Datasets:
Tasks:
Text Retrieval
Sub-tasks:
fact-checking-retrieval
Languages:
English
Size:
10K<n<100K
ArXiv:
License:
# coding=utf-8 | |
# Copyright 2020 HuggingFace Datasets Authors. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# Lint as: python3 | |
import json | |
import datasets | |
_DESCRIPTION = """\ | |
HoVer is an open-domain, many-hop fact extraction and claim verification dataset built upon the Wikipedia corpus. The original 2-hop claims are adapted from question-answer pairs from HotpotQA. It is collected by a team of NLP researchers at UNC Chapel Hill and Verisk Analytics. | |
""" | |
_HOMEPAGE_URL = "https://hover-nlp.github.io/" | |
_CITATION = """\ | |
@inproceedings{jiang2020hover, | |
title={{HoVer}: A Dataset for Many-Hop Fact Extraction And Claim Verification}, | |
author={Yichen Jiang and Shikha Bordia and Zheng Zhong and Charles Dognin and Maneesh Singh and Mohit Bansal.}, | |
booktitle={Findings of the Conference on Empirical Methods in Natural Language Processing ({EMNLP})}, | |
year={2020} | |
} | |
""" | |
_TRAIN_URL = "https://raw.githubusercontent.com/hover-nlp/hover/main/data/hover/hover_train_release_v1.1.json" | |
_VALID_URL = "https://raw.githubusercontent.com/hover-nlp/hover/main/data/hover/hover_dev_release_v1.1.json" | |
_TEST_URL = "https://raw.githubusercontent.com/hover-nlp/hover/main/data/hover/hover_test_release_v1.1.json" | |
class Hover(datasets.GeneratorBasedBuilder): | |
VERSION = datasets.Version("1.1.0") | |
def _info(self): | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"id": datasets.Value("int32"), | |
"uid": datasets.Value("string"), | |
"claim": datasets.Value("string"), | |
"supporting_facts": [ | |
{ | |
"key": datasets.Value("string"), | |
"value": datasets.Value("int32"), | |
} | |
], | |
"label": datasets.ClassLabel(names=["NOT_SUPPORTED", "SUPPORTED"]), | |
"num_hops": datasets.Value("int32"), | |
"hpqa_id": datasets.Value("string"), | |
}, | |
), | |
supervised_keys=None, | |
homepage=_HOMEPAGE_URL, | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
train_path = dl_manager.download_and_extract(_TRAIN_URL) | |
valid_path = dl_manager.download_and_extract(_VALID_URL) | |
test_path = dl_manager.download_and_extract(_TEST_URL) | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={"datapath": train_path, "datatype": "train"}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
gen_kwargs={"datapath": valid_path, "datatype": "valid"}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
gen_kwargs={"datapath": test_path, "datatype": "test"}, | |
), | |
] | |
def _generate_examples(self, datapath, datatype): | |
with open(datapath, encoding="utf-8") as f: | |
data = json.load(f) | |
for sentence_counter, d in enumerate(data): | |
if datatype != "test": | |
resp = { | |
"id": sentence_counter, | |
"uid": d["uid"], | |
"claim": d["claim"], | |
"supporting_facts": [{"key": x[0], "value": x[1]} for x in d["supporting_facts"]], | |
"label": d["label"], | |
"num_hops": d["num_hops"], | |
"hpqa_id": d["hpqa_id"], | |
} | |
else: | |
resp = { | |
"id": sentence_counter, | |
"uid": d["uid"], | |
"claim": d["claim"], | |
"supporting_facts": [], | |
"label": -1, | |
"num_hops": -1, | |
"hpqa_id": "None", | |
} | |
yield sentence_counter, resp | |