# Based on https://huggingface.co/datasets/boolq/blob/main/boolq.py import json import datasets # TODO(boolq): BibTeX citation _CITATION = """\ @inproceedings{clark2019boolq, title = {BoolQ: Exploring the Surprising Difficulty of Natural Yes/No Questions}, author = {Clark, Christopher and Lee, Kenton and Chang, Ming-Wei, and Kwiatkowski, Tom and Collins, Michael, and Toutanova, Kristina}, booktitle = {NAACL}, year = {2019}, } """ # TODO(boolq): _DESCRIPTION = """\ BoolQ is a question answering dataset for yes/no questions containing 15942 examples. These questions are naturally occurring ---they are generated in unprompted and unconstrained settings. Each example is a triplet of (question, passage, answer), with the title of the page as optional additional context. The text-pair classification setup is similar to existing natural language inference tasks. """ _URL = "https://storage.googleapis.com/boolq/" _URLS = { "train": _URL + "train.jsonl", "dev": _URL + "dev.jsonl", } class Boolq(datasets.GeneratorBasedBuilder): """TODO(boolq): Short description of my dataset.""" # TODO(boolq): Set up version. VERSION = datasets.Version("0.1.0") def _info(self): # TODO(boolq): Specifies the datasets.DatasetInfo object return datasets.DatasetInfo( # This is the description that will appear on the datasets page. description=_DESCRIPTION, # datasets.features.FeatureConnectors features=datasets.Features( { "question": datasets.Value("string"), "answer": datasets.Value("bool"), "passage": datasets.Value("string") "title": datasets.Value("string") } ), # If there's a common (input, target) tuple from the features, # specify them here. They'll be used if as_supervised=True in # builder.as_dataset. supervised_keys=None, # Homepage of the dataset for documentation homepage="https://github.com/google-research-datasets/boolean-questions", citation=_CITATION, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" # TODO(boolq): Downloads the data and defines the splits # dl_manager is a datasets.download.DownloadManager that can be used to # download and extract URLs urls_to_download = _URLS downloaded_files = dl_manager.download(urls_to_download) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}, ), ] def _generate_examples(self, filepath): """Yields examples.""" # TODO(boolq): Yields (key, example) tuples from the dataset with open(filepath, encoding="utf-8") as f: for id_, row in enumerate(f): data = json.loads(row) question = data["question"] answer = data["answer"] passage = data["passage"] title = data["title"] yield id_, {"question": question, "answer": answer, "passage": passage, "title": title}