Datasets:

Languages:
English
ArXiv:
License:
File size: 4,476 Bytes
da596cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
# coding=utf-8
# Copyright 2020 HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Lint as: python3
import json

import datasets


_DESCRIPTION = """\
HoVer is an open-domain, many-hop fact extraction and claim verification dataset built upon the Wikipedia corpus. The original 2-hop claims are adapted from question-answer pairs from HotpotQA. It is collected by a team of NLP researchers at UNC Chapel Hill and Verisk Analytics.
"""
_HOMEPAGE_URL = "https://hover-nlp.github.io/"
_CITATION = """\
@inproceedings{jiang2020hover,
  title={{HoVer}: A Dataset for Many-Hop Fact Extraction And Claim Verification},
  author={Yichen Jiang and Shikha Bordia and Zheng Zhong and Charles Dognin and Maneesh Singh and Mohit Bansal.},
  booktitle={Findings of the Conference on Empirical Methods in Natural Language Processing ({EMNLP})},
  year={2020}
}
"""

_TRAIN_URL = "https://raw.githubusercontent.com/hover-nlp/hover/main/data/hover/hover_train_release_v1.1.json"
_VALID_URL = "https://raw.githubusercontent.com/hover-nlp/hover/main/data/hover/hover_dev_release_v1.1.json"
_TEST_URL = "https://raw.githubusercontent.com/hover-nlp/hover/main/data/hover/hover_test_release_v1.1.json"


class Hover(datasets.GeneratorBasedBuilder):
    VERSION = datasets.Version("1.1.0")

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "id": datasets.Value("int32"),
                    "uid": datasets.Value("string"),
                    "claim": datasets.Value("string"),
                    "supporting_facts": [
                        {
                            "key": datasets.Value("string"),
                            "value": datasets.Value("int32"),
                        }
                    ],
                    "label": datasets.ClassLabel(names=["NOT_SUPPORTED", "SUPPORTED"]),
                    "num_hops": datasets.Value("int32"),
                    "hpqa_id": datasets.Value("string"),
                },
            ),
            supervised_keys=None,
            homepage=_HOMEPAGE_URL,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        train_path = dl_manager.download_and_extract(_TRAIN_URL)
        valid_path = dl_manager.download_and_extract(_VALID_URL)
        test_path = dl_manager.download_and_extract(_TEST_URL)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={"datapath": train_path, "datatype": "train"},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={"datapath": valid_path, "datatype": "valid"},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={"datapath": test_path, "datatype": "test"},
            ),
        ]

    def _generate_examples(self, datapath, datatype):
        with open(datapath, encoding="utf-8") as f:
            data = json.load(f)

        for sentence_counter, d in enumerate(data):
            if datatype != "test":
                resp = {
                    "id": sentence_counter,
                    "uid": d["uid"],
                    "claim": d["claim"],
                    "supporting_facts": [{"key": x[0], "value": x[1]} for x in d["supporting_facts"]],
                    "label": d["label"],
                    "num_hops": d["num_hops"],
                    "hpqa_id": d["hpqa_id"],
                }
            else:
                resp = {
                    "id": sentence_counter,
                    "uid": d["uid"],
                    "claim": d["claim"],
                    "supporting_facts": [],
                    "label": -1,
                    "num_hops": -1,
                    "hpqa_id": "None",
                }
            yield sentence_counter, resp