/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro, Floris van Doorn -/ import order.hom.complete_lattice import topology.bases import topology.homeomorph import topology.continuous_function.basic import order.compactly_generated /-! # Open sets ## Summary We define the subtype of open sets in a topological space. ## Main Definitions - `opens α` is the type of open subsets of a topological space `α`. - `open_nhds_of x` is the type of open subsets of a topological space `α` containing `x : α`. -/ open filter function order set variables {ι α β γ : Type*} [topological_space α] [topological_space β] [topological_space γ] namespace topological_space variable (α) /-- The type of open subsets of a topological space. -/ def opens := {s : set α // is_open s} variable {α} namespace opens instance : has_coe (opens α) (set α) := { coe := subtype.val } lemma val_eq_coe (U : opens α) : U.1 = ↑U := rfl /-- the coercion `opens α → set α` applied to a pair is the same as taking the first component -/ lemma coe_mk {α : Type*} [topological_space α] {U : set α} {hU : is_open U} : ↑(⟨U, hU⟩ : opens α) = U := rfl instance : has_subset (opens α) := { subset := λ U V, (U : set α) ⊆ V } instance : has_mem α (opens α) := { mem := λ a U, a ∈ (U : set α) } @[simp] lemma subset_coe {U V : opens α} : ((U : set α) ⊆ (V : set α)) = (U ⊆ V) := rfl @[simp] lemma mem_coe {x : α} {U : opens α} : (x ∈ (U : set α)) = (x ∈ U) := rfl @[simp] lemma mem_mk {x : α} {U : set α} {h : is_open U} : @has_mem.mem _ _ opens.has_mem x ⟨U, h⟩ ↔ x ∈ U := iff.rfl @[ext] lemma ext {U V : opens α} (h : (U : set α) = V) : U = V := subtype.ext h @[ext] lemma ext_iff {U V : opens α} : (U : set α) = V ↔ U = V := subtype.ext_iff.symm instance : partial_order (opens α) := subtype.partial_order _ /-- The interior of a set, as an element of `opens`. -/ def interior (s : set α) : opens α := ⟨interior s, is_open_interior⟩ lemma gc : galois_connection (coe : opens α → set α) interior := λ U s, ⟨λ h, interior_maximal h U.property, λ h, le_trans h interior_subset⟩ open order_dual (of_dual to_dual) /-- The galois coinsertion between sets and opens. -/ def gi : galois_coinsertion subtype.val (@interior α _) := { choice := λ s hs, ⟨s, interior_eq_iff_open.mp $ le_antisymm interior_subset hs⟩, gc := gc, u_l_le := λ _, interior_subset, choice_eq := λ s hs, le_antisymm hs interior_subset } instance : complete_lattice (opens α) := complete_lattice.copy (galois_coinsertion.lift_complete_lattice gi) /- le -/ (λ U V, U ⊆ V) rfl /- top -/ ⟨univ, is_open_univ⟩ (ext interior_univ.symm) /- bot -/ ⟨∅, is_open_empty⟩ rfl /- sup -/ (λ U V, ⟨↑U ∪ ↑V, U.2.union V.2⟩) rfl /- inf -/ (λ U V, ⟨↑U ∩ ↑V, U.2.inter V.2⟩) (funext $ λ U, funext $ λ V, ext (U.2.inter V.2).interior_eq.symm) /- Sup -/ (λ S, ⟨⋃ s ∈ S, ↑s, is_open_bUnion $ λ s _, s.2⟩) (funext $ λ S, ext Sup_image.symm) /- Inf -/ _ rfl lemma le_def {U V : opens α} : U ≤ V ↔ (U : set α) ≤ (V : set α) := iff.rfl @[simp] lemma mk_inf_mk {U V : set α} {hU : is_open U} {hV : is_open V} : (⟨U, hU⟩ ⊓ ⟨V, hV⟩ : opens α) = ⟨U ⊓ V, is_open.inter hU hV⟩ := rfl @[simp, norm_cast] lemma coe_inf (s t : opens α) : (↑(s ⊓ t) : set α) = s ∩ t := rfl @[simp, norm_cast] lemma coe_sup (s t : opens α) : (↑(s ⊔ t) : set α) = s ∪ t := rfl @[simp, norm_cast] lemma coe_bot : ((⊥ : opens α) : set α) = ∅ := rfl @[simp, norm_cast] lemma coe_top : ((⊤ : opens α) : set α) = set.univ := rfl @[simp, norm_cast] lemma coe_Sup {S : set (opens α)} : (↑(Sup S) : set α) = ⋃ i ∈ S, ↑i := rfl @[simp, norm_cast] lemma coe_finset_sup (f : ι → opens α) (s : finset ι) : (↑(s.sup f) : set α) = s.sup (coe ∘ f) := map_finset_sup (⟨⟨coe, coe_sup⟩, coe_bot⟩ : sup_bot_hom (opens α) (set α)) _ _ @[simp, norm_cast] lemma coe_finset_inf (f : ι → opens α) (s : finset ι) : (↑(s.inf f) : set α) = s.inf (coe ∘ f) := map_finset_inf (⟨⟨coe, coe_inf⟩, coe_top⟩ : inf_top_hom (opens α) (set α)) _ _ instance : has_inter (opens α) := ⟨λ U V, U ⊓ V⟩ instance : has_union (opens α) := ⟨λ U V, U ⊔ V⟩ instance : has_emptyc (opens α) := ⟨⊥⟩ instance : inhabited (opens α) := ⟨∅⟩ @[simp] lemma inter_eq (U V : opens α) : U ∩ V = U ⊓ V := rfl @[simp] lemma union_eq (U V : opens α) : U ∪ V = U ⊔ V := rfl @[simp] lemma empty_eq : (∅ : opens α) = ⊥ := rfl lemma supr_def {ι} (s : ι → opens α) : (⨆ i, s i) = ⟨⋃ i, s i, is_open_Union $ λ i, (s i).2⟩ := by { ext, simp only [supr, coe_Sup, bUnion_range], refl } @[simp] lemma supr_mk {ι} (s : ι → set α) (h : Π i, is_open (s i)) : (⨆ i, ⟨s i, h i⟩ : opens α) = ⟨⋃ i, s i, is_open_Union h⟩ := by { rw supr_def, simp } @[simp, norm_cast] lemma coe_supr {ι} (s : ι → opens α) : ((⨆ i, s i : opens α) : set α) = ⋃ i, s i := by simp [supr_def] @[simp] theorem mem_supr {ι} {x : α} {s : ι → opens α} : x ∈ supr s ↔ ∃ i, x ∈ s i := by { rw [←mem_coe], simp, } @[simp] lemma mem_Sup {Us : set (opens α)} {x : α} : x ∈ Sup Us ↔ ∃ u ∈ Us, x ∈ u := by simp_rw [Sup_eq_supr, mem_supr] instance : frame (opens α) := { Sup := Sup, inf_Sup_le_supr_inf := λ a s, (ext $ by simp only [coe_inf, coe_supr, coe_Sup, set.inter_Union₂]).le, ..opens.complete_lattice } lemma open_embedding_of_le {U V : opens α} (i : U ≤ V) : open_embedding (set.inclusion i) := { inj := set.inclusion_injective i, induced := (@induced_compose _ _ _ _ (set.inclusion i) coe).symm, open_range := begin rw set.range_inclusion i, exact U.property.preimage continuous_subtype_val end, } lemma not_nonempty_iff_eq_bot (U : opens α) : ¬ set.nonempty (U : set α) ↔ U = ⊥ := by rw [← subtype.coe_injective.eq_iff, opens.coe_bot, ← set.not_nonempty_iff_eq_empty] lemma ne_bot_iff_nonempty (U : opens α) : U ≠ ⊥ ↔ set.nonempty (U : set α) := by rw [ne.def, ← opens.not_nonempty_iff_eq_bot, not_not] /-- A set of `opens α` is a basis if the set of corresponding sets is a topological basis. -/ def is_basis (B : set (opens α)) : Prop := is_topological_basis ((coe : _ → set α) '' B) lemma is_basis_iff_nbhd {B : set (opens α)} : is_basis B ↔ ∀ {U : opens α} {x}, x ∈ U → ∃ U' ∈ B, x ∈ U' ∧ U' ⊆ U := begin split; intro h, { rintros ⟨sU, hU⟩ x hx, rcases h.mem_nhds_iff.mp (is_open.mem_nhds hU hx) with ⟨sV, ⟨⟨V, H₁, H₂⟩, hsV⟩⟩, refine ⟨V, H₁, _⟩, cases V, dsimp at H₂, subst H₂, exact hsV }, { refine is_topological_basis_of_open_of_nhds _ _, { rintros sU ⟨U, ⟨H₁, rfl⟩⟩, exact U.property }, { intros x sU hx hsU, rcases @h (⟨sU, hsU⟩ : opens α) x hx with ⟨V, hV, H⟩, exact ⟨V, ⟨V, hV, rfl⟩, H⟩ } } end lemma is_basis_iff_cover {B : set (opens α)} : is_basis B ↔ ∀ U : opens α, ∃ Us ⊆ B, U = Sup Us := begin split, { intros hB U, refine ⟨{V : opens α | V ∈ B ∧ V ⊆ U}, λ U hU, hU.left, _⟩, apply ext, rw [coe_Sup, hB.open_eq_sUnion' U.prop], simp_rw [sUnion_eq_bUnion, Union, supr_and, supr_image], refl }, { intro h, rw is_basis_iff_nbhd, intros U x hx, rcases h U with ⟨Us, hUs, rfl⟩, rcases mem_Sup.1 hx with ⟨U, Us, xU⟩, exact ⟨U, hUs Us, xU, le_Sup Us⟩ } end /-- If `α` has a basis consisting of compact opens, then an open set in `α` is compact open iff it is a finite union of some elements in the basis -/ lemma is_compact_open_iff_eq_finite_Union_of_is_basis {ι : Type*} (b : ι → opens α) (hb : opens.is_basis (set.range b)) (hb' : ∀ i, is_compact (b i : set α)) (U : set α) : is_compact U ∧ is_open U ↔ ∃ (s : set ι), s.finite ∧ U = ⋃ i ∈ s, b i := begin apply is_compact_open_iff_eq_finite_Union_of_is_topological_basis (λ i : ι, (b i).1), { convert hb, ext, simp }, { exact hb' } end @[simp] lemma is_compact_element_iff (s : opens α) : complete_lattice.is_compact_element s ↔ is_compact (s : set α) := begin rw [is_compact_iff_finite_subcover, complete_lattice.is_compact_element_iff], refine ⟨_, λ H ι U hU, _⟩, { introv H hU hU', obtain ⟨t, ht⟩ := H ι (λ i, ⟨U i, hU i⟩) (by simpa), refine ⟨t, set.subset.trans ht _⟩, rw [coe_finset_sup, finset.sup_eq_supr], refl }, { obtain ⟨t, ht⟩ := H (λ i, U i) (λ i, (U i).prop) (by simpa using (show (s : set α) ⊆ ↑(supr U), from hU)), refine ⟨t, set.subset.trans ht _⟩, simp only [set.Union_subset_iff], show ∀ i ∈ t, U i ≤ t.sup U, from λ i, finset.le_sup } end /-- The preimage of an open set, as an open set. -/ def comap (f : C(α, β)) : frame_hom (opens β) (opens α) := { to_fun := λ s, ⟨f ⁻¹' s, s.2.preimage f.continuous⟩, map_Sup' := λ s, ext $ by simp only [coe_Sup, preimage_Union, coe_mk, mem_image, Union_exists, bUnion_and', Union_Union_eq_right], map_inf' := λ a b, rfl, map_top' := rfl } @[simp] lemma comap_id : comap (continuous_map.id α) = frame_hom.id _ := frame_hom.ext $ λ a, ext rfl lemma comap_mono (f : C(α, β)) {s t : opens β} (h : s ≤ t) : comap f s ≤ comap f t := order_hom_class.mono (comap f) h @[simp] lemma coe_comap (f : C(α, β)) (U : opens β) : ↑(comap f U) = f ⁻¹' U := rfl @[simp] lemma comap_val (f : C(α, β)) (U : opens β) : (comap f U).1 = f ⁻¹' U := rfl protected lemma comap_comp (g : C(β, γ)) (f : C(α, β)) : comap (g.comp f) = (comap f).comp (comap g) := rfl protected lemma comap_comap (g : C(β, γ)) (f : C(α, β)) (U : opens γ) : comap f (comap g U) = comap (g.comp f) U := rfl lemma comap_injective [t0_space β] : injective (comap : C(α, β) → frame_hom (opens β) (opens α)) := λ f g h, continuous_map.ext $ λ a, inseparable.eq $ inseparable_iff_forall_open.2 $ λ s hs, have comap f ⟨s, hs⟩ = comap g ⟨s, hs⟩, from fun_like.congr_fun h ⟨_, hs⟩, show a ∈ f ⁻¹' s ↔ a ∈ g ⁻¹' s, from set.ext_iff.1 (ext_iff.2 this) a /-- A homeomorphism induces an equivalence on open sets, by taking comaps. -/ @[simp] protected def equiv (f : α ≃ₜ β) : opens α ≃ opens β := { to_fun := opens.comap f.symm.to_continuous_map, inv_fun := opens.comap f.to_continuous_map, left_inv := by { intro U, ext1, exact f.to_equiv.preimage_symm_preimage _ }, right_inv := by { intro U, ext1, exact f.to_equiv.symm_preimage_preimage _ } } /-- A homeomorphism induces an order isomorphism on open sets, by taking comaps. -/ @[simp] protected def order_iso (f : α ≃ₜ β) : opens α ≃o opens β := { to_equiv := opens.equiv f, map_rel_iff' := λ U V, f.symm.surjective.preimage_subset_preimage_iff } end opens /-- The open neighborhoods of a point. See also `opens` or `nhds`. -/ def open_nhds_of (x : α) : Type* := { s : set α // is_open s ∧ x ∈ s } instance open_nhds_of.inhabited {α : Type*} [topological_space α] (x : α) : inhabited (open_nhds_of x) := ⟨⟨set.univ, is_open_univ, set.mem_univ _⟩⟩ end topological_space