈ s ↔ y ∈ s := inseparable_iff_forall_open.1 h s hs lemma mem_closed_iff (h : x ~ y) (hs : is_closed s) : x ∈ s ↔ y ∈ s := inseparable_iff_forall_closed.1 h s hs lemma map_of_continuous_at (h : x ~ y) (hx : continuous_at f x) (hy : continuous_at f y) : f x ~ f y := (h.specializes.map_of_continuous_at hy).antisymm (h.specializes'.map_of_continuous_at hx) lemma map (h : x ~ y) (hf : continuous f) : f x ~ f y := h.map_of_continuous_at hf.continuous_at hf.continuous_at end inseparable lemma is_closed.not_inseparable (hs : is_closed s) (hx : x ∈ s) (hy : y βˆ‰ s) : Β¬x ~ y := Ξ» h, hy $ (h.mem_closed_iff hs).1 hx lemma is_open.not_inseparable (hs : is_open s) (hx : x ∈ s) (hy : y βˆ‰ s) : Β¬x ~ y := Ξ» h, hy $ (h.mem_open_iff hs).1 hx /-! ### Separation quotient In this section we define the quotient of a topological space by the `inseparable` relation. -/ variable (X) /-- A `setoid` version of `inseparable`, used to define the `separation_quotient`. -/ def inseparable_setoid : setoid X := { r := (~), .. setoid.comap 𝓝 βŠ₯ } /-- The quotient of a topological space by its `inseparable_setoid`. This quotient is guaranteed to be a Tβ‚€ space. -/ @[derive topological_space] def separation_quotient := quotient (inseparable_setoid X) variable {X} namespace separation_quotient /-- The natural map from a topological space to its separation quotient. -/ def mk : X β†’ separation_quotient X := quotient.mk' lemma quotient_map_mk : quotient_map (mk : X β†’ separation_quotient X) := quotient_map_quot_mk lemma continuous_mk : continuous (mk : X β†’ separation_quotient X) := continuous_quot_mk @[simp] lemma mk_eq_mk : mk x = mk y ↔ x ~ y := quotient.eq' lemma surjective_mk : surjective (mk : X β†’ separation_quotient X) := surjective_quot_mk _ @[simp] lemma range_mk : range (mk : X β†’ separation_quotient X) = univ := surjective_mk.range_eq instance [nonempty X] : nonempty (separation_quotient X) := nonempty.map mk β€Ή_β€Ί instance [inhabited X] : inhabited (separation_quotient X) := ⟨mk default⟩ instance [subsingleton X] : subsingleton (separation_quotient X) := surjective_mk.subsingleton lemma preimage_image_mk_open (hs : is_open s) : mk ⁻¹' (mk '' s) = s := begin refine subset.antisymm _ (subset_preimage_image _ _), rintro x ⟨y, hys, hxy⟩, exact ((mk_eq_mk.1 hxy).mem_open_iff hs).1 hys end lemma is_open_map_mk : is_open_map (mk : X β†’ separation_quotient X) := Ξ» s hs, quotient_map_mk.is_open_preimage.1 $ by rwa preimage_image_mk_open hs lemma preimage_image_mk_closed (hs : is_closed s) : mk ⁻¹' (mk '' s) = s := begin refine subset.antisymm _ (subset_preimage_image _ _), rintro x ⟨y, hys, hxy⟩, exact ((mk_eq_mk.1 hxy).mem_closed_iff hs).1 hys end lemma inducing_mk : inducing (mk : X β†’ separation_quotient X) := ⟨le_antisymm (continuous_iff_le_induced.1 continuous_mk) (Ξ» s hs, ⟨mk '' s, is_open_map_mk s hs, preimage_image_mk_open hs⟩)⟩ lemma is_closed_map_mk : is_closed_map (mk : X β†’ separation_quotient X) := inducing_mk.is_closed_map $ by { rw [range_mk], exact is_closed_univ } lemma map_mk_nhds : map mk (𝓝 x) = 𝓝 (mk x) := by rw [inducing_mk.nhds_eq_comap, map_comap_of_surjective surjective_mk] end separation_quotient