/- Copyright (c) 2020 Patrick Massot. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Patrick Massot -/ import topology.algebra.order.proj_Icc import topology.continuous_function.basic import topology.unit_interval /-! # Path connectedness ## Main definitions In the file the unit interval `[0, 1]` in `ℝ` is denoted by `I`, and `X` is a topological space. * `path (x y : X)` is the type of paths from `x` to `y`, i.e., continuous maps from `I` to `X` mapping `0` to `x` and `1` to `y`. * `path.map` is the image of a path under a continuous map. * `joined (x y : X)` means there is a path between `x` and `y`. * `joined.some_path (h : joined x y)` selects some path between two points `x` and `y`. * `path_component (x : X)` is the set of points joined to `x`. * `path_connected_space X` is a predicate class asserting that `X` is non-empty and every two points of `X` are joined. Then there are corresponding relative notions for `F : set X`. * `joined_in F (x y : X)` means there is a path `γ` joining `x` to `y` with values in `F`. * `joined_in.some_path (h : joined_in F x y)` selects a path from `x` to `y` inside `F`. * `path_component_in F (x : X)` is the set of points joined to `x` in `F`. * `is_path_connected F` asserts that `F` is non-empty and every two points of `F` are joined in `F`. * `loc_path_connected_space X` is a predicate class asserting that `X` is locally path-connected: each point has a basis of path-connected neighborhoods (we do *not* ask these to be open). ## Main theorems * `joined` and `joined_in F` are transitive relations. One can link the absolute and relative version in two directions, using `(univ : set X)` or the subtype `↥F`. * `path_connected_space_iff_univ : path_connected_space X ↔ is_path_connected (univ : set X)` * `is_path_connected_iff_path_connected_space : is_path_connected F ↔ path_connected_space ↥F` For locally path connected spaces, we have * `path_connected_space_iff_connected_space : path_connected_space X ↔ connected_space X` * `is_connected_iff_is_path_connected (U_op : is_open U) : is_path_connected U ↔ is_connected U` ## Implementation notes By default, all paths have `I` as their source and `X` as their target, but there is an operation `set.Icc_extend` that will extend any continuous map `γ : I → X` into a continuous map `Icc_extend zero_le_one γ : ℝ → X` that is constant before `0` and after `1`. This is used to define `path.extend` that turns `γ : path x y` into a continuous map `γ.extend : ℝ → X` whose restriction to `I` is the original `γ`, and is equal to `x` on `(-∞, 0]` and to `y` on `[1, +∞)`. -/ noncomputable theory open_locale classical topological_space filter unit_interval open filter set function unit_interval variables {X Y : Type*} [topological_space X] [topological_space Y] {x y z : X} {ι : Type*} /-! ### Paths -/ /-- Continuous path connecting two points `x` and `y` in a topological space -/ @[nolint has_inhabited_instance] structure path (x y : X) extends C(I, X) := (source' : to_fun 0 = x) (target' : to_fun 1 = y) instance : has_coe_to_fun (path x y) (λ _, I → X) := ⟨λ p, p.to_fun⟩ @[ext] protected lemma path.ext : ∀ {γ₁ γ₂ : path x y}, (γ₁ : I → X) = γ₂ → γ₁ = γ₂ | ⟨⟨x, h11⟩, h12, h13⟩ ⟨⟨.(x), h21⟩, h22, h23⟩ rfl := rfl namespace path @[simp] lemma coe_mk (f : I → X) (h₁ h₂ h₃) : ⇑(mk ⟨f, h₁⟩ h₂ h₃ : path x y) = f := rfl variable (γ : path x y) @[continuity] protected lemma continuous : continuous γ := γ.continuous_to_fun @[simp] protected lemma source : γ 0 = x := γ.source' @[simp] protected lemma target : γ 1 = y := γ.target' /-- See Note [custom simps projection]. We need to specify this projection explicitly in this case, because it is a composition of multiple projections. -/ def simps.apply : I → X := γ initialize_simps_projections path (to_continuous_map_to_fun → simps.apply, -to_continuous_map) @[simp] lemma coe_to_continuous_map : ⇑γ.to_continuous_map = γ := rfl /-- Any function `φ : Π (a : α), path (x a) (y a)` can be seen as a function `α × I → X`. -/ instance has_uncurry_path {X α : Type*} [topological_space X] {x y : α → X} : has_uncurry (Π (a : α), path (x a) (y a)) (α × I) X := ⟨λ φ p, φ p.1 p.2⟩ /-- The constant path from a point to itself -/ @[refl, simps] def refl (x : X) : path x x := { to_fun := λ t, x, continuous_to_fun := continuous_const, source' := rfl, target' := rfl } @[simp] lemma refl_range {a : X} : range (path.refl a) = {a} := by simp [path.refl, has_coe_to_fun.coe, coe_fn] /-- The reverse of a path from `x` to `y`, as a path from `y` to `x` -/ @[symm, simps] def symm (γ : path x y) : path y x := { to_fun := γ ∘ σ, continuous_to_fun := by continuity, source' := by simpa [-path.target] using γ.target, target' := by simpa [-path.source] using γ.source } @[simp] lemma symm_symm {γ : path x y} : γ.symm.symm = γ := by { ext, simp } @[simp] lemma refl_symm {a : X} : (path.refl a).symm = path.refl a := by { ext, refl } @[simp] lemma symm_range {a b : X} (γ : path a b) : range γ.symm = range γ := begin ext x, simp only [mem_range, path.symm, has_coe_to_fun.coe, coe_fn, unit_interval.symm, set_coe.exists, comp_app, subtype.coe_mk, subtype.val_eq_coe], split; rintros ⟨y, hy, hxy⟩; refine ⟨1-y, mem_iff_one_sub_mem.mp hy, _⟩; convert hxy, simp end /-- A continuous map extending a path to `ℝ`, constant before `0` and after `1`. -/ def extend : ℝ → X := Icc_extend zero_le_one γ /-- See Note [continuity lemma statement]. -/ lemma _root_.continuous.path_extend {γ : Y → path x y} {f : Y → ℝ} (hγ : continuous ↿γ) (hf : continuous f) : continuous (λ t, (γ t).extend (f t)) := continuous.Icc_extend hγ hf /-- A useful special case of `continuous.path_extend`. -/ @[continuity] lemma continuous_extend : continuous γ.extend := γ.continuous.Icc_extend' lemma _root_.filter.tendsto.path_extend {X Y : Type*} [topological_space X] [topological_space Y] {l r : Y → X} {y : Y} {l₁ : filter ℝ} {l₂ : filter X} {γ : ∀ y, path (l y) (r y)} (hγ : tendsto ↿γ (𝓝 y ×ᶠ l₁.map (proj_Icc 0 1 zero_le_one)) l₂) : tendsto ↿(λ x, (γ x).extend) (𝓝 y ×ᶠ l₁) l₂ := filter.tendsto.Icc_extend _ hγ lemma _root_.continuous_at.path_extend {g : Y → ℝ} {l r : Y → X} (γ : ∀ y, path (l y) (r y)) {y : Y} (hγ : continuous_at ↿γ (y, proj_Icc 0 1 zero_le_one (g y))) (hg : continuous_at g y) : continuous_at (λ i, (γ i).extend (g i)) y := hγ.Icc_extend (λ x, γ x) hg @[simp] lemma extend_extends {X : Type*} [topological_space X] {a b : X} (γ : path a b) {t : ℝ} (ht : t ∈ (Icc 0 1 : set ℝ)) : γ.extend t = γ ⟨t, ht⟩ := Icc_extend_of_mem _ γ ht lemma extend_zero : γ.extend 0 = x := by simp lemma extend_one : γ.extend 1 = y := by simp @[simp] lemma extend_extends' {X : Type*} [topological_space X] {a b : X} (γ : path a b) (t : (Icc 0 1 : set ℝ)) : γ.extend t = γ t := Icc_extend_coe _ γ t @[simp] lemma extend_range {X : Type*} [topological_space X] {a b : X} (γ : path a b) : range γ.extend = range γ := Icc_extend_range _ γ lemma extend_of_le_zero {X : Type*} [topological_space X] {a b : X} (γ : path a b) {t : ℝ} (ht : t ≤ 0) : γ.extend t = a := (Icc_extend_of_le_left _ _ ht).trans γ.source lemma extend_of_one_le {X : Type*} [topological_space X] {a b : X} (γ : path a b) {t : ℝ} (ht : 1 ≤ t) : γ.extend t = b := (Icc_extend_of_right_le _ _ ht).trans γ.target @[simp] lemma refl_extend {X : Type*} [topological_space X] {a : X} : (path.refl a).extend = λ _, a := rfl /-- The path obtained from a map defined on `ℝ` by restriction to the unit interval. -/ def of_line {f : ℝ → X} (hf : continuous_on f I) (h₀ : f 0 = x) (h₁ : f 1 = y) : path x y := { to_fun := f ∘ coe, continuous_to_fun := hf.comp_continuous continuous_subtype_coe subtype.prop, source' := h₀, target' := h₁ } lemma of_line_mem {f : ℝ → X} (hf : continuous_on f I) (h₀ : f 0 = x) (h₁ : f 1 = y) : ∀ t, of_line hf h₀ h₁ t ∈ f '' I := λ ⟨t, t_in⟩, ⟨t, t_in, rfl⟩ local attribute [simp] Iic_def /-- Concatenation of two paths from `x` to `y` and from `y` to `z`, putting the first path on `[0, 1/2]` and the second one on `[1/2, 1]`. -/ @[trans] def trans (γ : path x y) (γ' : path y z) : path x z := { to_fun := (λ t : ℝ, if t ≤ 1/2 then γ.extend (2*t) else γ'.extend (2*t-1)) ∘ coe, continuous_to_fun := begin refine (continuous.if_le _ _ continuous_id continuous_const (by norm_num)).comp continuous_subtype_coe, -- TODO: the following are provable by `continuity` but it is too slow exacts [γ.continuous_extend.comp (continuous_const.mul continuous_id), γ'.continuous_extend.comp ((continuous_const.mul continuous_id).sub continuous_const)] end, source' := by norm_num, target' := by norm_num } lemma trans_apply (γ : path x y) (γ' : path y z) (t : I) : (γ.trans γ') t = if h : (t : ℝ) ≤ 1/2 then γ ⟨2 * t, (mul_pos_mem_iff zero_lt_two).2 ⟨t.2.1, h⟩⟩ else γ' ⟨2 * t - 1, two_mul_sub_one_mem_iff.2 ⟨(not_le.1 h).le, t.2.2⟩⟩ := show ite _ _ _ = _, by split_ifs; rw extend_extends @[simp] lemma trans_symm (γ : path x y) (γ' : path y z) : (γ.trans γ').symm = γ'.symm.trans γ.symm := begin ext t, simp only [trans_apply, ← one_div, symm_apply, not_le, comp_app], split_ifs with h h₁ h₂ h₃ h₄; rw [coe_symm_eq] at h, { have ht : (t : ℝ) = 1/2, { linarith [unit_interval.nonneg t, unit_interval.le_one t] }, norm_num [ht] }, { refine congr_arg _ (subtype.ext _), norm_num [sub_sub_eq_add_sub, mul_sub] }, { refine congr_arg _ (subtype.ext _), have h : 2 - 2 * (t : ℝ) - 1 = 1 - 2 * t, by linarith, norm_num [mul_sub, h] }, { exfalso, linarith [unit_interval.nonneg t, unit_interval.le_one t] } end @[simp] lemma refl_trans_refl {X : Type*} [topological_space X] {a : X} : (path.refl a).trans (path.refl a) = path.refl a := begin ext, simp only [path.trans, if_t_t, one_div, path.refl_extend], refl end lemma trans_range {X : Type*} [topological_space X] {a b c : X} (γ₁ : path a b) (γ₂ : path b c) : range (γ₁.trans γ₂) = range γ₁ ∪ range γ₂ := begin rw path.trans, apply eq_of_subset_of_subset, { rintros x ⟨⟨t, ht0, ht1⟩, hxt⟩, by_cases h : t ≤ 1/2, { left, use [2*t, ⟨by linarith, by linarith⟩], rw ← γ₁.extend_extends, unfold_coes at hxt, simp only [h, comp_app, if_true] at hxt, exact hxt }, { right, use [2*t-1, ⟨by linarith, by linarith⟩], rw ← γ₂.extend_extends, unfold_coes at hxt, simp only [h, comp_app, if_false] at hxt, exact hxt } }, { rintros x (⟨⟨t, ht0, ht1⟩, hxt⟩ | ⟨⟨t, ht0, ht1⟩, hxt⟩), { use ⟨t/2, ⟨by linarith, by linarith⟩⟩, unfold_coes, have : t/2 ≤ 1/2 := by linarith, simp only [this, comp_app, if_true], ring_nf, rwa γ₁.extend_extends }, { by_cases h : t = 0, { use ⟨1/2, ⟨by linarith, by linarith⟩⟩, unfold_coes, simp only [h, comp_app, if_true, le_refl, mul_one_div_cancel (@two_ne_zero ℝ _ _)], rw γ₁.extend_one, rwa [← γ₂.extend_extends, h, γ₂.extend_zero] at hxt }, { use ⟨(t+1)/2, ⟨by linarith, by linarith⟩⟩, unfold_coes, change t ≠ 0 at h, have ht0 := lt_of_le_of_ne ht0 h.symm, have : ¬ (t+1)/2 ≤ 1/2 := by {rw not_le, linarith}, simp only [comp_app, if_false, this], ring_nf, rwa γ₂.extend_extends } } } end /-- Image of a path from `x` to `y` by a continuous map -/ def map (γ : path x y) {Y : Type*} [topological_space Y] {f : X → Y} (h : continuous f) : path (f x) (f y) := { to_fun := f ∘ γ, continuous_to_fun := by continuity, source' := by simp, target' := by simp } @[simp] lemma map_coe (γ : path x y) {Y : Type*} [topological_space Y] {f : X → Y} (h : continuous f) : (γ.map h : I → Y) = f ∘ γ := by { ext t, refl } @[simp] lemma map_symm (γ : path x y) {Y : Type*} [topological_space Y] {f : X → Y} (h : continuous f) : (γ.map h).symm = γ.symm.map h := rfl @[simp] lemma map_trans (γ : path x y) (γ' : path y z) {Y : Type*} [topological_space Y] {f : X → Y} (h : continuous f) : (γ.trans γ').map h = (γ.map h).trans (γ'.map h) := by { ext t, rw [trans_apply, map_coe, comp_app, trans_apply], split_ifs; refl } @[simp] lemma map_id (γ : path x y) : γ.map continuous_id = γ := by { ext, refl } @[simp] lemma map_map (γ : path x y) {Y : Type*} [topological_space Y] {Z : Type*} [topological_space Z] {f : X → Y} (hf : continuous f) {g : Y → Z} (hg : continuous g) : (γ.map hf).map hg = γ.map (hg.comp hf) := by { ext, refl } /-- Casting a path from `x` to `y` to a path from `x'` to `y'` when `x' = x` and `y' = y` -/ def cast (γ : path x y) {x' y'} (hx : x' = x) (hy : y' = y) : path x' y' := { to_fun := γ, continuous_to_fun := γ.continuous, source' := by simp [hx], target' := by simp [hy] } @[simp] lemma symm_cast {X : Type*} [topological_space X] {a₁ a₂ b₁ b₂ : X} (γ : path a₂ b₂) (ha : a₁ = a₂) (hb : b₁ = b₂) : (γ.cast ha hb).symm = (γ.symm).cast hb ha := rfl @[simp] lemma trans_cast {X : Type*} [topological_space X] {a₁ a₂ b₁ b₂ c₁ c₂ : X} (γ : path a₂ b₂) (γ' : path b₂ c₂) (ha : a₁ = a₂) (hb : b₁ = b₂) (hc : c₁ = c₂) : (γ.cast ha hb).trans (γ'.cast hb hc) = (γ.trans γ').cast ha hc := rfl @[simp] lemma cast_coe (γ : path x y) {x' y'} (hx : x' = x) (hy : y' = y) : (γ.cast hx hy : I → X) = γ := rfl @[continuity] lemma symm_continuous_family {X ι : Type*} [topological_space X] [topological_space ι] {a b : ι → X} (γ : Π (t : ι), path (a t) (b t)) (h : continuous ↿γ) : continuous ↿(λ t, (γ t).symm) := h.comp (continuous_id.prod_map continuous_symm) @[continuity] lemma continuous_uncurry_extend_of_continuous_family {X ι : Type*} [topological_space X] [topological_space ι] {a b : ι → X} (γ : Π (t : ι), path (a t) (b t)) (h : continuous ↿γ) : continuous ↿(λ t, (γ t).extend) := h.comp (continuous_id.prod_map continuous_proj_Icc) @[continuity] lemma trans_continuous_family {X ι : Type*} [topological_space X] [topological_space ι] {a b c : ι → X} (γ₁ : Π (t : ι), path (a t) (b t)) (h₁ : continuous ↿γ₁) (γ₂ : Π (t : ι), path (b t) (c t)) (h₂ : continuous ↿γ₂) : continuous ↿(λ t, (γ₁ t).trans (γ₂ t)) := begin have h₁' := path.continuous_uncurry_extend_of_continuous_family γ₁ h₁, have h₂' := path.continuous_uncurry_extend_of_continuous_family γ₂ h₂, simp only [has_uncurry.uncurry, has_coe_to_fun.coe, coe_fn, path.trans, (∘)], refine continuous.if_le _ _ (continuous_subtype_coe.comp continuous_snd) continuous_const _, { change continuous ((λ p : ι × ℝ, (γ₁ p.1).extend p.2) ∘ (prod.map id (λ x, 2*x : I → ℝ))), exact h₁'.comp (continuous_id.prod_map $ continuous_const.mul continuous_subtype_coe) }, { change continuous ((λ p : ι × ℝ, (γ₂ p.1).extend p.2) ∘ (prod.map id (λ x, 2*x - 1 : I → ℝ))), exact h₂'.comp (continuous_id.prod_map $ (continuous_const.mul continuous_subtype_coe).sub continuous_const) }, { rintros st hst, simp [hst, mul_inv_cancel (@two_ne_zero ℝ _ _)] } end /-! #### Product of paths -/ section prod variables {a₁ a₂ a₃ : X} {b₁ b₂ b₃ : Y} /-- Given a path in `X` and a path in `Y`, we can take their pointwise product to get a path in `X × Y`. -/ protected def prod (γ₁ : path a₁ a₂) (γ₂ : path b₁ b₂) : path (a₁, b₁) (a₂, b₂) := { to_continuous_map := continuous_map.prod_mk γ₁.to_continuous_map γ₂.to_continuous_map, source' := by simp, target' := by simp, } @[simp] lemma prod_coe_fn (γ₁ : path a₁ a₂) (γ₂ : path b₁ b₂) : (coe_fn (γ₁.prod γ₂)) = λ t, (γ₁ t, γ₂ t) := rfl /-- Path composition commutes with products -/ lemma trans_prod_eq_prod_trans (γ₁ : path a₁ a₂) (δ₁ : path a₂ a₃) (γ₂ : path b₁ b₂) (δ₂ : path b₂ b₃) : (γ₁.prod γ₂).trans (δ₁.prod δ₂) = (γ₁.trans δ₁).prod (γ₂.trans δ₂) := begin ext t; unfold path.trans; simp only [path.coe_mk, path.prod_coe_fn, function.comp_app]; split_ifs; refl, end end prod section pi variables {χ : ι → Type*} [∀ i, topological_space (χ i)] {as bs cs : Π i, χ i} /-- Given a family of paths, one in each Xᵢ, we take their pointwise product to get a path in Π i, Xᵢ. -/ protected def pi (γ : Π i, path (as i) (bs i)) : path as bs := { to_continuous_map := continuous_map.pi (λ i, (γ i).to_continuous_map), source' := by simp, target' := by simp, } @[simp] lemma pi_coe_fn (γ : Π i, path (as i) (bs i)) : (coe_fn (path.pi γ)) = λ t i, γ i t := rfl /-- Path composition commutes with products -/ lemma trans_pi_eq_pi_trans (γ₀ : Π i, path (as i) (bs i)) (γ₁ : Π i, path (bs i) (cs i)) : (path.pi γ₀).trans (path.pi γ₁) = path.pi (λ i, (γ₀ i).trans (γ₁ i)) := begin ext t i, unfold path.trans, simp only [path.coe_mk, function.comp_app, pi_coe_fn], split_ifs; refl, end end pi /-! #### Pointwise multiplication/addition of two paths in a topological (additive) group -/ /-- Pointwise multiplication of paths in a topological group. The additive version is probably more useful. -/ @[to_additive "Pointwise addition of paths in a topological additive group."] protected def mul [has_mul X] [has_continuous_mul X] {a₁ b₁ a₂ b₂ : X} (γ₁ : path a₁ b₁) (γ₂ : path a₂ b₂) : path (a₁ * a₂) (b₁ * b₂) := (γ₁.prod γ₂).map continuous_mul @[to_additive] protected lemma mul_apply [has_mul X] [has_continuous_mul X] {a₁ b₁ a₂ b₂ : X} (γ₁ : path a₁ b₁) (γ₂ : path a₂ b₂) (t : unit_interval) : (γ₁.mul γ₂) t = γ₁ t * γ₂ t := rfl /-! #### Truncating a path -/ /-- `γ.truncate t₀ t₁` is the path which follows the path `γ` on the time interval `[t₀, t₁]` and stays still otherwise. -/ def truncate {X : Type*} [topological_space X] {a b : X} (γ : path a b) (t₀ t₁ : ℝ) : path (γ.extend $ min t₀ t₁) (γ.extend t₁) := { to_fun := λ s, γ.extend (min (max s t₀) t₁), continuous_to_fun := γ.continuous_extend.comp ((continuous_subtype_coe.max continuous_const).min continuous_const), source' := begin simp only [min_def, max_def], norm_cast, split_ifs with h₁ h₂ h₃ h₄, { simp [γ.extend_of_le_zero h₁] }, { congr, linarith }, { have h₄ : t₁ ≤ 0 := le_of_lt (by simpa using h₂), simp [γ.extend_of_le_zero h₄, γ.extend_of_le_zero h₁] }, all_goals { refl } end, target' := begin simp only [min_def, max_def], norm_cast, split_ifs with h₁ h₂ h₃, { simp [γ.extend_of_one_le h₂] }, { refl }, { have h₄ : 1 ≤ t₀ := le_of_lt (by simpa using h₁), simp [γ.extend_of_one_le h₄, γ.extend_of_one_le (h₄.trans h₃)] }, { refl } end } /-- `γ.truncate_of_le t₀ t₁ h`, where `h : t₀ ≤ t₁` is `γ.truncate t₀ t₁` casted as a path from `γ.extend t₀` to `γ.extend t₁`. -/ def truncate_of_le {X : Type*} [topological_space X] {a b : X} (γ : path a b) {t₀ t₁ : ℝ} (h : t₀ ≤ t₁) : path (γ.extend t₀) (γ.extend t₁) := (γ.truncate t₀ t₁).cast (by rw min_eq_left h) rfl lemma truncate_range {X : Type*} [topological_space X] {a b : X} (γ : path a b) {t₀ t₁ : ℝ} : range (γ.truncate t₀ t₁) ⊆ range γ := begin rw ← γ.extend_range, simp only [range_subset_iff, set_coe.exists, set_coe.forall], intros x hx, simp only [has_coe_to_fun.coe, coe_fn, path.truncate, mem_range_self] end /-- For a path `γ`, `γ.truncate` gives a "continuous family of paths", by which we mean the uncurried function which maps `(t₀, t₁, s)` to `γ.truncate t₀ t₁ s` is continuous. -/ @[continuity] lemma truncate_continuous_family {X : Type*} [topological_space X] {a b : X} (γ : path a b) : continuous (λ x, γ.truncate x.1 x.2.1 x.2.2 : ℝ × ℝ × I → X) := γ.continuous_extend.comp (((continuous_subtype_coe.comp (continuous_snd.comp continuous_snd)).max continuous_fst).min (continuous_fst.comp continuous_snd)) /- TODO : When `continuity` gets quicker, change the proof back to : `begin` `simp only [has_coe_to_fun.coe, coe_fn, path.truncate],` `continuity,` `exact continuous_subtype_coe` `end` -/ @[continuity] lemma truncate_const_continuous_family {X : Type*} [topological_space X] {a b : X} (γ : path a b) (t : ℝ) : continuous ↿(γ.truncate t) := have key : continuous (λ x, (t, x) : ℝ × I → ℝ × ℝ × I) := continuous_const.prod_mk continuous_id, by convert γ.truncate_continuous_family.comp key @[simp] lemma truncate_self {X : Type*} [topological_space X] {a b : X} (γ : path a b) (t : ℝ) : γ.truncate t t = (path.refl $ γ.extend t).cast (by rw min_self) rfl := begin ext x, rw cast_coe, simp only [truncate, has_coe_to_fun.coe, coe_fn, refl, min_def, max_def], split_ifs with h₁ h₂; congr, exact le_antisymm ‹_› ‹_› end @[simp] lemma truncate_zero_zero {X : Type*} [topological_space X] {a b : X} (γ : path a b) : γ.truncate 0 0 = (path.refl a).cast (by rw [min_self, γ.extend_zero]) γ.extend_zero := by convert γ.truncate_self 0; exact γ.extend_zero.symm @[simp] lemma truncate_one_one {X : Type*} [topological_space X] {a b : X} (γ : path a b) : γ.truncate 1 1 = (path.refl b).cast (by rw [min_self, γ.extend_one]) γ.extend_one := by convert γ.truncate_self 1; exact γ.extend_one.symm @[simp] lemma truncate_zero_one {X : Type*} [topological_space X] {a b : X} (γ : path a b) : γ.truncate 0 1 = γ.cast (by simp [zero_le_one, extend_zero]) (by simp) := begin ext x, rw cast_coe, have : ↑x ∈ (Icc 0 1 : set ℝ) := x.2, rw [truncate, coe_mk, max_eq_left this.1, min_eq_left this.2, extend_extends'] end /-! #### Reparametrising a path -/ /-- Given a path `γ` and a function `f : I → I` where `f 0 = 0` and `f 1 = 1`, `γ.reparam f` is the path defined by `γ ∘ f`. -/ def reparam (γ : path x y) (f : I → I) (hfcont : continuous f) (hf₀ : f 0 = 0) (hf₁ : f 1 = 1) : path x y := { to_fun := γ ∘ f, continuous_to_fun := by continuity, source' := by simp [hf₀], target' := by simp [hf₁] } @[simp] lemma coe_to_fun (γ : path x y) {f : I → I} (hfcont : continuous f) (hf₀ : f 0 = 0) (hf₁ : f 1 = 1) : ⇑(γ.reparam f hfcont hf₀ hf₁) = γ ∘ f := rfl @[simp] lemma reparam_id (γ : path x y) : γ.reparam id continuous_id rfl rfl = γ := by { ext, refl } lemma range_reparam (γ : path x y) {f : I → I} (hfcont : continuous f) (hf₀ : f 0 = 0) (hf₁ : f 1 = 1) : range ⇑(γ.reparam f hfcont hf₀ hf₁) = range γ := begin change range (γ ∘ f) = range γ, have : range f = univ, { rw range_iff_surjective, intro t, have h₁ : continuous (Icc_extend (zero_le_one' ℝ) f), { continuity }, have := intermediate_value_Icc (zero_le_one' ℝ) h₁.continuous_on, { rw [Icc_extend_left, Icc_extend_right] at this, change Icc (f 0) (f 1) ⊆ _ at this, rw [hf₀, hf₁] at this, rcases this t.2 with ⟨w, hw₁, hw₂⟩, rw Icc_extend_of_mem _ _ hw₁ at hw₂, use [⟨w, hw₁⟩, hw₂] } }, rw [range_comp, this, image_univ], end lemma refl_reparam {f : I → I} (hfcont : continuous f) (hf₀ : f 0 = 0) (hf₁ : f 1 = 1) : (refl x).reparam f hfcont hf₀ hf₁ = refl x := begin ext, simp, end end path /-! ### Being joined by a path -/ /-- The relation "being joined by a path". This is an equivalence relation. -/ def joined (x y : X) : Prop := nonempty (path x y) @[refl] lemma joined.refl (x : X) : joined x x := ⟨path.refl x⟩ /-- When two points are joined, choose some path from `x` to `y`. -/ def joined.some_path (h : joined x y) : path x y := nonempty.some h @[symm] lemma joined.symm {x y : X} (h : joined x y) : joined y x := ⟨h.some_path.symm⟩ @[trans] lemma joined.trans {x y z : X} (hxy : joined x y) (hyz : joined y z) : joined x z := ⟨hxy.some_path.trans hyz.some_path⟩ variables (X) /-- The setoid corresponding the equivalence relation of being joined by a continuous path. -/ def path_setoid : setoid X := { r := joined, iseqv := mk_equivalence _ joined.refl (λ x y, joined.symm) (λ x y z, joined.trans) } /-- The quotient type of points of a topological space modulo being joined by a continuous path. -/ def zeroth_homotopy := quotient (path_setoid X) instance : inhabited (zeroth_homotopy ℝ) := ⟨@quotient.mk ℝ (path_setoid ℝ) 0⟩ variables {X} /-! ### Being joined by a path inside a set -/ /-- The relation "being joined by a path in `F`". Not quite an equivalence relation since it's not reflexive for points that do not belong to `F`. -/ def joined_in (F : set X) (x y : X) : Prop := ∃ γ : path x y, ∀ t, γ t ∈ F variables {F : set X} lemma joined_in.mem (h : joined_in F x y) : x ∈ F ∧ y ∈ F := begin rcases h with ⟨γ, γ_in⟩, have : γ 0 ∈ F ∧ γ 1 ∈ F, by { split; apply γ_in }, simpa using this end lemma joined_in.source_mem (h : joined_in F x y) : x ∈ F := h.mem.1 lemma joined_in.target_mem (h : joined_in F x y) : y ∈ F := h.mem.2 /-- When `x` and `y` are joined in `F`, choose a path from `x` to `y` inside `F` -/ def joined_in.some_path (h : joined_in F x y) : path x y := classical.some h lemma joined_in.some_path_mem (h : joined_in F x y) (t : I) : h.some_path t ∈ F := classical.some_spec h t /-- If `x` and `y` are joined in the set `F`, then they are joined in the subtype `F`. -/ lemma joined_in.joined_subtype (h : joined_in F x y) : joined (⟨x, h.source_mem⟩ : F) (⟨y, h.target_mem⟩ : F) := ⟨{ to_fun := λ t, ⟨h.some_path t, h.some_path_mem t⟩, continuous_to_fun := by continuity, source' := by simp, target' := by simp }⟩ lemma joined_in.of_line {f : ℝ → X} (hf : continuous_on f I) (h₀ : f 0 = x) (h₁ : f 1 = y) (hF : f '' I ⊆ F) : joined_in F x y := ⟨path.of_line hf h₀ h₁, λ t, hF $ path.of_line_mem hf h₀ h₁ t⟩ lemma joined_in.joined (h : joined_in F x y) : joined x y := ⟨h.some_path⟩ lemma joined_in_iff_joined (x_in : x ∈ F) (y_in : y ∈ F) : joined_in F x y ↔ joined (⟨x, x_in⟩ : F) (⟨y, y_in⟩ : F) := ⟨λ h, h.joined_subtype, λ h, ⟨h.some_path.map continuous_subtype_coe, by simp⟩⟩ @[simp] lemma joined_in_univ : joined_in univ x y ↔ joined x y := by simp [joined_in, joined, exists_true_iff_nonempty] lemma joined_in.mono {U V : set X} (h : joined_in U x y) (hUV : U ⊆ V) : joined_in V x y := ⟨h.some_path, λ t, hUV (h.some_path_mem t)⟩ lemma joined_in.refl (h : x ∈ F) : joined_in F x x := ⟨path.refl x, λ t, h⟩ @[symm] lemma joined_in.symm (h : joined_in F x y) : joined_in F y x := begin cases h.mem with hx hy, simp [joined_in_iff_joined, *] at *, exact h.symm end lemma joined_in.trans (hxy : joined_in F x y) (hyz : joined_in F y z) : joined_in F x z := begin cases hxy.mem with hx hy, cases hyz.mem with hx hy, simp [joined_in_iff_joined, *] at *, exact hxy.trans hyz end /-! ### Path component -/ /-- The path component of `x` is the set of points that can be joined to `x`. -/ def path_component (x : X) := {y | joined x y} @[simp] lemma mem_path_component_self (x : X) : x ∈ path_component x := joined.refl x @[simp] lemma path_component.nonempty (x : X) : (path_component x).nonempty := ⟨x, mem_path_component_self x⟩ lemma mem_path_component_of_mem (h : x ∈ path_component y) : y ∈ path_component x := joined.symm h lemma path_component_symm : x ∈ path_component y ↔ y ∈ path_component x := ⟨λ h, mem_path_component_of_mem h, λ h, mem_path_component_of_mem h⟩ lemma path_component_congr (h : x ∈ path_component y) : path_component x = path_component y := begin ext z, split, { intro h', rw path_component_symm, exact (h.trans h').symm }, { intro h', rw path_component_symm at h' ⊢, exact h'.trans h }, end lemma path_component_subset_component (x : X) : path_component x ⊆ connected_component x := λ y h, (is_connected_range h.some_path.continuous).subset_connected_component ⟨0, by simp⟩ ⟨1, by simp⟩ /-- The path component of `x` in `F` is the set of points that can be joined to `x` in `F`. -/ def path_component_in (x : X) (F : set X) := {y | joined_in F x y} @[simp] lemma path_component_in_univ (x : X) : path_component_in x univ = path_component x := by simp [path_component_in, path_component, joined_in, joined, exists_true_iff_nonempty] lemma joined.mem_path_component (hyz : joined y z) (hxy : y ∈ path_component x) : z ∈ path_component x := hxy.trans hyz /-! ### Path connected sets -/ /-- A set `F` is path connected if it contains a point that can be joined to all other in `F`. -/ def is_path_connected (F : set X) : Prop := ∃ x ∈ F, ∀ {y}, y ∈ F → joined_in F x y lemma is_path_connected_iff_eq : is_path_connected F ↔ ∃ x ∈ F, path_component_in x F = F := begin split ; rintros ⟨x, x_in, h⟩ ; use [x, x_in], { ext y, exact ⟨λ hy, hy.mem.2, h⟩ }, { intros y y_in, rwa ← h at y_in }, end lemma is_path_connected.joined_in (h : is_path_connected F) : ∀ x y ∈ F, joined_in F x y := λ x x_in x y_in, let ⟨b, b_in, hb⟩ := h in (hb x_in).symm.trans (hb y_in) lemma is_path_connected_iff : is_path_connected F ↔ F.nonempty ∧ ∀ x y ∈ F, joined_in F x y := ⟨λ h, ⟨let ⟨b, b_in, hb⟩ := h in ⟨b, b_in⟩, h.joined_in⟩, λ ⟨⟨b, b_in⟩, h⟩, ⟨b, b_in, λ x x_in, h b b_in x x_in⟩⟩ lemma is_path_connected.image {Y : Type*} [topological_space Y] (hF : is_path_connected F) {f : X → Y} (hf : continuous f) : is_path_connected (f '' F) := begin rcases hF with ⟨x, x_in, hx⟩, use [f x, mem_image_of_mem f x_in], rintros _ ⟨y, y_in, rfl⟩, exact ⟨(hx y_in).some_path.map hf, λ t, ⟨_, (hx y_in).some_path_mem t, rfl⟩⟩, end lemma is_path_connected.mem_path_component (h : is_path_connected F) (x_in : x ∈ F) (y_in : y ∈ F) : y ∈ path_component x := (h.joined_in x x_in y y_in).joined lemma is_path_connected.subset_path_component (h : is_path_connected F) (x_in : x ∈ F) : F ⊆ path_component x := λ y y_in, h.mem_path_component x_in y_in lemma is_path_connected.union {U V : set X} (hU : is_path_connected U) (hV : is_path_connected V) (hUV : (U ∩ V).nonempty) : is_path_connected (U ∪ V) := begin rcases hUV with ⟨x, xU, xV⟩, use [x, or.inl xU], rintros y (yU | yV), { exact (hU.joined_in x xU y yU).mono (subset_union_left U V) }, { exact (hV.joined_in x xV y yV).mono (subset_union_right U V) }, end /-- If a set `W` is path-connected, then it is also path-connected when seen as a set in a smaller ambient type `U` (when `U` contains `W`). -/ lemma is_path_connected.preimage_coe {U W : set X} (hW : is_path_connected W) (hWU : W ⊆ U) : is_path_connected ((coe : U → X) ⁻¹' W) := begin rcases hW with ⟨x, x_in, hx⟩, use [⟨x, hWU x_in⟩, by simp [x_in]], rintros ⟨y, hyU⟩ hyW, exact ⟨(hx hyW).joined_subtype.some_path.map (continuous_inclusion hWU), by simp⟩ end lemma is_path_connected.exists_path_through_family {X : Type*} [topological_space X] {n : ℕ} {s : set X} (h : is_path_connected s) (p : fin (n+1) → X) (hp : ∀ i, p i ∈ s) : ∃ γ : path (p 0) (p n), (range γ ⊆ s) ∧ (∀ i, p i ∈ range γ) := begin let p' : ℕ → X := λ k, if h : k < n+1 then p ⟨k, h⟩ else p ⟨0, n.zero_lt_succ⟩, obtain ⟨γ, hγ⟩ : ∃ (γ : path (p' 0) (p' n)), (∀ i ≤ n, p' i ∈ range γ) ∧ range γ ⊆ s, { have hp' : ∀ i ≤ n, p' i ∈ s, { intros i hi, simp [p', nat.lt_succ_of_le hi, hp] }, clear_value p', clear hp p, induction n with n hn, { use path.refl (p' 0), { split, { rintros i hi, rw nat.le_zero_iff.mp hi, exact ⟨0, rfl⟩ }, { rw range_subset_iff, rintros x, exact hp' 0 le_rfl } } }, { rcases hn (λ i hi, hp' i $ nat.le_succ_of_le hi) with ⟨γ₀, hγ₀⟩, rcases h.joined_in (p' n) (hp' n n.le_succ) (p' $ n+1) (hp' (n+1) $ le_rfl) with ⟨γ₁, hγ₁⟩, let γ : path (p' 0) (p' $ n+1) := γ₀.trans γ₁, use γ, have range_eq : range γ = range γ₀ ∪ range γ₁ := γ₀.trans_range γ₁, split, { rintros i hi, by_cases hi' : i ≤ n, { rw range_eq, left, exact hγ₀.1 i hi' }, { rw [not_le, ← nat.succ_le_iff] at hi', have : i = n.succ := by linarith, rw this, use 1, exact γ.target } }, { rw range_eq, apply union_subset hγ₀.2, rw range_subset_iff, exact hγ₁ } } }, have hpp' : ∀ k < n+1, p k = p' k, { intros k hk, simp only [p', hk, dif_pos], congr, ext, rw fin.coe_coe_of_lt hk, norm_cast }, use γ.cast (hpp' 0 n.zero_lt_succ) (hpp' n n.lt_succ_self), simp only [γ.cast_coe], refine and.intro hγ.2 _, rintros ⟨i, hi⟩, suffices : p ⟨i, hi⟩ = p' i, by convert hγ.1 i (nat.le_of_lt_succ hi), rw ← hpp' i hi, suffices : i = i % n.succ, { congr, assumption }, rw nat.mod_eq_of_lt hi, end lemma is_path_connected.exists_path_through_family' {X : Type*} [topological_space X] {n : ℕ} {s : set X} (h : is_path_connected s) (p : fin (n+1) → X) (hp : ∀ i, p i ∈ s) : ∃ (γ : path (p 0) (p n)) (t : fin (n + 1) → I), (∀ t, γ t ∈ s) ∧ ∀ i, γ (t i) = p i := begin rcases h.exists_path_through_family p hp with ⟨γ, hγ⟩, rcases hγ with ⟨h₁, h₂⟩, simp only [range, mem_set_of_eq] at h₂, rw range_subset_iff at h₁, choose! t ht using h₂, exact ⟨γ, t, h₁, ht⟩ end /-! ### Path connected spaces -/ /-- A topological space is path-connected if it is non-empty and every two points can be joined by a continuous path. -/ class path_connected_space (X : Type*) [topological_space X] : Prop := (nonempty : nonempty X) (joined : ∀ x y : X, joined x y) lemma path_connected_space_iff_zeroth_homotopy : path_connected_space X ↔ nonempty (zeroth_homotopy X) ∧ subsingleton (zeroth_homotopy X) := begin letI := path_setoid X, split, { introI h, refine ⟨(nonempty_quotient_iff _).mpr h.1, ⟨_⟩⟩, rintros ⟨x⟩ ⟨y⟩, exact quotient.sound (path_connected_space.joined x y) }, { unfold zeroth_homotopy, rintros ⟨h, h'⟩, resetI, exact ⟨(nonempty_quotient_iff _).mp h, λ x y, quotient.exact $ subsingleton.elim ⟦x⟧ ⟦y⟧⟩ }, end namespace path_connected_space variables [path_connected_space X] /-- Use path-connectedness to build a path between two points. -/ def some_path (x y : X) : path x y := nonempty.some (joined x y) end path_connected_space lemma is_path_connected_iff_path_connected_space : is_path_connected F ↔ path_connected_space F := begin rw is_path_connected_iff, split, { rintro ⟨⟨x, x_in⟩, h⟩, refine ⟨⟨⟨x, x_in⟩⟩, _⟩, rintros ⟨y, y_in⟩ ⟨z, z_in⟩, have H := h y y_in z z_in, rwa joined_in_iff_joined y_in z_in at H }, { rintros ⟨⟨x, x_in⟩, H⟩, refine ⟨⟨x, x_in⟩, λ y y_in z z_in, _⟩, rw joined_in_iff_joined y_in z_in, apply H } end lemma path_connected_space_iff_univ : path_connected_space X ↔ is_path_connected (univ : set X) := begin split, { introI h, haveI := @path_connected_space.nonempty X _ _, inhabit X, refine ⟨default, mem_univ _, _⟩, simpa using path_connected_space.joined default }, { intro h, have h' := h.joined_in, cases h with x h, exact ⟨⟨x⟩, by simpa using h'⟩ }, end lemma path_connected_space_iff_eq : path_connected_space X ↔ ∃ x : X, path_component x = univ := by simp [path_connected_space_iff_univ, is_path_connected_iff_eq] @[priority 100] -- see Note [lower instance priority] instance path_connected_space.connected_space [path_connected_space X] : connected_space X := begin rw connected_space_iff_connected_component, rcases is_path_connected_iff_eq.mp (path_connected_space_iff_univ.mp ‹_›) with ⟨x, x_in, hx⟩, use x, rw ← univ_subset_iff, exact (by simpa using hx : path_component x = univ) ▸ path_component_subset_component x end lemma is_path_connected.is_connected (hF : is_path_connected F) : is_connected F := begin rw is_connected_iff_connected_space, rw is_path_connected_iff_path_connected_space at hF, exact @path_connected_space.connected_space _ _ hF end namespace path_connected_space variables [path_connected_space X] lemma exists_path_through_family {n : ℕ} (p : fin (n+1) → X) : ∃ γ : path (p 0) (p n), (∀ i, p i ∈ range γ) := begin have : is_path_connected (univ : set X) := path_connected_space_iff_univ.mp (by apply_instance), rcases this.exists_path_through_family p (λ i, true.intro) with ⟨γ, -, h⟩, exact ⟨γ, h⟩ end lemma exists_path_through_family' {n : ℕ} (p : fin (n+1) → X) : ∃ (γ : path (p 0) (p n)) (t : fin (n + 1) → I), ∀ i, γ (t i) = p i := begin have : is_path_connected (univ : set X) := path_connected_space_iff_univ.mp (by apply_instance), rcases this.exists_path_through_family' p (λ i, true.intro) with ⟨γ, t, -, h⟩, exact ⟨γ, t, h⟩ end end path_connected_space /-! ### Locally path connected spaces -/ /-- A topological space is locally path connected, at every point, path connected neighborhoods form a neighborhood basis. -/ class loc_path_connected_space (X : Type*) [topological_space X] : Prop := (path_connected_basis : ∀ x : X, (𝓝 x).has_basis (λ s : set X, s ∈ 𝓝 x ∧ is_path_connected s) id) export loc_path_connected_space (path_connected_basis) lemma loc_path_connected_of_bases {p : ι → Prop} {s : X → ι → set X} (h : ∀ x, (𝓝 x).has_basis p (s x)) (h' : ∀ x i, p i → is_path_connected (s x i)) : loc_path_connected_space X := begin constructor, intro x, apply (h x).to_has_basis, { intros i pi, exact ⟨s x i, ⟨(h x).mem_of_mem pi, h' x i pi⟩, by refl⟩ }, { rintros U ⟨U_in, hU⟩, rcases (h x).mem_iff.mp U_in with ⟨i, pi, hi⟩, tauto } end lemma path_connected_space_iff_connected_space [loc_path_connected_space X] : path_connected_space X ↔ connected_space X := begin split, { introI h, apply_instance }, { introI hX, rw path_connected_space_iff_eq, use (classical.arbitrary X), refine eq_univ_of_nonempty_clopen (by simp) ⟨_, _⟩, { rw is_open_iff_mem_nhds, intros y y_in, rcases (path_connected_basis y).ex_mem with ⟨U, ⟨U_in, hU⟩⟩, apply mem_of_superset U_in, rw ← path_component_congr y_in, exact hU.subset_path_component (mem_of_mem_nhds U_in) }, { rw is_closed_iff_nhds, intros y H, rcases (path_connected_basis y).ex_mem with ⟨U, ⟨U_in, hU⟩⟩, rcases H U U_in with ⟨z, hz, hz'⟩, exact ((hU.joined_in z hz y $ mem_of_mem_nhds U_in).joined.mem_path_component hz') } }, end lemma path_connected_subset_basis [loc_path_connected_space X] {U : set X} (h : is_open U) (hx : x ∈ U) : (𝓝 x).has_basis (λ s : set X, s ∈ 𝓝 x ∧ is_path_connected s ∧ s ⊆ U) id := (path_connected_basis x).has_basis_self_subset (is_open.mem_nhds h hx) lemma loc_path_connected_of_is_open [loc_path_connected_space X] {U : set X} (h : is_open U) : loc_path_connected_space U := ⟨begin rintros ⟨x, x_in⟩, rw nhds_subtype_eq_comap, constructor, intros V, rw (has_basis.comap (coe : U → X) (path_connected_subset_basis h x_in)).mem_iff, split, { rintros ⟨W, ⟨W_in, hW, hWU⟩, hWV⟩, exact ⟨coe ⁻¹' W, ⟨⟨preimage_mem_comap W_in, hW.preimage_coe hWU⟩, hWV⟩⟩ }, { rintros ⟨W, ⟨W_in, hW⟩, hWV⟩, refine ⟨coe '' W, ⟨filter.image_coe_mem_of_mem_comap (is_open.mem_nhds h x_in) W_in, hW.image continuous_subtype_coe, subtype.coe_image_subset U W⟩, _⟩, rintros x ⟨y, ⟨y_in, hy⟩⟩, rw ← subtype.coe_injective hy, tauto }, end⟩ lemma is_open.is_connected_iff_is_path_connected [loc_path_connected_space X] {U : set X} (U_op : is_open U) : is_path_connected U ↔ is_connected U := begin rw [is_connected_iff_connected_space, is_path_connected_iff_path_connected_space], haveI := loc_path_connected_of_is_open U_op, exact path_connected_space_iff_connected_space end