/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import order.compactly_generated import order.order_iso_nat import topology.sets.compacts /-! # Noetherian space A Noetherian space is a topological space that satisfies any of the following equivalent conditions: - `well_founded ((>) : opens α → opens α → Prop)` - `well_founded ((<) : closeds α → closeds α → Prop)` - `∀ s : set α, is_compact s` - `∀ s : opens α, is_compact s` The first is chosen as the definition, and the equivalence is shown in `topological_space.noetherian_space_tfae`. Many examples of noetherian spaces come from algebraic topology. For example, the underlying space of a noetherian scheme (e.g., the spectrum of a noetherian ring) is noetherian. ## Main Results - `noetherian_space.set`: Every subspace of a noetherian space is noetherian. - `noetherian_space.is_compact`: Every subspace of a noetherian space is compact. - `noetherian_space_tfae`: Describes the equivalent definitions of noetherian spaces. - `noetherian_space.range`: The image of a noetherian space under a continuous map is noetherian. - `noetherian_space.Union`: The finite union of noetherian spaces is noetherian. - `noetherian_space.discrete`: A noetherian and hausdorff space is discrete. - `noetherian_space.exists_finset_irreducible` : Every closed subset of a noetherian space is a finite union of irreducible closed subsets. - `noetherian_space.finite_irreducible_components `: The number of irreducible components of a noetherian space is finite. -/ variables (α β : Type*) [topological_space α] [topological_space β] namespace topological_space /-- Type class for noetherian spaces. It is defined to be spaces whose open sets satisfies ACC. -/ @[mk_iff] class noetherian_space : Prop := (well_founded : well_founded ((>) : opens α → opens α → Prop)) lemma noetherian_space_iff_opens : noetherian_space α ↔ ∀ s : opens α, is_compact (s : set α) := begin rw [noetherian_space_iff, complete_lattice.well_founded_iff_is_Sup_finite_compact, complete_lattice.is_Sup_finite_compact_iff_all_elements_compact], exact forall_congr opens.is_compact_element_iff, end @[priority 100] instance noetherian_space.compact_space [h : noetherian_space α] : compact_space α := is_compact_univ_iff.mp ((noetherian_space_iff_opens α).mp h ⊤) variable {α} instance noetherian_space.set [h : noetherian_space α] (s : set α) : noetherian_space s := begin rw noetherian_space_iff, apply well_founded.well_founded_iff_has_max'.2, intros p hp, obtain ⟨⟨_, u, hu, rfl⟩, hu'⟩ := hp, obtain ⟨U, hU, hU'⟩ := well_founded.well_founded_iff_has_max'.1 h.1 (((opens.comap ⟨_, continuous_subtype_coe⟩)) ⁻¹' p) ⟨⟨u, hu⟩, hu'⟩, refine ⟨opens.comap ⟨_, continuous_subtype_coe⟩ U, hU, _⟩, rintros ⟨_, x, hx, rfl⟩ hx' hx'', refine le_antisymm (set.preimage_mono (_ : (⟨x, hx⟩ : opens α) ≤ U)) hx'', refine sup_eq_right.mp (hU' (⟨x, hx⟩ ⊔ U) _ le_sup_right), dsimp [set.preimage], rw map_sup, convert hx', exact sup_eq_left.mpr hx'' end variable (α) example (α : Type*) : set α ≃o (set α)ᵒᵈ := by refine order_iso.compl (set α) lemma noetherian_space_tfae : tfae [noetherian_space α, well_founded (λ s t : closeds α, s < t), ∀ s : set α, is_compact s, ∀ s : opens α, is_compact (s : set α)] := begin tfae_have : 1 ↔ 2, { refine (noetherian_space_iff _).trans (surjective.well_founded_iff opens.compl_bijective.2 _), exact λ s t, (order_iso.compl (set α)).lt_iff_lt.symm }, tfae_have : 1 ↔ 4, { exact noetherian_space_iff_opens α }, tfae_have : 1 → 3, { intros H s, rw is_compact_iff_compact_space, resetI, apply_instance }, tfae_have : 3 → 4, { exact λ H s, H s }, tfae_finish end variables {α β} lemma noetherian_space.is_compact [h : noetherian_space α] (s : set α) : is_compact s := let H := (noetherian_space_tfae α).out 0 2 in H.mp h s lemma noetherian_space_of_surjective [noetherian_space α] (f : α → β) (hf : continuous f) (hf' : function.surjective f) : noetherian_space β := begin rw noetherian_space_iff_opens, intro s, obtain ⟨t, e⟩ := set.image_surjective.mpr hf' s, exact e ▸ (noetherian_space.is_compact t).image hf, end lemma noetherian_space_iff_of_homeomorph (f : α ≃ₜ β) : noetherian_space α ↔ noetherian_space β := ⟨λ h, @@noetherian_space_of_surjective _ _ h f f.continuous f.surjective, λ h, @@noetherian_space_of_surjective _ _ h f.symm f.symm.continuous f.symm.surjective⟩ lemma noetherian_space.range [noetherian_space α] (f : α → β) (hf : continuous f) : noetherian_space (set.range f) := noetherian_space_of_surjective (set.cod_restrict f _ set.mem_range_self) (by continuity) (λ ⟨a, b, h⟩, ⟨b, subtype.ext h⟩) lemma noetherian_space_set_iff (s : set α) : noetherian_space s ↔ ∀ t ⊆ s, is_compact t := begin rw (noetherian_space_tfae s).out 0 2, split, { intros H t ht, have := embedding_subtype_coe.is_compact_iff_is_compact_image.mp (H (coe ⁻¹' t)), simpa [set.inter_eq_left_iff_subset.mpr ht] using this }, { intros H t, refine embedding_subtype_coe.is_compact_iff_is_compact_image.mpr (H (coe '' t) _), simp } end @[simp] lemma noetherian_univ_iff : noetherian_space (set.univ : set α) ↔ noetherian_space α := noetherian_space_iff_of_homeomorph (homeomorph.set.univ α) lemma noetherian_space.Union {ι : Type*} (f : ι → set α) [finite ι] [hf : ∀ i, noetherian_space (f i)] : noetherian_space (⋃ i, f i) := begin casesI nonempty_fintype ι, simp_rw noetherian_space_set_iff at hf ⊢, intros t ht, rw [← set.inter_eq_left_iff_subset.mpr ht, set.inter_Union], exact compact_Union (λ i, hf i _ (set.inter_subset_right _ _)) end -- This is not an instance since it makes a loop with `t2_space_discrete`. lemma noetherian_space.discrete [noetherian_space α] [t2_space α] : discrete_topology α := ⟨eq_bot_iff.mpr (λ U _, is_closed_compl_iff.mp (noetherian_space.is_compact _).is_closed)⟩ local attribute [instance] noetherian_space.discrete /-- Spaces that are both Noetherian and Hausdorff is finite. -/ lemma noetherian_space.finite [noetherian_space α] [t2_space α] : finite α := begin letI : fintype α := set.fintype_of_finite_univ (noetherian_space.is_compact set.univ).finite_of_discrete, apply_instance end @[priority 100] instance finite.to_noetherian_space [finite α] : noetherian_space α := begin casesI nonempty_fintype α, classical, exact ⟨@@fintype.well_founded_of_trans_of_irrefl (subtype.fintype _) _ _ _⟩ end lemma noetherian_space.exists_finset_irreducible [noetherian_space α] (s : closeds α) : ∃ S : finset (closeds α), (∀ k : S, is_irreducible (k : set α)) ∧ s = S.sup id := begin classical, have := ((noetherian_space_tfae α).out 0 1).mp infer_instance, apply well_founded.induction this s, clear s, intros s H, by_cases h₁ : is_preirreducible s.1, cases h₂ : s.1.eq_empty_or_nonempty, { use ∅, refine ⟨λ k, k.2.elim, _⟩, rw finset.sup_empty, ext1, exact h }, { use {s}, simp only [coe_coe, finset.sup_singleton, id.def, eq_self_iff_true, and_true], rintro ⟨k, hk⟩, cases finset.mem_singleton.mp hk, exact ⟨h, h₁⟩ }, { rw is_preirreducible_iff_closed_union_closed at h₁, push_neg at h₁, obtain ⟨z₁, z₂, hz₁, hz₂, h, hz₁', hz₂'⟩ := h₁, obtain ⟨S₁, hS₁, hS₁'⟩ := H (s ⊓ ⟨z₁, hz₁⟩) (inf_lt_left.2 hz₁'), obtain ⟨S₂, hS₂, hS₂'⟩ := H (s ⊓ ⟨z₂, hz₂⟩) (inf_lt_left.2 hz₂'), refine ⟨S₁ ∪ S₂, λ k, _, _⟩, { cases finset.mem_union.mp k.2 with h' h', exacts [hS₁ ⟨k, h'⟩, hS₂ ⟨k, h'⟩] }, { rwa [finset.sup_union, ← hS₁', ← hS₂', ← inf_sup_left, left_eq_inf] } } end lemma noetherian_space.finite_irreducible_components [noetherian_space α] : (set.range irreducible_component : set (set α)).finite := begin classical, obtain ⟨S, hS₁, hS₂⟩ := noetherian_space.exists_finset_irreducible (⊤ : closeds α), suffices : ∀ x : α, ∃ s : S, irreducible_component x = s, { choose f hf, rw [show irreducible_component = coe ∘ f, from funext hf, set.range_comp], exact (set.finite.intro infer_instance).image _ }, intro x, obtain ⟨z, hz, hz'⟩ : ∃ (z : set α) (H : z ∈ finset.image coe S), irreducible_component x ⊆ z, { convert is_irreducible_iff_sUnion_closed.mp is_irreducible_irreducible_component (S.image coe) _ _, { apply_instance }, { simp only [finset.mem_image, exists_prop, forall_exists_index, and_imp], rintro _ z hz rfl, exact z.2 }, { exact (set.subset_univ _).trans ((congr_arg coe hS₂).trans $ by simp).subset } }, obtain ⟨s, hs, e⟩ := finset.mem_image.mp hz, rw ← e at hz', use ⟨s, hs⟩, symmetry, apply eq_irreducible_component (hS₁ _).2, simpa, end end topological_space