# coding=utf-8 # Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 import json import datasets # TODO: Add description of the dataset here # You can copy an official description _DESCRIPTION = """\ A dataset that evaluates formally proving and autoformalizing undergraduate mathematics. """ # TODO: Add a link to an official homepage for the dataset here _HOMEPAGE = "" # TODO: Add the licence for the dataset here if you can find it _LICENSE = "MIT" # TODO: Add link to the official dataset URLs here # The HuggingFace Datasets library doesn't host the datasets but only points to the original files. # This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method) _URLS = { } class ProofNetConfig(datasets.BuilderConfig): """BuilderConfig""" def __init__(self, **kwargs): """BuilderConfig Args: **kwargs: keyword arguments forwarded to super. """ super(ProofNetConfig, self).__init__(**kwargs) class ProofNet(datasets.GeneratorBasedBuilder): BUILDER_CONFIGS = [ ProofNetConfig( name="plain_text", version=datasets.Version("2.0.0", ""), description="Plain text", ), ] def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "id": datasets.Value("string"), "nl_statement": datasets.Value("string"), "nl_proof": datasets.Value("string"), "formal_statement": datasets.Value("string"), "src_header": datasets.Value("string"), } ), ) def _split_generators(self, dl_manager) return [ datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": dl_manager.download("test.jsonl")}), datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath":dl_manager.download("valid.jsonl")}) ] def _generate_examples(self, filepath): """This function returns the examples in the raw (text) form.""" key = 0 with open(filepath, encoding="utf-8") as f: for line in f.readlines(): instance = json.load(line) yield key, instance key += 1