/- Copyright (c) 2020 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Floris van Doorn, Yaël Dillies -/ import topology.sets.opens /-! # Closed sets We define a few types of closed sets in a topological space. ## Main Definitions For a topological space `α`, * `closeds α`: The type of closed sets. * `clopens α`: The type of clopen sets. -/ open order order_dual set variables {ι α β : Type*} [topological_space α] [topological_space β] namespace topological_space /-! ### Closed sets -/ /-- The type of closed subsets of a topological space. -/ structure closeds (α : Type*) [topological_space α] := (carrier : set α) (closed' : is_closed carrier) namespace closeds variables {α} instance : set_like (closeds α) α := { coe := closeds.carrier, coe_injective' := λ s t h, by { cases s, cases t, congr' } } lemma closed (s : closeds α) : is_closed (s : set α) := s.closed' @[ext] protected lemma ext {s t : closeds α} (h : (s : set α) = t) : s = t := set_like.ext' h @[simp] lemma coe_mk (s : set α) (h) : (mk s h : set α) = s := rfl /-- The closure of a set, as an element of `closeds`. -/ protected def closure (s : set α) : closeds α := ⟨closure s, is_closed_closure⟩ lemma gc : galois_connection closeds.closure (coe : closeds α → set α) := λ s U, ⟨subset_closure.trans, λ h, closure_minimal h U.closed⟩ /-- The galois coinsertion between sets and opens. -/ def gi : galois_insertion (@closeds.closure α _) coe := { choice := λ s hs, ⟨s, closure_eq_iff_is_closed.1 $ hs.antisymm subset_closure⟩, gc := gc, le_l_u := λ _, subset_closure, choice_eq := λ s hs, set_like.coe_injective $ subset_closure.antisymm hs } instance : complete_lattice (closeds α) := complete_lattice.copy (galois_insertion.lift_complete_lattice gi) /- le -/ _ rfl /- top -/ ⟨univ, is_closed_univ⟩ rfl /- bot -/ ⟨∅, is_closed_empty⟩ (set_like.coe_injective closure_empty.symm) /- sup -/ (λ s t, ⟨s ∪ t, s.2.union t.2⟩) (funext $ λ s, funext $ λ t, set_like.coe_injective (s.2.union t.2).closure_eq.symm) /- inf -/ (λ s t, ⟨s ∩ t, s.2.inter t.2⟩) rfl /- Sup -/ _ rfl /- Inf -/ (λ S, ⟨⋂ s ∈ S, ↑s, is_closed_bInter $ λ s _, s.2⟩) (funext $ λ S, set_like.coe_injective Inf_image.symm) /-- The type of closed sets is inhabited, with default element the empty set. -/ instance : inhabited (closeds α) := ⟨⊥⟩ @[simp, norm_cast] lemma coe_sup (s t : closeds α) : (↑(s ⊔ t) : set α) = s ∪ t := rfl @[simp, norm_cast] lemma coe_inf (s t : closeds α) : (↑(s ⊓ t) : set α) = s ∩ t := rfl @[simp, norm_cast] lemma coe_top : (↑(⊤ : closeds α) : set α) = univ := rfl @[simp, norm_cast] lemma coe_bot : (↑(⊥ : closeds α) : set α) = ∅ := rfl @[simp, norm_cast] lemma coe_Inf {S : set (closeds α)} : (↑(Inf S) : set α) = ⋂ i ∈ S, ↑i := rfl @[simp, norm_cast] lemma coe_finset_sup (f : ι → closeds α) (s : finset ι) : (↑(s.sup f) : set α) = s.sup (coe ∘ f) := map_finset_sup (⟨⟨coe, coe_sup⟩, coe_bot⟩ : sup_bot_hom (closeds α) (set α)) _ _ @[simp, norm_cast] lemma coe_finset_inf (f : ι → closeds α) (s : finset ι) : (↑(s.inf f) : set α) = s.inf (coe ∘ f) := map_finset_inf (⟨⟨coe, coe_inf⟩, coe_top⟩ : inf_top_hom (closeds α) (set α)) _ _ lemma infi_def {ι} (s : ι → closeds α) : (⨅ i, s i) = ⟨⋂ i, s i, is_closed_Inter $ λ i, (s i).2⟩ := by { ext, simp only [infi, coe_Inf, bInter_range], refl } @[simp] lemma infi_mk {ι} (s : ι → set α) (h : ∀ i, is_closed (s i)) : (⨅ i, ⟨s i, h i⟩ : closeds α) = ⟨⋂ i, s i, is_closed_Inter h⟩ := by simp [infi_def] @[simp, norm_cast] lemma coe_infi {ι} (s : ι → closeds α) : ((⨅ i, s i : closeds α) : set α) = ⋂ i, s i := by simp [infi_def] @[simp] lemma mem_infi {ι} {x : α} {s : ι → closeds α} : x ∈ infi s ↔ ∀ i, x ∈ s i := by simp [←set_like.mem_coe] @[simp] lemma mem_Inf {S : set (closeds α)} {x : α} : x ∈ Inf S ↔ ∀ s ∈ S, x ∈ s := by simp_rw [Inf_eq_infi, mem_infi] instance : coframe (closeds α) := { Inf := Inf, infi_sup_le_sup_Inf := λ a s, (set_like.coe_injective $ by simp only [coe_sup, coe_infi, coe_Inf, set.union_Inter₂]).le, ..closeds.complete_lattice } end closeds /-- The complement of a closed set as an open set. -/ @[simps] def closeds.compl (s : closeds α) : opens α := ⟨sᶜ, s.2.is_open_compl⟩ /-- The complement of an open set as a closed set. -/ @[simps] def opens.compl (s : opens α) : closeds α := ⟨sᶜ, s.2.is_closed_compl⟩ lemma closeds.compl_compl (s : closeds α) : s.compl.compl = s := closeds.ext (compl_compl s) lemma opens.compl_compl (s : opens α) : s.compl.compl = s := opens.ext (compl_compl s) lemma closeds.compl_bijective : function.bijective (@closeds.compl α _) := function.bijective_iff_has_inverse.mpr ⟨opens.compl, closeds.compl_compl, opens.compl_compl⟩ lemma opens.compl_bijective : function.bijective (@opens.compl α _) := function.bijective_iff_has_inverse.mpr ⟨closeds.compl, opens.compl_compl, closeds.compl_compl⟩ /-! ### Clopen sets -/ /-- The type of clopen sets of a topological space. -/ structure clopens (α : Type*) [topological_space α] := (carrier : set α) (clopen' : is_clopen carrier) namespace clopens instance : set_like (clopens α) α := { coe := λ s, s.carrier, coe_injective' := λ s t h, by { cases s, cases t, congr' } } lemma clopen (s : clopens α) : is_clopen (s : set α) := s.clopen' /-- Reinterpret a compact open as an open. -/ @[simps] def to_opens (s : clopens α) : opens α := ⟨s, s.clopen.is_open⟩ @[ext] protected lemma ext {s t : clopens α} (h : (s : set α) = t) : s = t := set_like.ext' h @[simp] lemma coe_mk (s : set α) (h) : (mk s h : set α) = s := rfl instance : has_sup (clopens α) := ⟨λ s t, ⟨s ∪ t, s.clopen.union t.clopen⟩⟩ instance : has_inf (clopens α) := ⟨λ s t, ⟨s ∩ t, s.clopen.inter t.clopen⟩⟩ instance : has_top (clopens α) := ⟨⟨⊤, is_clopen_univ⟩⟩ instance : has_bot (clopens α) := ⟨⟨⊥, is_clopen_empty⟩⟩ instance : has_sdiff (clopens α) := ⟨λ s t, ⟨s \ t, s.clopen.diff t.clopen⟩⟩ instance : has_compl (clopens α) := ⟨λ s, ⟨sᶜ, s.clopen.compl⟩⟩ instance : boolean_algebra (clopens α) := set_like.coe_injective.boolean_algebra _ (λ _ _, rfl) (λ _ _, rfl) rfl rfl (λ _, rfl) (λ _ _, rfl) @[simp] lemma coe_sup (s t : clopens α) : (↑(s ⊔ t) : set α) = s ∪ t := rfl @[simp] lemma coe_inf (s t : clopens α) : (↑(s ⊓ t) : set α) = s ∩ t := rfl @[simp] lemma coe_top : (↑(⊤ : clopens α) : set α) = univ := rfl @[simp] lemma coe_bot : (↑(⊥ : clopens α) : set α) = ∅ := rfl @[simp] lemma coe_sdiff (s t : clopens α) : (↑(s \ t) : set α) = s \ t := rfl @[simp] lemma coe_compl (s : clopens α) : (↑sᶜ : set α) = sᶜ := rfl instance : inhabited (clopens α) := ⟨⊥⟩ end clopens end topological_space